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Abstract - The main objective of this paper is to study the oscillatory behavior of solution of the fractional nonlinear damped 

extensible beam equations by using the Riccati technique and integral average method. Some new sufficient conditions are 

established with various boundary conditions over a cylindrical domains. Examples illustrating the results are also given. 
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1. Introduction  
Oscillation theory of partial differential equations imitated by P. Hartman and A. Wintner [1] in 1955. The problem of 

oscillation and non-oscillation of beam equations has been investigated by many authors, Feireisel and Herrmann [2], 

Herrmann [3], Kusano and Yoshida [4], Timoshenko [5], Yoshida [6,7] and the references therein. Especially, Yoshida [8] and 

Ball [9] have studied the extensible results for beam equations.  In the present paper we have obtained sufficient conditions for 

solutions on the boundary domains with certain boundary value problems have a zero. In fact we consider various boundary 

conditions such as clamped, hinged and clamped-hinged ends. 

 

The beam equations were proposed by Woinowsky-krieger [10] as a imitation for the transverse deflection u(x,t) of an 

extensible beam of nature length L whose ends are held a fixed distance apart, and also  discussed by Eisley [11] and Burgreen 

[12]. Initial-boundary conditions for the beam equations are introduced by Dickey [13], represent a vibrating string. 

  

Fractional calculus, as a tool for modelling real world phenomena, has raised a lot of interest recently. We have chosen the 

derivative in the sense of caputo because the derivative of constant functions is zero and because the order of the derivative, in 

the differential equations that we are going to consider, is an integer in the initial conditions. As we have commanded, the use 

of the derivative in the sense of caputo is frequently used because, for example, there is no ambiguity in the interpretation of 

the concept of fractional derivatives in the initial conditions, since they coincide with the classic case, that is, they are integers. 

This fact does not occur with all fractional derivatives, however, in some cases, attempts have been made to give it a physical 

meaning. Area of applications: head conduction, elasticity, plasticity and viscoelasticity [14, 15, 16, 17]. In 1985, N. Yoshida, 

studies the forced oscillations of extensible beams has motivated by this paper. 

 

In this article we initiate the forced oscillation fractional nonlinear damped extensible beam equations of the form, 

 
𝜕

𝜕𝑡
(𝑝(𝑡) 𝐷+,𝑡

𝛼𝑐 𝑢(𝑥, 𝑡)) + 𝑞
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
− (𝑚 + 𝑟 ∫ (

𝜕𝑢(𝜉, 𝑡)

𝜕𝜉
)

2

𝑑𝜉
Ω

)
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
                                     

                                           +𝑐(𝑥, 𝑡, 𝑢(𝑥, 𝑡)𝐽 (∫ (𝑡 − 𝑠)−𝛼 𝜕𝑢(𝑥,𝑠)

𝜕𝑠

𝑡

0
𝑑𝑠) = 𝑓(𝑥, 𝑡)        (𝑥, 𝑡) ∈ Ω × ℝ+ = 𝐺.                   (1) 

Where, Ω = (0, L), 𝛼 = (0,1), ℝ+ = (0, ∞).  
 

Then 𝑞 is non a negative constant, 𝑚, 𝑟 are constants. 𝑢(𝑥, 𝑡) ∈ ℂ1+𝛼(𝐺, ℝ1) ∩ ℂ4(𝐺, ℝ1) and 𝐷+,𝑡
𝛼𝑐 𝑢(𝑥, 𝑡) is the Caputo 

fractional derivative of order 𝛼 of 𝑢(𝑥, 𝑡) with respect to t.  
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We assume the following conditions: 

 (𝐴1) 𝑝(𝑡) is continuous functions.  

 (𝐴2) 𝑐(𝑥, 𝑡, 𝑢(𝑥, 𝑡) ∈ ℂ((𝐺, ℝ1), ℝ+) is convex in ℝ+and  𝑐(𝑥, 𝑡, 𝑢(𝑥, 𝑡) ≤ 𝛿(𝑡)𝜑(𝑢(𝑥, 𝑡)) in Ω for some function 

𝛿(𝑡) ∈ ℂ((0, ∞), ℝ+), 𝜑: ℝ1 → (𝑏, ∞) is continuous, 𝑏 > 0. 

 (𝐴3) 𝐽(𝑘(𝑡))  ∈  ℂ(𝐺, ℝ1) is convex in ℝ+. 

 (𝐴4) 𝑓(𝑥, 𝑡) is continous function, such that ∫ 𝑓(𝑥, 𝑡) ϕ(x)dx ≤ 0.
Ω

 

 A function 𝑢(𝑥, 𝑡): 𝐺 → ℝ1is said to be oscillatory in 𝐺, if it has a zero in Ω × ℝ+ for any 𝑡 > 0. Otherwise it is non-

oscillatory. 

 

This paper is organized as follows: 

        We recall some preliminaries given in Section 2. In Section 3, we discuss the forced oscillation problems with boundary 

conditions that are clamped, hinged and clamped-hinged ends. In Section 4, we provide the suitable examples illustrate our 

main results. 

 

2. Preliminaries  
We present the definition of the Caputo fractional derivatives, integrals are given in this section and lemmas which are  

useful throughout this paper. 

 

Definition 2.1 The Caputo fractional partial derivative of order 𝟎 < 𝛂 < 𝟏with respect to 𝒕 of a function 𝒖(𝒙, 𝒕) is given by 

    ( 𝑫+,𝒕
𝜶𝒄 𝒖)(𝒙, 𝒕) ≔

𝟏

𝜞(𝟏−𝜶)
∫ (𝒕 − 𝝊)−𝜶 𝝏𝒖(𝒙,𝝊)

𝝏𝝊

𝒕

𝟎
𝒅𝝊          𝐟𝐨𝐫      𝒕 > 𝟎. 

provided the right hand side is point wise defined on ℝ+, where 𝜞 is the gamma function. 

 

Definition 2.2 The Caputo fractional integral of order 𝜶 > 𝟎 of a function 𝐱: ℝ+ → ℝ on the half-axis ℝ+ is given by 

                          ( 𝑰+,𝒕
𝜶𝒄 𝒙)(𝒕) ≔

𝟏

𝜞(𝜶)
∫ (𝒕 − 𝝊)𝜶−𝟏𝒙′(𝝊)

𝒕

𝟎
𝒅𝝊          𝒇𝒐𝒓      𝒕 > 𝟎. 

 

Definition 2.3 A function 𝑯 ≔ 𝑯(𝒕, 𝒔) belongs to a function class 𝜞, denoted by 𝑯 ∈ 𝜞,if 𝑯(𝒕, 𝒔) ∈ ℂ(𝔻, ℝ+)  satisfying 

𝑯(𝒕, 𝒕) = 𝟎, 𝑯(𝒕, 𝒔) ≤ 𝟎 for 𝒕 > 𝒔 ≥ 𝟎, where 𝔻 = {(𝒕, 𝒔): 𝒕 < 𝒔 ≤ 𝟎}, ℝ+ = (𝟎, ∞). Furthermore, 𝑯 has continous 

derivatives 
𝝏𝑯(𝒕, 𝒔)

𝝏𝒕
= 𝒉𝟏(𝒕, 𝒔)√𝑯(𝒕, 𝒔),             

𝝏𝑯(𝒕, 𝒔)

𝝏𝒔
= −𝒉𝟏𝟐(𝒕, 𝒔)√𝑯(𝒕, 𝒔),              (𝒕, 𝒔) ∈ 𝔻,   

Where 𝒉𝟏, 𝒉𝟐 ∈ ℂ(𝔻, ℝ+). 
 

Lemma 2.4 Let 𝒙 be solution of (1) and 

                                       𝒌(𝒕) ≔ ∫ (𝒕 − 𝝊)−𝜶𝒙′(𝝊)
𝒕

𝟎
𝒅𝝊      for  𝜶 = (𝟎, 𝟏)  and       𝒕 > 𝟎. 

Then 𝒌(𝒕) =  𝜞(𝟏 − 𝜶)( 𝑫+,𝒕
𝜶𝒄 𝒙)(𝒕). 

Proof: 

𝒌(𝒕) ≔ ∫ (𝒕 − 𝝊)−𝜶𝒙′(𝝊)
𝒕

𝟎

𝒅𝝊       

                                                                                   =
 𝜞(𝟏−𝜶)

 𝜞(⌈𝜶⌉−𝜶)
∫ (𝒕 − 𝝊)⌈𝜶⌉−𝟏−𝜶 𝒅⌈𝜶⌉𝒙(𝝊)

𝒅𝝊⌈𝜶⌉

𝒕

𝟎
𝒅𝝊 

                                                                    or    𝒌(𝒕) =  𝜞(𝟏 − 𝜶)( 𝑫+,𝒕
𝜶𝒄 𝒙)(𝒕). 

Hence the proof is complete. 

 

3. Main Results 
In this section, we study the oscillation of (1) with clamped, hinged  and clamped-hinged ends. Our approach is to reduce  

the multidimensional problems to one dimensional problem by using Jenson's inequality. 

 

Oscillation of Extensible Beam with Clamped 

We treat the case, where the ends of the beam are clamped and satisfy the condition 

 

                                                      𝒖(𝟎, 𝒕) = 𝒖(𝑳, 𝒕) =
𝝏𝒖(𝟎,𝒕)

𝝏𝒕
=

𝝏𝒖(𝑳,𝒕)

𝝏𝒕
= 𝟎                                                                            (𝑩𝟏) 
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In the following theorem, we establish some new oscillation using the Riccati techniques and Philo’s type. 

 

Theorem 3.1 Assume that  𝒓 ≥ 𝟎, there exists a positive function 𝝍 ∈ ℂ𝟒(𝛀), such that 

        1. 𝒎𝝍𝟒(𝒙) − 𝒓𝝍′′(𝒙) ≥ 𝝁𝝍(𝒙) in 𝛀 for constant 𝝁 ≤ 𝟎, 
 2. 𝝍′′(𝒙) ≤ 𝟎 in 𝛀, and 

        3. 𝝍(𝟎) = 𝝍(𝑳) = 𝝍′′(𝟎) = 𝝍′′(𝑳) = 𝟎.    
 

If the fractional inequality, 

                                
𝒅

𝒅𝒕
(𝒑(𝒕)( 𝑫+

𝜶𝒄 𝑼(𝒕))) + 𝝁𝑼(𝒕) + 𝒃𝜹(𝒕)𝑱(𝒌(𝒕)) ≤ 𝟎,            𝒕 ≥ 𝟎,                                                    (2) 

 

has no eventually positive solution, then all solutions of (1) and (𝑩𝟏) are oscillatory in G. 

 

proof: Suppose that 𝒖(𝒙, 𝒕) > 𝟎. Multiplying (1) with 𝝍(𝒙) = 𝒔𝒊𝒏
𝝅

𝑳
𝒙 and integrating over 𝛀, we get 

                ∫
𝜕

𝜕𝑡
(𝑝(𝑡) 𝐷+,𝑡

𝛼𝑐 𝑢(𝑥, 𝑡)) 𝜓(𝑥)𝑑𝑥
Ω

+ ∫ 𝑞
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4 𝜓(𝑥)𝑑𝑥
Ω

− ∫ (𝑚 + 𝑟 ∫ (
𝜕𝑢(𝜉,𝑡)

𝜕𝜉
)

2

𝑑𝜉
Ω

)
Ω

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2  𝜓(𝑥)𝑑𝑥                                                                                  

                                + ∫ 𝑐(𝑥, 𝑡, 𝑢(𝑥, 𝑡)
Ω

𝐽 (∫ (𝑡 − 𝑠)−𝛼 𝜕𝑢(𝑥,𝑠)

𝜕𝑠

𝑡

0
𝑑𝑠) 𝜓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥, 𝑡)

Ω
 𝜓(𝑥)𝑑𝑥                                     (3) 

Integrating by parts and using ((𝑩𝟏) and 3), we have    

 

                                           ∫
𝝏𝟒𝒖(𝒙,𝒕)

𝝏𝒙𝟒 𝝍(𝒙)𝒅𝒙
𝛀

≥ ∫ 𝒖(𝒙, 𝒕)𝝍𝟒(𝒙)𝒅𝒙
𝛀

,                                                          (4) 

 

                                          ∫
𝝏𝟐𝒖(𝒙,𝒕)

𝝏𝒙𝟐 𝝍(𝒙)𝒅𝒙
𝛀

= ∫ 𝒖(𝒙, 𝒕)𝝍𝟐(𝒙)𝒅𝒙
𝛀

,                                                           (5) 

Using Jenson's inequality and Lemma 2.4, 

                             ∫ 𝒄(𝒙, 𝒕, 𝒖(𝒙, 𝒕)
𝜴

𝑱 (∫ (𝒕 − 𝒔)−𝜶 𝝏𝒖(𝒙,𝒔)

𝝏𝒔

𝒕

𝟎
𝒅𝒔) 𝝍(𝒙)𝒅𝒙 ≥ 𝒃𝜹(𝒕)𝑱(𝒌(𝐭).                                                    (6) 

 

Equations (4)-(6) are substituted in Equation (3), 
𝐝

𝐝𝐭
(𝐩(𝐭)( 𝐃+

𝛂𝐜 𝐔(𝐭))) + 𝛍𝐔(𝐭) + 𝐛𝛅(𝐭)𝐉(𝐤(𝐭)) ≤ 𝟎,            𝐭 ≥ 𝟎, 

 

Where 𝑼(𝒕) = ∫ 𝒖(𝒙, 𝒕)𝝍(𝒙)𝒅𝒙
𝛀

, which means that 𝑼(𝒕) > 𝟎 is a solution of (2). Hence the proof is complete. 

 

Theorem 3.2 Suppose that the conditions (𝐀𝟏) − (𝐀𝟒) hold, and 

                                                             ∫ 𝒆𝒙𝒑 (−𝟐 ∫ 𝒈(𝒔)𝒅𝒔
𝒕

𝒕𝟎
)

∞

𝒕𝟎
= ∞,                                      

                                         𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

∫ 𝝆(𝒔)
𝒕

𝒕𝟏
(𝝁 +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔) +

𝜞(𝟏−𝜶)𝒃𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
)

𝟐
𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
) 𝒅𝒔 = ∞,                          (7) 

 

Where 𝝆(𝒕) = ∫ 𝒆𝒙𝒑 (−𝟐 ∫ 𝒈(𝒔)𝒅𝒔
𝒕

𝒕𝟎
) .

∞

𝒕𝟎
 Then every solution of boundary value problem (1) and ( 𝑩𝟏) is oscillatory in G. 

 

Proof: Suppose that 𝑼(𝒕) is a non-oscillatory solution of (2). We define the Riccati transformation, 

𝑾(𝒕) = 𝝆(𝒕) (
𝒑(𝒕) 𝑫+

𝜶𝒄 𝑼(𝒕)

𝑼(𝒕)
) ,               𝒕 ≥ 𝟎, 

                                                    𝑾′(𝒕) ≤ − (𝟐𝒈(𝒕) +
𝒃𝜞(𝟏−𝜶)𝜹(𝒕)𝑱(𝒌(𝒕))

𝒑(𝒕)𝒌(𝒕)
) 𝑾(𝒕) − 𝝁𝝆(𝒕) −

𝜞(𝟏−𝜶)𝑼′(𝒕)

𝝆(𝒕)𝒑(𝒕)𝒌(𝒕)
𝑾𝟐(𝒕).                                 

(8) 

 

Integrating on both sides from 𝒕𝟏 to 𝒕, gives 

                          𝑾(𝒕) − 𝑾(𝒕𝟏) ≤ − ∫ 𝝁𝝆(𝒔)𝒅𝒔
𝒕

𝒕𝟎
− ∫ (𝟐𝒈(𝒔) +

𝒃𝜞(𝟏−𝜶)𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
) 𝑾(𝒔)𝒅𝒔

𝒕

𝒕𝟎
− ∫

𝜞(𝟏−𝜶)𝑼′(𝒔)

𝝆(𝒔)𝒑(𝒔)𝒌(𝒔)
𝑾𝟐(𝒔)𝒅𝒔.

𝒕

𝒕𝟎
  

                        ≤ −𝝁 ∫ 𝝆(𝒔)𝒅𝒔
𝒕

𝒕𝟎
+

𝟏

𝟒
∫ (𝟐𝒈(𝒔) +

𝒃𝜞(𝟏−𝜶)𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
)

𝟐
𝝆(𝒔)𝒑(𝒔)𝒌(𝒔)

𝜞(𝟏−𝜶)𝑼′(𝒔)
𝒅𝒔

𝒕

𝒕𝟎
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Taking the limit superior on both sides, we get 

                       𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

∫ 𝝆(𝒔)
𝒕

𝒕𝟏
(𝝁 +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔) +

𝜞(𝟏−𝜶)𝒃𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
)

𝟐
𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
) 𝒅𝒔 ≤ 𝑾(𝒕𝟏). 

 

which contradicts (7). Hence the proof is complete. 

 

Theorem 3.3 Assume (𝐀𝟏) − (𝐀𝟒) hold, and 

             𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

𝑯(𝒕,𝒕𝟏)
∫ 𝑯(𝒕, 𝒔)𝝆(𝒔)

𝒕

𝒕𝟏
(𝝁 +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔) +

𝒉𝟐(𝒕,𝒔)

√𝑯(𝒕,𝒔)
+

𝜞(𝟏−𝜶)𝒃𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
)

𝟐
𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
) 𝒅𝒔 = ∞.                  (9) 

 

Then all solutions of (1) and (𝑩𝟏) are oscillatory. 

 

Proof: Suppose that 𝐔(𝐭) is a non-oscillatory solution of (2). Multiplying both sides of (8) with 𝐇(𝐭, 𝐬)and integrating  

it with respect to s from 𝒕𝟏 to 𝒕 we obtain, 

                 −𝑯(𝒕, 𝒕𝟏)𝑾(𝒕𝟏) ≤ − ∫ 𝝁𝑯(𝒕, 𝒔)𝝆(𝒔)
𝒕

𝒕𝟏
𝒅𝒔 − ∫

𝜞(𝟏−𝜶)𝑼′(𝒔)𝑯(𝒕,𝒔)

𝝆(𝒔)𝒑(𝒔)𝒌(𝒔)
𝑾𝟐(𝒔)𝒅𝒔

𝒕

𝒕𝟏
 

                                                                              − ∫ 𝑯(𝒕, 𝒔)
𝒕

𝒕𝟏
(𝟐𝒈(𝒔) +

𝒉𝟐(𝒕,𝒔)

√𝑯(𝒕,𝒔)
+

𝒃𝜞(𝟏−𝜶)𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
) 𝑾(𝒔)𝒅𝒔. 

Taking the limit superior on both sides, gives 

      𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

𝑯(𝒕,𝒕𝟏)
∫ 𝑯(𝒕, 𝒔)𝝆(𝒔)

𝒕

𝒕𝟏
(𝝁 +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔) +

𝒉𝟐(𝒕,𝒔)

√𝑯(𝒕,𝒔)
+

𝜞(𝟏−𝜶)𝒃𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
)

𝟐
𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
) 𝒅𝒔 ≤ 𝑾(𝒕𝟏) < ∞. 

which leads to a contradiction of (9). Hence the proof is complete. 

 

Corollary 3.4 Assume the conditions of Theorem (3.3) hold with (9) replaced by 

                         𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

𝑯(𝒕,𝒕𝟏)
∫ 𝑯(𝒕, 𝒔)𝝁𝝆(𝒔) = ∞,

𝒕

𝒕𝟏
    and 

      𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

𝑯(𝒕,𝒕𝟏)
∫

𝟏

𝟒𝜞(𝟏−𝜶)

𝒕

𝒕𝟏
(𝟐𝒈(𝒔)√𝑯(𝒕, 𝒔) + 𝒉𝟐(𝒕, 𝒔) +

𝜞(𝟏−𝜶)𝒃𝜹(𝒔)𝑱(𝒌(𝒔))√𝑯(𝒕,𝒔)

𝒑(𝒔)𝒌(𝒔)
)

𝟐
𝝆(𝒔)𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
𝐝𝐬 < ∞. 

 

Then all solutions of (1) and (𝐁𝟏) are oscillatory in G. 

 

         Consider 𝐇(𝐭, 𝐬) = (𝐭 − 𝐬)(𝐧−𝟏), (𝐭, 𝐬) ∈ 𝔻 for some integer 𝐧 > 𝟐. Then, Theorem (3.3) leads immediately to the  

following result. 

 

Corollary 3.5  If the conditions of Theorem (3.3) hold, Equation (9) can be written as 

      𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

(𝒕−𝒕𝟏)(𝒏−𝟏) ∫ (𝒕 − 𝒔)(𝒏−𝟏)𝝆(𝒔)
𝒕

𝒕𝟏
(𝝁 +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔) +

(𝒏−𝟏)(𝒕−𝒔)
(

𝒏−𝟑
𝟐 )

(𝒕−𝒔)
(

𝒏−𝟏
𝟐 )

+ (
𝜞(𝟏−𝜶)𝒃𝜹(𝒔)𝑱(𝒌(𝒔))

𝒑(𝒔)𝒌(𝒔)
)

𝟐
𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
)) 𝒅𝒔 

for some integer 𝐧 > 𝟐. Then all solution of (1) and (𝐁𝟏) are oscillatory. 

 

Oscillation of Extensible Beam with Hinged 

We deal the case of hinged with boundary condition, 

                                                             𝒖(𝟎, 𝒕) = 𝒖(𝑳, 𝒕) =
𝝏𝟐𝒖(𝟎,𝒕)

𝝏𝒕𝟐 =
𝝏𝟐𝒖(𝑳,𝒕)

𝝏𝒕𝟐 =

𝟎                                                                          (𝑩𝟐) 

 

In the following theorem, we are using the Riccati techniques and Philo’s type to demonstrate the new oscillation. 

   

Theorem 3.6 Assume that  𝐫 ≥ 𝟎, there exists a positive function 𝝍 ∈ ℂ𝟒(𝛀), such that 

        1. 𝐦𝛙𝟒(𝐱) − 𝐫𝛙′′(𝐱) ≤ 𝛍𝛙(𝐱) in 𝛀 for constant 𝛍 ≤ 𝟎, 
 2. 𝛙′′(𝐱) ≤ 𝟎 in 𝛀, and 

        3. 𝝍(𝟎) = 𝝍(𝑳) = 𝝍′′(𝟎) = 𝝍′′(𝑳) = 𝟎.    
If the fractional inequality, 

                                
𝐝

𝐝𝐭
(𝐩(𝐭)( 𝐃+

𝛂𝐜 𝐔(𝐭))) + 𝛍𝐔(𝐭) ≤ 𝟎,            𝐭 ≥ 𝟎,                                                                               (10) 
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has no eventually positive solution, then all solutions of (1) and (𝑩𝟐) are oscillatory in G. 

 

proof: Suppose that 𝒖(𝒙, 𝒕) > 𝟎. Multiplying (1) with 𝝍(𝒙) = 𝒔𝒊𝒏
𝝅

𝑳
𝒙 and integrating over 𝛀, we get 

                ∫
𝜕

𝜕𝑡
(𝑝(𝑡) 𝐷+,𝑡

𝛼𝑐 𝑢(𝑥, 𝑡)) 𝜓(𝑥)𝑑𝑥
Ω

+ ∫ 𝑞
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4 𝜓(𝑥)𝑑𝑥
Ω

− ∫ (𝑚 + 𝑟 ∫ (
𝜕𝑢(𝜉,𝑡)

𝜕𝜉
)

2

𝑑𝜉
Ω

)
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2Ω
 𝜓(𝑥)𝑑𝑥                                                                                  

                                + ∫ 𝑐(𝑥, 𝑡, 𝑢(𝑥, 𝑡)
Ω

𝐽 (∫ (𝑡 − 𝑠)−𝛼 𝜕𝑢(𝑥,𝑠)

𝜕𝑠

𝑡

0
𝑑𝑠) 𝜓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥, 𝑡)

Ω
𝜓(𝑥)𝑑𝑥                                   (11) 

 

Integrating by parts and using ((𝑩𝟐) and 3), we have    

                                           ∫
𝝏𝟒𝒖(𝒙,𝒕)

𝝏𝒙𝟒 𝝍(𝒙)𝒅𝒙
𝛀

= ∫ 𝒖(𝒙, 𝒕)𝝍𝟒(𝒙)𝒅𝒙
𝛀

,                                                        (12) 

 

                                          ∫
𝝏𝟐𝒖(𝒙,𝒕)

𝝏𝒙𝟐 𝝍(𝒙)𝒅𝒙
𝛀

= ∫ 𝒖(𝒙, 𝒕)𝝍𝟐(𝒙)𝒅𝒙
𝛀

,                                                         (13) 

Using Jenson's inequality and Lemma 2.4, 

                         

     ∫ 𝒄(𝒙, 𝒕, 𝒖(𝒙, 𝒕)
𝜴

𝑱 (∫ (𝒕 − 𝒔)−𝜶 𝝏𝒖(𝒙,𝒔)

𝝏𝒔

𝒕

𝟎
𝒅𝒔) 𝝍(𝒙)𝒅𝒙 ≥ 𝒃𝜹(𝒕)𝑱(𝒌(𝐭).                                                  (14) 

Equations (12)-(14) are substituted in Equation (11), 

 
𝒅

𝒅𝒕
(𝒑(𝒕)( 𝑫+

𝜶𝒄 𝑼(𝒕))) + 𝝁𝑼(𝒕) ≤ 𝟎,            𝒕 ≥ 𝟎, 

where 𝑼(𝒕) = ∫ 𝒖(𝒙, 𝒕)𝝍(𝒙)𝒅𝒙
𝛀

, which means that 𝑼(𝒕) > 𝟎 is a solution of (10). Hence the proof is complete. 

 

Theorem 3.7 Suppose that the conditions (𝐀𝟏) − (𝐀𝟒) hold, and 

                                           𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

∫ 𝝆(𝒔)
𝒕

𝒕𝟏
(𝝁 +

𝒑(𝒔)𝒌(𝒔)𝒈𝟐(𝒔)

𝟒𝜞(𝟏−𝜶)𝑼′(𝒔)
) 𝒅𝒔 = ∞,                                                                          (15) 

where 𝝆(𝒕) = ∫ 𝒆𝒙𝒑 (−𝟐 ∫ 𝒈(𝒔)𝒅𝒔
𝒕

𝒕𝟎
) .

∞

𝒕𝟎
 Then every solution of boundary value problem (1) and ( 𝑩𝟐) is oscillatory in G. 

 

Proof: Suppose that 𝐔(𝐭) is a non-oscillatory solution of (10). We define the Riccati transformation, 

𝑾(𝒕) = 𝝆(𝒕) (
𝒑(𝒕) 𝑫+

𝜶𝒄 𝑼(𝒕)

𝑼(𝒕)
) ,               𝒕 ≥ 𝟎, 

                                                    𝑾′(𝒕) ≤ −𝝁𝝆(𝒕) − 𝟐𝒈(𝒕)𝑾(𝒕) −
𝜞(𝟏−𝜶)𝑼′(𝒕)

𝝆(𝒕)𝒑(𝒕)𝒌(𝒕)
𝑾𝟐(𝒕).                                                                        

(16) 
Integrating on both sides from 𝒕𝟏 to 𝒕, gives 

                          𝑾(𝒕) − 𝑾(𝒕𝟏) ≤ − ∫ 𝝁𝝆(𝒔)𝒅𝒔
𝒕

𝒕𝟎
− ∫ 𝟐𝒈(𝒔)𝑾(𝒔)𝒅𝒔

𝒕

𝒕𝟎
− ∫

𝜞(𝟏−𝜶)𝑼′(𝒔)

𝝆(𝒔)𝒑(𝒔)𝒌(𝒔)
𝑾𝟐(𝒔)𝒅𝒔.

𝒕

𝒕𝟎
  

 

                        ≤ −𝝁 ∫ 𝝆(𝒔)𝒅𝒔
𝒕

𝒕𝟎
+

𝟏

𝟒
∫

𝝆(𝒔)𝒑(𝒔)𝒌(𝒔)𝒈𝟐(𝒔)

𝜞(𝟏−𝜶)𝑼′(𝒔)
𝒅𝒔

𝒕

𝒕𝟎
 

 

Taking the limit superior on both sides, we get 

                 

       𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

∫ 𝝆(𝒔)
𝒕

𝒕𝟏
(𝝁 +

𝝆(𝒔)𝒑(𝒔)𝒌(𝒔)𝒈𝟐(𝒔)

𝜞(𝟏−𝜶)𝑼′(𝒔)
) 𝒅𝒔 ≤ 𝑾(𝒕𝟏) < ∞. 

 

which contradicts (15). Hence the proof is complete. 

 

Theorem 3.8 Assume that (𝐀𝟏) − (𝐀𝟒) hold, and 

                𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

𝑯(𝒕,𝒕𝟏)
∫ 𝝆(𝒔)

𝒕

𝒕𝟏
(𝝁𝑯(𝒕, 𝒔) +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔)√𝑯(𝒕, 𝒔) + 𝒉𝟐(𝒕, 𝒔))

𝟐 𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
) 𝒅𝒔 = ∞.                            (17) 

 

Then all solutions of (1) and (𝑩𝟐) are oscillatory. 

 

Proof: Suppose that 𝐔(𝐭) is a non-oscillatory solution of (10). Multiplying both sides of (16) with 𝐇(𝐭, 𝐬)and  
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Integrating it with respect to s from 𝒕𝟏 to 𝒕 we obtain, 

                 −𝐇(𝐭, 𝐭𝟏)𝐖(𝐭𝟏) ≤ − ∫ 𝛍𝐇(𝐭, 𝐬)𝛒(𝐬)
𝐭

𝐭𝟏
𝐝𝐬 − ∫

𝚪(𝟏−𝛂)𝐔′(𝐬)𝐇(𝐭,𝐬)

𝛒(𝐬)𝐩(𝐬)𝐤(𝐬)
𝐖𝟐(𝐬)𝐝𝐬

𝐭

𝐭𝟏
 

                                                                        − ∫ 𝑯(𝒕, 𝒔)
𝒕

𝒕𝟏
(𝟐𝒈(𝒔) +

𝒉𝟐(𝒕,𝒔)

√𝑯(𝒕,𝒔)
𝒑(𝒔)𝒌(𝒔)) 𝑾(𝒔)𝒅𝒔. 

Taking the limit superior on both sides, gives 

                 𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

𝑯(𝒕,𝒕𝟏)
∫ 𝝆(𝒔)

𝒕

𝒕𝟏
(𝝁𝑯(𝒕, 𝒔) +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔)√𝑯(𝒕, 𝒔) + 𝒉𝟐(𝒕, 𝒔))

𝟐 𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
) 𝒅𝒔 ≤ 𝑾(𝒕𝟏) < ∞. 

which leads to a contradiction of (17). Hence the proof is complete. 

 

         Consider 𝑯(𝒕, 𝒔) = (𝐥𝐨𝐠 (
𝒕

𝒔
))

𝒏

, 𝒕 > 𝒔 > 𝟎, 𝒏 > 𝟏 is an integer. Then, from Theorem (3.8), we get immediately the  

following result. 

 

Corollary 3.9.  If the conditions of Theorem (3.8) hold, Equation (17) can be written as 

      𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

𝟏

(𝐥𝐨𝐠(
𝒕

𝒕𝟏
))

𝒏 ∫ (𝐥𝐨𝐠 (
𝒕

𝒔
))

𝒏

𝝆(𝒔)
𝒕

𝒕𝟏
(𝝁 +

𝟏

𝟒𝜞(𝟏−𝜶)
(𝟐𝒈(𝒔) +

𝒏

𝒔(𝐥𝐨𝐠(𝒕−𝒔))
)

𝟐 𝒑(𝒔)𝒌(𝒔)

𝑼′(𝒔)
) 𝒅𝒔 

Then all solution of (1) and (𝑩𝟐) are oscillatory. 

 

Oscillation of extensible beam with clamped-hinged ends: 

We deal with the case of clamped-hinged ends, 

                                                             𝒖(𝟎, 𝒕) =
𝝏𝒖(𝟎,𝒕)

𝝏𝒕
= 𝒖(𝑳, 𝒕) =

𝝏𝟐𝒖(𝑳,𝒕)

𝝏𝒕𝟐 = 𝟎                                                                 (𝑩𝟑) 

 

Theorem 3.10 Assume that  𝒎, 𝒓 ≥ 𝟎, and 𝝍𝟒(𝒙) ≥ 𝛜𝝍(𝒙) in 𝛀  for some 𝛜 ≥ 𝟎. Then there exists a solutions of (1)  

satisfying the boundary condition (𝑩𝟑) which is oscillatory in G, if the inequality, 

                                         
𝒅

𝒅𝒕
(𝒑(𝒕)( 𝑫+

𝜶𝒄 𝑼(𝒕))) + 𝛜𝐪𝑼(𝒕) ≤ 𝟎,            𝒕 ≥ 𝟎,                                                                  (18) 

is oscillatory. 

 

proof: Assume on the contrary that 𝒖(𝒙, 𝒕) > 𝟎 is non-oscillatory in G. We consider 𝒖(𝒙, 𝒕) > 𝟎, multiplying (1) with  

𝝍(𝒙) = 𝒔𝒊𝒏
𝝅

𝑳
𝒙, integrating over 𝛀, we get 

                ∫
𝜕

𝜕𝑡
(𝑝(𝑡) 𝐷+,𝑡

𝛼𝑐 𝑢(𝑥, 𝑡)) 𝜓(𝑥)𝑑𝑥
Ω

+ ∫ 𝑞
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4 𝜓(𝑥)𝑑𝑥
Ω

− ∫ (𝑚 + 𝑟 ∫ (
𝜕𝑢(𝜉,𝑡)

𝜕𝜉
)

2

𝑑𝜉
Ω

)
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2Ω
 𝜓(𝑥)𝑑𝑥                                                                                  

                                + ∫ 𝑐(𝑥, 𝑡, 𝑢(𝑥, 𝑡)
Ω

𝐽 (∫ (𝑡 − 𝑠)−𝛼 𝜕𝑢(𝑥,𝑠)

𝜕𝑠

𝑡

0
𝑑𝑠) 𝜓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥, 𝑡)

Ω
𝜓(𝑥)𝑑𝑥                                   (19) 

Jenson's inequality, gives 

                             ∫ 𝒄(𝒙, 𝒕, 𝒖(𝒙, 𝒕)
𝜴

𝑱 (∫ (𝒕 − 𝒔)−𝜶 𝝏𝒖(𝒙,𝒔)

𝝏𝒔

𝒕

𝟎
𝒅𝒔) 𝝍(𝒙)𝒅𝒙 ≥ 𝒃𝜹(𝒕)𝑱(𝒌(𝐭).                                                  (20) 

Equation (20) are substituted in Equation (19), we get 
𝒅

𝒅𝒕
(𝒑(𝒕)( 𝑫+

𝜶𝒄 𝑼(𝒕))) + 𝛜𝐪𝑼(𝒕) ≤ 𝟎,            𝒕 ≥ 𝟎, 

Hence the proof is complete. 

 

Theorem 3.11 Suppose that the conditions (𝐀𝟏) − (𝐀𝟒)  hold, and 

                                                 𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

∫ 𝝆(𝒔)
𝒕

𝒕𝟏
(𝛜𝐪 +

𝒑(𝒔)𝒌(𝒔)𝒈𝟐(𝒔)

𝟒𝜞(𝟏−𝜶)𝑼′(𝒔)
) 𝒅𝒔 = ∞,                                                                   (21) 

where 𝝆(𝒕) = ∫ 𝒆𝒙𝒑 (−𝟐 ∫ 𝒈(𝒔)𝒅𝒔
𝒕

𝒕𝟎
) .

∞

𝒕𝟎
 Then all solutions of boundary value problem (1) and ( 𝑩𝟑) is oscillatory in G. 

 

4. Examples 
Example 4.1 Consider the Fractional nonlinear damped extensible beam equation 

𝝏

𝝏𝒕
( 𝑫+,𝒕

𝟏
𝟐𝒄 𝒖(𝒙, 𝒕)) + (

𝑳

𝝅
)

𝟒 𝝏𝟒𝒖(𝒙, 𝒕)

𝝏𝒙𝟒
 + 𝟐𝒕𝑱 (∫ (𝒕 − 𝒔)−

𝟏
𝟐

𝝏𝒖(𝒙, 𝒔)

𝝏𝒔

𝒕

𝟎

𝒅𝒔)                                  
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                                                        = 𝐬𝐢𝐧
𝝅

𝑳
𝒙 (𝟓𝒕(𝐜𝐨𝐬 𝒕 − 𝟏) + 𝐬𝐢𝐧 𝒕 (

𝟐√𝝅(𝜻−𝒕)
𝟑
𝟐−𝟓

𝟐√𝝅
)) ,       (𝒙, 𝒕) ∈ 𝛀 × ℝ+ = 𝑮.                 (22) 

Here 𝜶 = 𝟏/𝟐, 𝒑(𝒕) = 𝟏, 𝒒(𝒕) = (
𝑳

𝝅
)

𝟒

, 𝒎, 𝒓 = 𝟎, 𝒃 = 𝟏, 𝒈𝟐(𝒔) =
𝟏

𝟒𝒔𝟐, 𝝆(𝒔) = 𝒔, 𝛜 = 𝟏 and 𝐉(𝐤(𝐬)) = 𝐤(𝐭). Consider 

𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

∫ 𝝆(𝒔)
𝒕

𝒕𝟏
(𝛜𝐪 +

𝒑(𝒔)𝒌(𝒔)𝒈𝟐(𝒔)

𝟒𝜞(𝟏−𝜶)𝑼′(𝒔)
) 𝒅𝒔 = 𝐥𝐢𝐦𝐬𝐮𝐩

𝒕→∞
∫ 𝒔

𝒕

𝒕𝟏
((

𝑳

𝝅
)

𝟐

+
𝟓𝒔(𝐜𝐨𝐬 𝒔−𝟏) 𝐬𝐢𝐧

𝝅

𝑳
𝒙

𝟖√𝝅𝒔𝟐(𝜻−𝒔)
𝟏
𝟐(−

𝟑

𝟐
𝐬𝐢𝐧 𝒔+(𝜻−𝒔) 𝐜𝐨𝐬 𝒔)

) 𝒅𝒔  as 𝒕 → ∞. 

 

Hence, all the conditions of Theorem 3.11are satisfied. Therefore, every solution of (22) is oscillatory.  

In fact, 𝒖(𝒙, 𝒕) = (𝜻 − 𝒕)
𝟑

𝟐 𝐬𝐢𝐧 𝒕 𝐬𝐢𝐧
𝝅

𝑳
𝒙 is one such solution of (22). 

 

Example 4.2 Consider the Fractional nonlinear damped extensible beam equation 

𝝏

𝝏𝒕
( 𝑫+,𝒕

𝟏
𝟐𝒄 𝒖(𝒙, 𝒕)) + (

𝑳

𝝅
)

𝟒 𝝏𝟒𝒖(𝒙, 𝒕)

𝝏𝒙𝟒
 + 𝟐𝒕𝑱 (∫ (𝒕 − 𝒔)−

𝟏
𝟐

𝝏𝒖(𝒙, 𝒔)

𝝏𝒔

𝒕

𝟎

𝒅𝒔)                  

                                                      − (− (
𝑳

𝝅
)

𝟐

+ (
𝑳

𝝅
)

𝟒

∫ (
𝝏𝒖(𝝃,𝒕)

𝝏𝝃
)

𝟐

𝒅𝝃
𝛀

) 
𝝏𝟐𝒖(𝒙,𝒕)

𝝏𝒙𝟐              

                                           = 𝐬𝐢𝐧
𝝅

𝑳
𝒙 (

𝟐−𝒆𝒕

𝟐𝝅
+ (𝜻 − 𝒕)

𝟑

𝟐𝒆𝒕 (𝟐 +
𝑳

𝟐
(𝜻 − 𝒕)

𝟓

𝟐𝒆𝟐𝒕) + (𝟐𝒕 − 𝒆𝒕 − 𝟏) ,   (𝒙, 𝒕) ∈ 𝛀 × ℝ+ = 𝑮.      (23) 

Here 𝜶 =
𝟏

𝟐
, 𝒑(𝒕) = 𝟏, 𝒒(𝒕), 𝒓 = (

𝑳

𝝅
)

𝟒

, 𝒎 = (
𝑳

𝝅
)

𝟐

, 𝒃 = 𝟏, 𝒈𝟐(𝒔) =
𝟏

𝟒𝒔𝟐, 𝝆(𝒔) = 𝟏/𝒔, 𝛜 = 𝟏 and 𝐉(𝐤(𝐬)) = 𝐤(𝐭). Consider 

𝐥𝐢𝐦𝐬𝐮𝐩
𝒕→∞

∫ 𝝆(𝒔)
𝒕

𝒕𝟏
(𝛍 +

𝒑(𝒔)𝒌(𝒔)𝒈𝟐(𝒔)

𝟒𝜞(𝟏−𝜶)𝑼′(𝒔)
) 𝒅𝒔 = 𝐥𝐢𝐦𝐬𝐮𝐩

𝒕→∞
∫

𝟏

𝒔

𝒕

𝒕𝟏
(𝟏 +

(𝟏+𝟐𝒔−𝒆𝒔) 𝐬𝐢𝐧
𝝅

𝑳
𝒙

𝟖√𝝅𝒔𝟐(𝜻−𝒔)
𝟏
𝟐(−

𝟑

𝟐
+(𝜻−𝒔))

) 𝒅𝒔  < ∞. 

Hence, all the conditions of Theorem 3.7 are not satisfied.  

In fact, 𝒖(𝒙, 𝒕) = (𝜻 − 𝒕)
𝟑

𝟐 𝒆𝒕𝐬𝐢𝐧
𝝅

𝑳
𝒙 is non-oscillatory solution of (23). 

 

5. Conclusion  
        In this article, we have mainly focussed on obtaining some new sufficient conditions for the oscillation behavior of 

Caputo fractional nonlinear damped extensible beam equations with some boundary conditions. The results are essentially new 

and complement the previous existing literature in the classical case. Required examples has also been newly derived result. 
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