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Abstract - This paper consider modal regression in varying coefficient model with high dimensionality under a sparsity 

assumption. We apply the B-spline basis to approximate the varying coefficient functions. First, we demonstrate the 

convergence rates of the oracle estimator when the nonzero components are known in advance, but their numbers is 

diverging with the sample size. Then, we propose a nonconvex group SCAD penalized estimator and derive its oracle 

property under some regularity conditions. That is, under mild conditions, we prove that the oracle estimator is a local 

solution of the group SCAD penalized estimator of modal regression in varying coefficient model with high dimensionality. 

Furthermore, we address issues of numerical implementation and of data adaptive choice of the tuning parameters. Some 

Monte Carlo simulations are provided to corroborate our theoretical findings in finite samples. 

Keywords - High dimensionality, Modal regression, Oracle property, Varying coefficient model, Variable selection.  

1. Introduction 
With the rapid development of date acquisition and storage, high dimensional data sets are especially commonplace in 

many scientific fields. Examples abound from collaborative filtering [1] to signal processing [2], genome studies [3] and so 

on. A key feature is that the number of unknow parameters is comparable or even exceeds the sample size. Under the 

sparsity assumption of the high dimensional parameter vector, a widely used approach is to optimize a suitably penalized 

loss function (or negative log-likelihood). Fan and Li [4] proposed the Smoothly Clipped Absolute Deviation (SCAD) 

penalty, which can identify and estimate the nonzero predictors consistently. Tibshirani [5] proposed Least Absolute 

Shrinkage Operator (Lasso) penalty. Zhang [6] proposed minimax concave penalty (MCP) and considered variable 

selection in high dimensional linear regression models. Such methods have been proved to possess high computational 

efficiency as well as desirable statistical properties in a variety of settings. Readers are referred to the review article in Fan 

and Lv [7] and the monograph in Bühlmann and Van de Geer [8] for a general survey. 

 

To relax the linearity assumption in the classical linear model, many semiparametric models, which retain the 

flexibility of nonparametric models while avoiding the "curse of dimensionality", have been proposed and studied, c.f.[9]. 

A leading example of semiparametric models is the varying coefficient model (VCM): 

  

𝑌𝑖 = ∑𝑝
𝑙=1 𝛽𝑙(𝑈𝑖)𝑋𝑖𝑙 + 𝜀𝑖 = 𝑋𝑖

⊤𝛽(𝑈𝑖) + 𝜀𝑖, 𝑖 = 1, … , 𝑛, (1) 
 

Where 𝑋𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑝)
⊤

is a 𝑝  -dimensional vector of predictor, 𝛽(⋅) = (𝛽1(⋅), … , 𝛽𝑝(⋅))
⊤

is unknow smooth 

functions, index variable 𝑈𝑖 ∈ [0,1] for simplicity, and 𝜀𝑖 is a random noise. If 𝑋𝑖1 ≡ 1, the model (1) allow varying 

intercept term. Throughout the paper, we assume that {(𝑌𝑖 , 𝑋𝑖 , 𝑈𝑖), 1 ≤ 𝑖 ≤ 𝑛}is an independent identically distributed 

random sample. 

 

Model (1) includes many commonly used parametric, semiparametric and nonparametric models as its special cases. If 

𝛽𝑙(𝑢) ≡ 𝛽𝑙  (the constant function) for 𝑙 = 1, … , 𝑞 , and 𝛽𝑙(𝑢)is unspecified function of 𝑢for 𝑞 + 1, … , 𝑝 , Equation 1 

corresponds to semivarying coefficient models or partial linear varying coefficient models. When 𝑞 = 𝑝, Equation 1 

reduces to the classical linear model. When 𝑞 = 𝑝 − 1, Equation 1 reduces to the partially linear model. If 𝑋𝑖 is a vector 

of ones, this model becomes the well-know additive model. If 𝑝 = 1 and 𝑋𝑖𝑝 = 1, Equation 1 becomes nonparametric 

model. Model (1) has received considerable attention during the past decades. They arise in many real applications, see 

[10] and [11] for various applications of the models. For mean regression of varying coefficient models, estimation can be 

performed based on local polynomial regression, B-spline expansion, or smoothing splines [12][13][14][15],[17]. For 

variable selection problems, Wang, Li and Huang [18] considered the varying coefficient model in a longitudinal data 

setting built on the SCAD approach, Wang and Xia [19] proposed the use of local polynomial regression with an adaptive 

Lasso penalty, Wei, Huang and Li [20] proposed an adaptive group Lasso approach using B-spline basis approximation. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhaoliang Wang & Suting Zhang / IJMTT, 70(1), 27-39, 2024 

 

28 

Studies of the model (1) have yielded promising results. No longer listed here. The aforementioned existing researches 

were mainly built on either the least-square or empirical likelihood method, which are expected to be very sensitive to the 

outliers and its efficiency may be significantly decreased for many commonly used non-normal or skewed errors. 

 

Skewed or heavy-tailed data (e.g. wages, prices, scores on a difficult exam, movie ticket sales, and expenditures) 

appear in a broad variety of practical applications, including economic, statistical, social and educational research studies, 

among others . In such instances, the mean estimate may not adequately disclose the dataąrs characteristics, and the mode 

estimate (one of the center measures) should be considered as a supplemental measure to capture the 'most likely' element 

of the data. In light of the robustness of mode, an increasing amount of literature pays attention to the conditional modal 

regression. Yao [21] studied the local modal regression for nonparametric models, which is robust when the data sets have 

heavy-tail or non-normal distributional error, and asymptotically efficient even if there are no outliers or the error follows 

normal distribution. Yao and Li [22] further proposed a robust modal linear regression for parametric models. A 

distinguishing characteristic of the mode regression is that it introduces an additional tuning parameter (i.e., bandwidth ℎ) 

that is automatically selected using the observed data in order to achieve both robustness and efficiency of the resulting 

estimation. Zhang, Liu and Yang[23][24][25] investigated this robust estimation method for partial linear varying 

coefficient models, single-index models and single index varying coefficient models, respectively. 

 

However, the new modal regression approach was only considered for fixed dimension. These facts motivate us to 

extend the modal regression method to the VCM in high dimensions. Our primary interest is to investigate the variable 

selection and estimation for model (1) in high dimensional setting. With high dimensionality, we allow𝑝 → ∞as 𝑛 →
∞and denote it by 𝑝𝑛. In particular, we allow ln(𝑝𝑛) = 𝑂(𝑛𝑎) for some constant 𝑎 > 0, but the number of predictors 

related to the response grows slowly with the sample size 𝑛. Thus, this work fulfills an important gap in the existing 

literature on semiparametric models by developing variable selection methodology that allows high dimensional parameter 

vector. 

 

Local polynomial regression is a most popular approach, but it requires solving many similar optimization problems 

on a fine grid on the support of the index variable. See [26] for more details. Thus here we choose the B-spline expansion 

approach, which is more convenient to implement. That is we approximate the nonparametric coefficient functions using 

B-spline basis. We first demonstrate the convergence rates of the nonparametric coefficient functions for the oracle 

estimator, that is, the one obtained when the nonzero components are known in advance. Of course, it is infeasible in 

practice for unknown true active set. It is worth pointing out that our asymptotic framework allows the number of the 

nonzero components grows with the sample size. This resonates with the perspective that a more complex statistical model 

can be fit when more data are collected. Then, we propose a nonconvex group penalized estimator for simultaneous 

variable selection and estimation when 𝑝𝑛 is of an exponential order of the sample size 𝑛 and the model has a sparse 

structure. With a proper choice of the regularization parameters and the penalty function, such as the popular SCAD, we 

derive the oracle property of the proposed estimator under relaxed conditions. Specifically, we prove that the oracle 

estimator is a local solution of the group SCAD penalized modal regression problem. This indicates that the penalized 

estimators work as well as if the subset of true nonzero coefficients was already known. Moreover, a modified version of a 

modal expectation-maximization (MEM) algorithm is proposed to obtain the solutions for the object function. Lastly, we 

address issues of practical implementation of the proposed method. 

 

The rest of the paper is organized as follows. In Section 2, we first present the oracle estimator, then develop the 

methodology for group SCAD penalized modal varying coefficient regression model, and give some the theoretical 

properties. In Section 3, we discuss the computation approach by combining MEM algorithm and local quadratic 

algorithm, and selection methods for the tuning parameters. In Section 4, simulation studies are provided to illustrate good 

numerical results of the proposed methodology. Section 5 provides all technical proofs. Section 6 concludes the paper with 

a brief discussion. 

3.  

4. 2.Methodology and asymptotic properties 
For high dimensional statistical inference, it is often assumed that the true coefficient 𝛽0(𝑢) in model (1) is sparse 

vector, where 𝛽0(𝑢) is the true value of 𝛽(𝑢). Let 𝒮 = {𝑙: ‖𝛽0𝑙(𝑢)‖𝐿2 ≠ 0, 𝑙 ∈ {1, … , 𝑝𝑛}} be the index set of the nonzero 

varying coefficients, then its cardinality |𝒮| = 𝑞𝑛 < 𝑛. The asymptotic framework also allows  𝑞𝑛 → ∞ as 𝑛 → ∞, which 

is of independent interests. The set 𝒮 is unknown. The main goal is to identify the true model 𝒮 and derive the optimal 

rate of convergence for 𝛽𝑙(𝑢) with 𝑙 ∈ 𝒮. 

2.1. Oracle Estimator 

Nonparametric functions 𝛽𝑙(𝑢)
 

with 𝑙 ∈ {1, … , 𝑝𝑛}
 

in model (1) can be approximated using a linear combination of 

B-spline basis functions. First, one definition is provided to define the class of functions that can be estimated with B-
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splines. Define ℋ𝑟 as the collection of functions ℎ(⋅)  on [0,1] whose ⌊𝑟⌋ -th derivative ℎ(⌊𝑟⌋)(⋅) satisfies the Hölder 

condition of order 𝑟 − ⌊𝑟⌋, where ⌊𝑟⌋ denotes the largest integer strictly smaller than 𝑟. That is, for each ℎ(⋅) ∈ ℋ𝑟 , there 

exists some positive constant 𝐶 such that |ℎ(⌊𝑟⌋)(𝑢1) − ℎ(⌊𝑟⌋)(𝑢2)| ≤ 𝐶|𝑢1 − 𝑢2|𝑟−⌊𝑟⌋, for any 0 ≤ 𝑢1, 𝑢2 ≤ 1. 

 

Let 𝜋(𝑢) = (𝐵1(𝑢), … , 𝐵𝑘𝑛+ℏ(𝑢))
⊤

 be a vector of normalized B-spline basis functions of order ℏ with 𝑘𝑛  quasi-

uniform internal knots on [0,1]. Under condition (C1) below, 𝛽0𝑙(𝑢), 𝑙 = 1, … , 𝑝𝑛, can be approximated using a linear 

combination of 𝜋(𝑢). The readers are referred to De Boor[27] for details of the B-spline construction, and the result that 

there exists 𝛾0𝑙 ∈ ℝ𝐾𝑛, where𝐾𝑛 = 𝑘𝑛 + ℏ, such that sup𝑢|𝑅𝑙(𝑢)| = 𝑂(𝐾𝑛
−𝑟) with 𝑅𝑙(𝑢) = 𝜋(𝑢)⊤𝛾0𝑙 − 𝛽0𝑙(𝑢). For ease 

of notation and simplicity of proofs, we use the same number of basis functions for different varying coefficient in model 

(1). In practice, such restrictions are not necessary. 

Using B-spline expansion, each varying coefficient function 𝛽𝑙(𝑢)  with 𝑙 ∈ {1, … , 𝑝𝑛}  in model (1) can be 

approximated by 

 𝛽𝑙(𝑢) ≈ ∑𝐾𝑛
𝑗=1 𝐵𝑗(𝑢)𝛾𝑙𝑗 = 𝜋(𝑢)⊤𝛾𝑙, (2) 

 

Where 𝛾𝑙 = (𝛾𝑙1, … , 𝛾𝑙𝐾𝑛
)

⊤
. Then, the varying coefficient modal regression can be approximated by 

 𝑌𝑖 = ∑𝑝𝑛
𝑙=1 𝛽𝑙(𝑈𝑖)𝑋𝑖𝑙 + 𝜀𝑖 ≈ ∑𝑝𝑛

𝑙=1 𝜋(𝑈𝑖)
⊤𝛾𝑙𝑋𝑖𝑙 + 𝜀𝑖 = 𝛱𝑖

⊤𝛾 + 𝜀𝑖, (3) 

 

Where 𝛱𝑖 = (𝑋𝑖1𝜋(𝑈𝑖)
⊤, … , 𝑋𝑖𝑝𝑛

𝜋(𝑈𝑖)
⊤)

⊤
 and 𝛾 = (𝛾1

⊤, … , 𝛾𝑝𝑛
⊤ )

⊤
. 

 

Now we consider the oracle estimator with the oracle information that the index set 𝒮 is known in advance. Without 

loss of generality, the first 𝑞𝑛 coefficient functions among 𝛽01(𝑢), … , 𝛽0𝑝𝑛
(𝑢) are nonzero and the remaining 𝑝𝑛 − 𝑞𝑛 

coefficient functions are zero. In other words, 𝒮 = {1, … , 𝑞𝑛}. The oracle estimator is obtained assuming that one only uses 

the predictor 𝑋𝑖𝑙 , 𝑙 ∈ 𝒮 in fitting model (1). 

Let 𝛾 = (𝛾𝒮
⊤, 𝛾𝒮𝑐

⊤ )
⊤

 and 𝛱𝑖 = (𝛱𝑖,𝒮
⊤ , 𝛱𝑖,𝒮𝑐

⊤ )
⊤

, where 𝛾𝒮 , 𝛱𝑖,𝒮 ∈ ℝ𝑞𝑛𝐾𝑛  and 𝛾𝒮𝑐 , 𝛱𝑖,𝒮𝑐 ∈ ℝ(𝑝𝑛−𝑞𝑛)𝐾𝑛 . The oracle 

estimator of the mode regression parameter 𝛾 is 𝛾𝑜 = (𝛾𝒮
𝑜⊤, 0(𝑝𝑛−𝑞𝑛)𝐾𝑛

⊤ )
⊤

, where 𝛾𝒮
𝑜 can be obtained by maximizing the 

kernel based objective function 
 𝑄ℎ(𝛾𝒮) = ∑𝑛

𝑖=1 𝜙ℎ(𝑌𝑖 − 𝛱𝑖,𝒮
⊤ 𝛾𝒮), (4) 

 
With respect to 𝛾𝒮. The oracle estimator for the coefficient function 𝛽0𝑙(𝑢) is 𝛽̂𝑙

𝑜(𝑢) = 𝜋(𝑢)⊤𝛾𝑙
𝑜for 𝑙 = 1, … , 𝑝𝑛. In 

objective function Equation 4, 𝜙ℎ(⋅) = ℎ−1𝜙(⋅/ℎ), 𝜙(⋅) is a kernel density function symmetric about 0 and ℎ > 0 is a 

bandwidth. For the remainder of the paper, we will assume that 𝜙(⋅) is the standard normal density (for the simplicity of 

computation). It should be noted that all the asymptotic results presented in this article still hold if other kernels are used, 

see[22]. 

The asymptotic properties of the oracle estimators as 𝑞𝑛 diverges are presented. Let 

 𝐹(𝑥, 𝑢, ℎ) = 𝐸(𝜙ℎ
′′(𝜀) ∣ 𝑋 = 𝑥, 𝑈 = 𝑢), 

and 

 𝐺(𝑥, 𝑢, ℎ) = 𝐸(𝜙ℎ
′ (𝜀)2 ∣ 𝑋 = 𝑥, 𝑈 = 𝑢). 

 

The following technical conditions are imposed for theoretical analysis. 

(C1) For 𝑙 = 1, … , 𝑝𝑛, 𝛽0𝑙(𝑢) ∈ ℋ𝑟  for some 𝑟 > 1.5. 

(C2) There exist positive constants 𝑐2  and 𝑐3  such that 𝑐2𝐼𝑞𝑛
≤ 𝐸(𝑋𝒮𝑋𝒮

⊤ ∣ 𝑈) ≤ 𝑐3𝐼𝑞𝑛
, where 𝐼𝑞𝑛

 is a 𝑞𝑛 × 𝑞𝑛 

identity matrix and 𝑋𝒮 = (𝑋1, … , 𝑋𝑞𝑛
)

⊤
. In addition, we assume max𝑖‖𝑋𝑖‖/√𝑛 = 𝑜𝑃(1). 

(C3) The index variable 𝑈 has a compact support on [0,1] and its density is absolutely continuous and bounded away 

from 0 and infinity. 

(C4) 𝑞𝑛 = 𝑂(𝑛𝜅) for some 𝜅 ∈ (0,1/4) . 

(C5) The number of interior knots 𝑘𝑛 ≍ 𝑛1/(2𝑟+1); where 𝑟 is defined by the Condition (C1). Throughout, we use 

𝑎𝑛 ≍ 𝑏𝑛  to mean that 𝑎𝑛 and 𝑏𝑛 have the same order as 𝑛 → ∞. 
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(C6) For each 𝑖 ∈ {1, … , 𝑛}, let 𝜀𝑖 = 𝑌𝑖 − ∑𝑙=1
𝑞𝑛 𝛽0𝑙(𝑈𝑖)𝑋𝑖𝑙 . The conditional distribution of 𝜀𝑖  given (𝑈𝑖 , 𝑋𝑖) have a 

density function 𝑓𝑖(⋅∣ 𝑈𝑖 , 𝑋𝑖)  with 0 < 𝑐 < 𝑓𝑖(0|𝑈𝑖 , 𝑋𝑖) < 𝐶 < ∞  for some constants 𝑐 , 𝐶 . The density function 𝑓𝑖(⋅∣
𝑈, 𝑋) has a bounded first derivative in neighborhood of zero, uniformly over 𝑖. 

(C7) There exists 𝑐3 ∈ (1/(2𝑟 + 1), 1)and a positive constant 𝑐4such that min𝑙∈𝒮‖𝛽0𝑙(𝑢)‖𝐿2 ≥ 𝑐4(𝑛−(1−𝑐3)/2𝑘𝑛
1/2

+

𝑘𝑛
−𝑟). 

(C8) 𝐹(𝑥, 𝑢, ℎ)and 𝐺(𝑥, 𝑢, ℎ)are continuous with respect to (𝑥, 𝑢). And 𝐹(𝑥, 𝑢, ℎ) < 0
 

for any ℎ > 0. 

(C9) 𝐸(𝜙ℎ
′(𝜀𝑖) ∣ 𝑋, 𝑈) = 0 , for some 𝜁 > 0 , 𝑚𝑎𝑥 1≤𝑖≤𝑛 𝐸(|𝜙ℎ

′(𝜀𝑖)|2+𝜁 ∣ 𝑋, 𝑈) < ∞ 

𝑚𝑎𝑥 1≤𝑖≤𝑛 𝐸(|𝜙ℎ
′(𝜀𝑖)|2+𝜁 ∣ 𝑋, 𝑈) < ∞ , and 𝐸(𝜙ℎ

′′(𝜀)2 ∣ 𝑋 = 𝑥, 𝑈 = 𝑢)  , 𝐸(𝜙ℎ
′(𝜀)3 ∣ 𝑋 = 𝑥, 𝑈 = 𝑢) and  

𝐸(𝜙ℎ
′′′(𝜀) ∣ 𝑋 = 𝑥, 𝑈 = 𝑢) are continuous with respect to 𝑥 and 𝑢. 

The theorem below summarizes the convergence rates of the oracle estimators. 

Theorem 1. Assume that regularity Conditions (C1)-(C9) hold, as 𝑛 → ∞, we have 

  
1

𝑛
∑ ∑ {𝛽̂𝑙

𝑜(𝑈𝑖) − 𝛽0𝑙(𝑈𝑖)}
2𝑛

𝑖=1𝑙∈𝒮 = 𝑂𝑝{𝑞𝑛(𝐾𝑛𝑛−1 + 𝐾𝑛
−2𝑟)}. 

 

An interesting observation is that since we allow 𝑞𝑛 to diverge with 𝑛, it affects the convergence rates for estimating 

𝛽𝑙(⋅) . If 𝑞𝑛  is fixed, the convergence rate reduces to 𝑛−2𝑟/2𝑟+1  for estimating 𝛽𝑙(⋅) , which is the optimal rate of 

convergence. 

2.2. Variable Selection 

In real data analysis, it does not know which of the 𝑝𝑛  covariates in 𝑋𝑖  are important. To encourage sparse 

estimation, we define the following group penalized estimation for model (1) based on modal regression as 

 𝐿𝑛(𝛾) = ∑𝑛
𝑖=1 𝜙ℎ(𝑌𝑖 − 𝛱𝑖

⊤𝛾) − 𝑛 ∑𝑝𝑛
𝑙=1 𝑝𝜆(𝛾𝑙), (5) 

 

Where ∥⋅∥ denotes the Euclidean metric and 𝑝𝜆(⋅) is a penalty function with tuning parameter 𝜆 > 0 which controls 

the complexity of the selected model and goes to zero as 𝑛 → ∞. Although it is not necessarily that the tuning parameter 𝜆 

is the same for all 𝛾𝑙 in practice, we make the above choices for simplicity. 

Here, we focus on the popular nonconvex SCAD penalty [4] given by 

 

 𝑝𝜆
′ (|𝑡|) = 𝜆 {𝐼(|𝑡| ≤ 𝜆) +

(𝑎𝜆−|𝑡|)+

(𝑎−1)𝜆
𝐼(|𝑡| > 𝜆)}, 

 

for some 𝑎 > 2 , where 𝑥+ = max(𝑥, 0) , 𝐼(⋅) is the indicator function. Note that the SCAD penalty is continuously 

differentiable on (−∞, 0) ∪ (0, ∞) but singular at 0 and its derivative vanishes outside [−𝑎𝜆, 𝑎𝜆]. As illustrated in[28], 

these features of SCAD penalty result in a solution with three desirable properties: asymptotic unbiasedness, sparsity and 

continuity. Other choices of penalty, such as MCP, are expected to produce similar results in both theory and practice. In 

comparison, Lasso is known to over-penalize large coefficients, tends to be biased and requires strong conditions on the 

design matrix to achieve selection consistency. This is usually not a concern for prediction, but can be undesirable if the 

goal is to identify the underlying model. 

The theorem below shows that the oracle estimator is a local maximizer of Equation 5 using SCAD penalty with 

probability tending to one, provided the following additional condition (C10), which is needed to identify the underlying 

model. The condition (C10) (i) is how quickly a nonzero signal can decay which is not a concern when the dimension is 

fixed, and the condition (C10) (ii) is concerning the divergence rate of 𝑝𝑛. 

 

(C10) (i) min1≤𝑙≤𝑞𝑛
𝛾0𝑙 ≫ 𝜆 ≫ √𝑞𝑛(𝐾𝑛𝑛−1 + 𝐾𝑛

−2𝑟); 

(ii) √𝑛𝐾𝑛
−1ln(𝑝𝑛𝐾𝑛) + 𝑛𝑞𝑛𝐾𝑛

−(2𝑟−1)
log(𝑝𝑛 ∨ 𝑛) ≪ 𝑛𝜆 . 

 

Theorem 2. Consider the group SCAD penalty with tuning parameter 𝜆, let 𝜀(𝜆) be the set of local maximizers of 

Equation 5 for a given tuning parameter 𝜆, under regularity Conditions (C1)-(C10), as 𝑛 → ∞ we have 

  
𝑃𝑟{𝛾𝑜 ∈ 𝜀(𝜆)} → 1. 
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Theorem 2 shows that the oracle estimator is one, possibly among multiple, local maximizers of the group SCAD 

penalized objective. This of course leaves many open questions, including whether the oracle estimator is a global 

maximizer and whether the computationally feasible estimator returned by the algorithm has desired oracle property. For 

some other models, such questions have been considered in[28, 29]. We leave the detailed investigations along this 

direction to the future. 

3. Materials and Methods 
This section introduces a computational algorithm for obtaining the maximizers of Equation 5 and selection methods 

for the tuning parameters. 

3.1. Algorithm 

For given the tuning parameters, finding the solution that maximizes Equation 5 poses a number of interesting 

challenges because there is no closed-form expression of the maximizer of Equation 5 and the SCAD penalty function is 

nondifferentiable at the origin and nonconvex. We combine the MEM algorithm for modal regression, proposed by Li et al, 

[30] and Yao et al, [21], and an approximation based on local quadratic approximation, proposed by Fan and Li [4], to 

solve Equation 5. 

Firstly, the penalty function 𝑝𝜆(‖𝛾𝑙‖)is approximated by local quadratic approximation. More specifically, given the 

initial value 𝛾𝑙
(0)

, 𝑙 = 1, … , 𝑝𝑛, and a specified small positive number 𝜉, when ‖𝛾𝑙
(0)

‖ < 𝜉, let 𝛾𝑙 = 0; when ‖𝛾𝑙
(0)

‖ ≥ 𝜉, 

a local quadratic approximation penalty function can be used 

 𝑝𝜆(‖𝛾𝑙‖) ≈ 𝑝𝜆(‖𝛾𝑙
(0)

‖) +
1

2

𝑝𝜆
′ (‖𝛾̂𝑙

(0)
‖)

‖𝛾̂𝑙
(0)

‖
(‖𝛾𝑙‖

2 − ‖𝛾𝑙
(0)

‖
2

). 

With the aid of the local quadratic approximation and by extending the MEM algorithm, optimization problem 

Equation 5 is further implemented iteratively using the following algorithm. 

Step 0 (Initializing). The initial estimator 𝛾(0) is obtained by using the group Lasso penalty 

 𝛾(0) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝛾

∑ 𝜙ℎ
𝑛
𝑖=1 (𝑌𝑖 − 𝛱𝑖

⊤𝛾) − 𝑛 ∑ ‖𝛾𝑙‖
𝑝𝑛
𝑙=1 , 

and set 𝑘 = 0. 

Step 1 (E-step). Update weights 𝜋(𝑖 ∣ 𝛾(𝑘)), for 𝑖 = 1, … , 𝑛 as 

 𝜋(𝑖 ∣ 𝛾(𝑘)) =
𝜙ℎ(𝑌𝑖−𝛱𝑖

⊤𝛾̂(𝑘))

∑ 𝜙ℎ
𝑛
𝑗=1 (𝑌𝑗−𝛱𝑗

⊤𝛾̂(𝑘))
∝ 𝜙ℎ(𝑌𝑖 − 𝛱𝑖

⊤𝛾(𝑘)). (6) 

Step 2 (M-step). Update 𝛾(𝑘+1) 

 
𝛾(𝑘+1)  = 𝑎𝑟𝑔𝑚𝑎𝑥

𝛾
∑ {𝜋(𝑖 ∣ 𝛾(𝑘)) 𝑙𝑜𝑔 𝜙ℎ (𝑌𝑖 − 𝛱𝑖

⊤𝛾)}𝑛
𝑖=1 − 𝑛 ∑

1

2

𝑝𝑛
𝑙=1

𝑝𝜆
′ (‖∣𝛾̂𝑙

(𝑘)
‖)

‖∣𝛾̂𝑙
(𝑘)

‖
‖𝛾𝑙‖

2

 = (𝛱⊤𝑊(𝑘)𝛱 + 𝑛𝛴𝜆
(𝑘)

)
−1

𝛱⊤𝑊(𝑘)𝑌,

 (7) 

where 𝑌 = (𝑌1, … , 𝑌𝑛)⊤, 𝛱 = (𝛱1, … , 𝛱𝑛)⊤, 𝑊(𝑘)is an 𝑛 × 𝑛 diagonal matrix with diagonal elements 𝜋(𝑗 ∣ 𝛾(𝑘)),  and 

𝛴𝜆
(𝑘)

= 𝑑𝑖𝑎𝑔 {
𝑝𝜆
′ (‖𝛾̂1

(𝑘)
‖)

‖𝛾̂1
(𝑘)

‖
𝕀𝐾𝑛

, … ,
𝑝𝜆
′ (‖𝛾̂𝑝𝑛

(𝑘)
‖)

‖𝛾̂𝑝𝑛

(𝑘)
‖

𝕀𝐾𝑛
}, 𝕀𝐾𝑛

 is a 𝐾𝑛 × 𝐾𝑛 identity matrix 

Step 3 Repeat Step 1 and Step 2 until the algorithm convergence (In this iteration, take 𝜉 = 10−3  ), denote the 

estimator of 𝛾 by 𝛾. 

Similar to the EM algorithm, the above MEM algorithm for the varying coefficient model within each step also 

consists of two steps: E-step and M-step. The ascending property of the proposed MEM algorithm can be established along 

the lines of the study of [30]. Note that the converged value may depend on the starting point as the usual EM algorithms, 

and there is no guarantee that the MEM algorithm will converge to the global optimal solution. Therefore, it is prudent to 

run the algorithm from several starting-points and choose the best local optima found. 

 

3.2. Tuning Parameters Selection 

To implement the above estimation procedures and achieve good numerical performance, the spline order ℏ and the 

number of basis 𝐾𝑛, bandwidth ℎ as well as the regularization parameter 𝜆 should be chosen appropriately. Due to the 

computation complexity, it is often impractical to automatically select all four components based on the observable data. 

As a commonly adopted strategy, it is often to fix ℏ = 4 (cubic splines). Note that 𝐾𝑛 should not be too large since the 

larger the 𝐾𝑛is, the larger the estimation variance is, and the more difficult it is to distinguish important variables from 

unimportant ones. On the other hand, 𝐾𝑛 should not be too small to create probing biases. For computation convenience, 

let 𝐾𝑛 = ⌊𝑛1/5⌋ + ℏ. In the following simulations, it also conducts a sensitivity analysis by setting 𝐾𝑛 
to be different 
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values. There are similar numerical results if 𝐾𝑛 varies in a reasonable range.     A same arguments for bandwidth ℎ 
can also be found in subsection 3.1 of [22].  

Fixed ℏ, 𝐾𝑛and ℎ, it is critical for the performance of the estimators to employ a data-driven method to choose𝜆. 

Cross validation is a common approach, but is known to often result in overfitting. In high dimensional context, it is 

suitable for us to use the extended Bayesian information criterion (EBIC) in Chen and Chen [31] to select 𝜆. More 

specifically, the EBIC can be defined as  

 𝐸𝐵𝐼𝐶( 𝜆) = 𝑙𝑜𝑔(𝑛−1 ∑ 𝜙ℎ
𝑛
𝑖=1 (𝑌𝑖 − 𝛱𝑖

⊤𝛾𝜆)) + 𝑞̂𝑛𝜆
𝑙𝑜𝑔 𝑛

𝑛
+ 2𝐶𝑛𝑞̂𝑛𝜆

𝑙𝑜𝑔 𝑝𝑛

𝑛
, (8) 

 

Where 𝛾𝜆 is the solutions based on Equation 5 for given 𝜆, 𝑞̂𝑛𝜆 is the number of nonzero values in 𝛾𝜆 and 𝐶𝑛 is a 

tuning parameter which is taken as 1 − log(𝑛)/(3log(𝑝)) suggested by Chen and Chen [31]. Note that when 𝐶𝑛 = 0, the 

EBIC is the BIC. From the following numerical studies, it can find that the above data-driven procedure works well. 

4. Results and Discussion 
4.1. Simulations  

In this section, two simulations are conducted to demonstrate the finite sample performance of the proposed method. 

To examine the efficiency of the proposed modal regression with group SCAD estimator (mSCAD), we compare it the 

following alternative estimators: (1) lsLasso: the least squares with group Lasso estimator; (2) lsSCAD: the least squares 

with group SCAD estimator and (3) Oracle: the least squares when the nonzero subset of 𝛽(⋅) is known. However, in 

reality, we seldom know this nonzero subset. The Oracle estimator serves as a benchmark, omniscient estimator to check 

how well the estimators. The lsLasso and lsSCAD are computed by the R package grpreg with tuning parameter 𝜆 being 

selected by cross-validation. 

In this simulation study, we generate the data with different sample sizes of 𝑛 ∈ {100,300}, and consider both 

𝑝 =10, 200 and 500 to examine the performance of model selection and estimation when 𝑝 is smaller than, close to, or 

exceeds the sample size. A total of 100 simulation replications are conducted for each model setup. 

The performance of the nonparametric estimate 𝛽̂(⋅)will be assessed by using the square root of average square errors 

(RASE), defined by 

 𝑅𝐴𝑆𝐸( 𝛽̂(⋅)) = [
1

𝑛grid 
∑ ‖𝛽̂(𝑢𝑗) − 𝛽(𝑢𝑗)‖

2𝑛grid 

𝑗=1
]

1/2

 (9) 

where {𝑢𝑗 , 𝑗 = 1, … , 𝑛grid} is a set of grid points uniformly placed on [0,1] at which the functions 𝛽̂(⋅)are evaluated. We 

considered 𝑛grid = 200. The sample mean of the RASEs over 100 simulations are presented. In addition, we calculate the 

average number of the true zero coefficients that were correctly set to zero (CZ) and the average number of the truly 

nonzero coefficients that were incorrectly set to zero (IZ). We also report the proportion of selecting the true model 

(Correct), the proportion of including at least one irrelevant predictor but does not miss any relevant one (Over) and the 

proportion of excluding at least one relevant predictor (Under), respectively. 

Consider the following sparse model 

 𝑌𝑖 = 𝛽0(𝑈𝑖)𝑋𝑖0 + 𝛽1(𝑈𝑖)𝑋𝑖1 + 𝛽2(𝑈𝑖)𝑋𝑖2 + 𝜀𝑖, (10) 

  

Where 𝑋𝑖0 ≡ 1 represents the intercept, the index variable 𝑈𝑖 's are sampled uniformly on [0,1]. The other covariates 

(𝑋𝑖1, … , 𝑋𝑖𝑝)
⊤

 are independently drawn from multivariate normal distribution 𝑁𝑝(0, 𝛴) , where 𝛴  is the Toeplitz 

covariance matrix with 𝛴𝑗1𝑗2
= 𝜌|𝑗1−𝑗2|  for 1 ≤ 𝑗1 , 𝑗2 ≤ 𝑝 . Here we consider 𝜌 = 0  and 0.5 to test the effect of 

correlation structure. The error 𝜀𝑖 is independent of covariates and follows three different distributions: (i) 𝑁(0,1), (ii) 𝑡 -

distribution with 3 degrees of freedom and (iii) mixture of normals: 0.5𝑁(−1,2. 52) + 0.5𝑁(1,0. 52). All the generated 

random errors are standardized to have mean 0 and variance 1 . For case (i) and (ii), the conditional mean regression 

function is the same as the conditional modal regression function. That is, 𝐸(𝑌 ∣ 𝑋, 𝑈) = Mode(𝑌 ∣ 𝑋, 𝑈) = 𝛽0(𝑈) +
𝛽1(𝑈)𝑋1 + 𝛽2(𝑈)𝑋2 . For case (iii), the conditional mean regression function is 𝐸(𝑌 ∣ 𝑋, 𝑈) = 𝛽0(𝑈) + 𝛽1(𝑈)𝑋1 +

𝛽2(𝑈)𝑋2 , however, the conditional modal regression function is Mode(𝑌 ∣ 𝑋, 𝑈) = 𝛽0(𝑈) + √4/17 + 𝛽1(𝑈)𝑋1 +

𝛽2(𝑈)𝑋2. 

 

In model (10), let𝛽0(𝑢) = exp(2𝑢 − 1), 𝛽1(𝑢) = 8𝑢(1 − 𝑢) and 𝛽2(𝑢) = 2sin(2𝜋𝑢). All other coefficients 𝛽𝑗(𝑢), 

𝑗 = 3, … , 𝑝, are set to be zero. Then, the first three covariates (including intercept) are relevant for predicting the response 

variable from the point of view both mean regression and modal regression even though their regression parameters are 

different. 
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4.2. Result Analysis 

Simulation results are summarized in Tables 1-3. Several observations can been seen from these tables.  

(1) It can be seen that for the normal error, the RASE of MSCAD are slightly larger than those for lsSCAD due to the 

emphasis of cross-validation on prediction.  

(2) For non-normal distribution error, the mSCAD estimate has great gain of efficiency and robustness over the 

lsLasso and lsSCAD methods.  

(3) For a given error distribution, the performance of mSCAD becomes better and better and its advantages are more 

prominent over others when the sample size increases. MSCAD can identify the true model with high probability. There is 

little difference for the mSCAD estimate with Oracle in terms of all criteria especially when the sample size increases.  

Table 1. Simulation results over 100 replications when 𝜺 ∼ 𝑵(𝟎, 𝟏). 
 𝜌 = 0 𝜌 = 0.5 

n p Method RASE CZ IZ Under Correct Over RASE CZ IZ Under Correct Over 

100 10 lsLasso 0.831 4.23 0.00 0.00 0.06 0.94 0.712 3.86 0.00 0.00 0.00 1.00 

lsSCAD 0.584 6.15 0.00 0.00 0.28 0.72 0.637 6.30 0.00 0.00 0.29 0.74 

mSCAD 0.601 7.97 0.00 0.00 0.97 0.03 0.700 7.80 0.00 0.00 0.89 0.11 

Oracle 0.520 8.00 0.00 0.00 1.00 0.00 0.573 8.00 0.00 0.00 1.00 0.00 

200 lsLasso 0.831 182.78 0.00 0.00 0.02 0.98 0.952 183.58 0.00 0.00 0.01 0.99 

lsSCAD 0.658 187.18 0.00 0.00 0.07 0.93 0.692 188.74 0.00 0.00 0.05 0.95 

mSCAD 0.567 197.96 0.01 0.01 0.95 0.04 0.623 197.97 0.05 0.05 0.92 0.03 

Oracle 0.539 198.00 0.00 0.00 1.00 0.00 0.552 198.00 0.00 0.00 1.00 0.00 

500 lsLasso 0.893 479.41 0.00 0.00 0.00 1.00 1.029 480.40 0.00 0.00 0.01 0.99 

lsSCAD 0.675 485.97 0.00 0.00 0.05 0.95 0.780 483.77 0.00 0.00 0.03 0.97 

mSCAD 0.550 497.99 0.01 0.01 0.98 0.01 0.700 497.96 0.07 0.07 0.89 0.04 

Oracle 0.534 498.00 0.00 0.00 1.00 0.00 0.607 498.00 0.00 0.00 1.00 0.00 

300 10 lsLasso 0.393 3.22 0.00 0.00 0.01 0.99 0.406 3.10 0.00 0.00 0.01 0.99 

lsSCAD 0.307 6.31 0.00 0.00 0.35 0.65 0.317 6.91 0.00 0.00 0.49 0.51 

mSCAD 0.336 8.00 0.00 0.00 1.00 0.00 0.361 7.99 0.00 0.00 0.99 0.01 

Oracle 0.292 8.00 0.00 0.00 1.00 0.00 0.311 8.00 0.00 0.00 1.00 0.00 

200 lsLasso 0.468 177.08 0.00 0.00 0.01 0.99 0.564 177.78 0.00 0.00 0.00 1.00 

lsSCAD 0.320 189.28 0.00 0.00 0.16 0.84 0.337 190.80 0.00 0.00 0.12 0.88 

mSCAD 0.305 198.00 0.00 0.00 1.00 0.00 0.311 197.99 0.00 0.00 0.99 0.01 

Oracle 0.290 198.00 0.00 0.00 1.00 0.00 0.306 198.00 0.00 0.00 1.00 0.00 

500 lsLasso 0.492 472.82 0.00 0.00 0.00 1.00 0.573 476.33 0.00 0.00 0.01 0.99 

lsSCAD 0.329 485.60 0.00 0.00 0.08 0.92 0.342 488.65 0.00 0.00 0.06 0.94 

mSCAD 0.298 498.00 0.00 0.00 1.00 0.00 0.317 498.00 0.00 0.00 1.00 0.00 

Oracle 0.291 498.00 0.00 0.00 1.00 0.00 0.307 498.00 0.00 0.00 1.00 0.00 
 

(4) For fixed 𝑛, the performance of the mSCAD does not deteriorate rapidly when 𝑝 increases, while for fixed 𝑝 the 

performance improves substantially as the sample size increases. In turn, these results show that the sample size 𝑛 is more 

important than the dimension of the covariates for high dimensional statistical inference. 

 (5) It is easy to see that the mSCAD is not sensitive to the different correlations between variables. 

 (6) It is very interesting to see that the values of RASE for the mSCAD estimate become smaller than other methods 

when the error follows a mixture normal. The main reason for this is that when there are some very large outliers in the 

data, the modal regression will put more weight on the "most likely" data around the true value, which leads to a robust and 

efficient estimator. These findings agree with our asymptotic properties. 

Table 2. Simulation results over 100 replications when 𝜺 ∼ 𝒕(𝟑). 
 𝜌 = 0 𝜌 = 0.5 

n p Method RASE CZ IZ Under Correct Over RASE CZ IZ Under Correct Over 

100 10 lsLasso 0.614 4.69 0.00 0.00 0.01 0.99 0.666 4.30 0.00 0.00 0.03 0.97 

lsSCAD 0.554 6.50 0.00 0.00 0.34 0.66 0.594 6.39 0.00 0.00 0.34 0.66 

mSCAD 0.443 7.88 0.00 0.00 0.94 0.06 0.488 7.97 0.00 0.00 0.97 0.03 

Oracle 0.478 8.00 0.00 0.00 1.00 0.00 0.538 8.00 0.00 0.00 1.00 0.00 

200 lsLasso 0.807 182.81 0.00 0.00 0.01 0.99 0.934 181.94 0.00 0.00 0.00 1.00 

lsSCAD 0.646 189.23 0.00 0.00 0.09 0.91 0.706 188.64 0.00 0.00 0.03 0.97 

mSCAD 0.452 197.95 0.02 0.02 0.95 0.03 0.552 197.91 0.04 0.04 0.89 0.07 

Oracle 0.491 198.00 0.00 0.00 1.00 0.00 0.551 198.00 0.00 0.00 1.00 0.00 



Zhaoliang Wang & Suting Zhang / IJMTT, 70(1), 27-39, 2024 

 

34 

500 lsLasso 0.875 476.00 0.00 0.00 0.00 1.00 0.973 477.23 0.00 0.00 0.00 1.00 

lsSCAD 0.674 485.18 0.00 0.00 0.04 0.96 0.683 485.93 0.00 0.00 0.06 0.94 

mSCAD 0.501 497.89 0.02 0.02 0.94 0.04 0.547 497.93 0.06 0.05 0.90 0.05 

Oracle 0.508 498.00 0.00 0.00 1.00 0.00 0.531 498.00 0.00 0.00 1.00 0.00 

300 10 lsLasso 0.356 3.34 0.00 0.00 0.01 0.99 0.409 3.29 0.00 0.00 0.00 1.00 

lsSCAD 0.276 6.92 0.00 0.00 0.50 0.50 0.307 6.92 0.00 0.00 0.49 0.51 

mSCAD 0.230 8.00 0.00 0.00 1.00 0.00 0.239 8.00 0.00 0.00 1.00 0.00 

Oracle 0.265 8.00 0.00 0.00 1.00 0.00 0.297 8.00 0.00 0.00 1.00 0.00 

200 lsLasso 0.459 178.38 0.00 0.00 0.01 0.99 0.559 181.49 0.00 0.00 0.00 1.00 

lsSCAD 0.314 191.93 0.00 0.00 0.17 0.83 0.350 192.25 0.00 0.00 0.16 0.84 

mSCAD 0.233 198.00 0.00 0.00 1.00 0.00 0.260 198.00 0.00 0.00 1.00 0.00 

Oracle 0.276 198.00 0.00 0.00 1.00 0.00 0.310 198.00 0.00 0.00 1.00 0.00 

500 lsLasso 0.480 472.28 0.00 0.00 0.00 1.00 0.575 474.75 0.00 0.00 0.00 1.00 

lsSCAD 0.314 488.04 0.00 0.00 0.08 0.92 0.358 489.20 0.00 0.00 0.11 0.89 

mSCAD 0.238 498.00 0.00 0.00 1.00 0.00 0.263 498.00 0.00 0.00 1.00 0.00 

Oracle 0.278 498.00 0.00 0.00 1.00 0.00 0.314 498.00 0.00 0.00 1.00 0.00 
 

Table 3. Simulation results over 100 replications when𝜺 ∼ 𝟎. 𝟓𝑵(−𝟏, 𝟐. 𝟓𝟐) + 𝟎. 𝟓𝑵(𝟏, 𝟎. 𝟓𝟐) . 
 𝜌 = 0 𝜌 = 0.5 

n p Method RASE CZ IZ Under Correct Over RASE CZ IZ Under Correct Over 

100 10 lsLasso 0.806 3.78 0.00 0.00 0.01 0.99 0.840 4.29 0.00 0.00 0.05 0.95 

lsSCAD 0.765 6.17 0.00 0.00 0.27 0.73 0.807 6.17 0.00 0.00 0.29 0.71 

mSCAD 0.594 7.88 0.00 0.00 0.89 0.11 0.648 7.89 0.00 0.00 0.92 0.08 

Oracle 0.713 8.00 0.00 0.00 1.00 0.00 0.748 8.00 0.00 0.00 1.00 0.00 

200 lsLasso 0.960 182.86 0.00 0.00 0.02 0.98 1.112 181.15 0.00 0.00 0.01 0.99 

lsSCAD 0.798 187.55 0.00 0.00 0.06 0.94 0.886 187.23 0.00 0.00 0.03 0.97 

mSCAD 0.639 197.99 0.00 0.00 0.99 0.01 0.789 197.96 0.06 0.06 0.90 0.04 

Oracle 0.688 198.00 0.00 0.00 1.00 0.00 0.763 198.00 0.00 0.00 1.00 0.00 

500 lsLasso 1.003 480.23 0.00 0.00 0.00 1.00 1.111 478.13 0.00 0.00 0.00 1.00 

lsSCAD 0.835 485.67 0.00 0.00 0.04 0.96 0.888 484.64 0.00 0.00 0.01 0.99 

mSCAD 0.727 497.94 0.05 0.05 0.90 0.05 0.815 497.88 0.06 0.06 0.84 0.10 

Oracle 0.693 498.00 0.00 0.00 1.00 0.00 0.744 498.00 0.00 0.00 1.00 0.00 

300 10 lsLasso 0.614 3.52 0.00 0.00 0.02 0.98 0.633 3.32 0.00 0.00 0.01 0.99 

lsSCAD 0.569 6.96 0.00 0.00 0.50 0.50 0.581 6.97 0.00 0.00 0.58 0.42 

mSCAD 0.295 8.00 0.00 0.00 1.00 0.00 0.335 7.99 0.00 0.00 0.99 0.01 

Oracle 0.562 8.00 0.00 0.00 1.00 0.00 0.576 8.00 0.00 0.00 1.00 0.00 

200 lsLasso 0.674 179.58 0.00 0.00 0.00 1.00 0.731 180.01 0.00 0.00 0.00 1.00 

lsSCAD 0.579 190.60 0.00 0.00 0.09 0.91 0.588 191.16 0.00 0.00 0.13 0.87 

mSCAD 0.463 198.00 0.00 0.00 1.00 0.00 0.472 198.00 0.00 0.00 1.00 0.00 

Oracle 0.563 198.00 0.00 0.00 1.00 0.00 0.570 198.00 0.00 0.00 1.00 0.00 

500 lsLasso 0.694 473.86 0.00 0.00 0.00 1.00 0.762 471.45 0.00 0.00 0.01 0.99 

lsSCAD 0.579 488.12 0.00 0.00 0.07 0.93 0.608 485.89 0.00 0.00 0.06 0.94 

mSCAD 0.474 498.00 0.00 0.00 1.00 0.00 0.529 498.00 0.00 0.00 1.00 0.00 

Oracle 0.557 498.00 0.00 0.00 1.00 0.00 0.591 498.00 0.00 0.00 1.00 0.00 

5. Proof 
In this section, we outline the key idea of the proofs. Note the 𝑐, 𝑐1, 𝑐2, … denote generic positive constants. Their 

values may vary from expression to expression. 

Lemma 1. Let 𝑌1, … , 𝑌𝑛 be independent random variables with zero mean such that 𝐸|𝑌𝑖|
𝑚 ≤ 𝑚! 𝑀𝑚−2𝑣𝑖/2, for 

every 𝑚 ≥ 2 (and all 𝑖 ), some constants 𝑀 and 𝑣𝑖 = 𝐸𝑌𝑖
2. Let 𝑣 = 𝑣1 + ⋯ + 𝑣𝑛, for 𝑥 > 0, 

  

Pr(|∑𝑛
𝑖=1 𝑌𝑖| > 𝑥) ≤ 2exp {−

𝑥2

2(𝑣+𝑀𝑥)
}. 

 

Lemma 2. If there exists 𝛾 ∈ ℝ𝑝𝑛𝐾𝑛 such that (i) ∑ 𝜙ℎ
′𝑛

𝑖=1 (𝑌𝑖 − 𝛱𝑖
⊤𝛾)𝛱𝑖𝑙 = 0 and ‖𝛾𝑙‖ ≥ 𝑎𝜆 for 𝑙 = 1, … , 𝑞𝑛 and 

(ii) ‖∑ 𝜙ℎ
′𝑛

𝑖=1 (𝑌𝑖 − 𝛱𝑖
⊤𝛾)𝛱𝑖𝑙‖ ≤ 𝑛𝜆  and ‖𝛾𝑙‖ < 𝜆  for 𝑙 = 𝑞𝑛 + 1, … , 𝑝𝑛 , where 𝑎 = 3.7 , 𝛱𝑖𝑙 = 𝑋𝑖𝑙𝜋(𝑈𝑖), then 𝛾  is a 

local maximizer of Equation 5. 

 

This lemma is a direct extension of Theorem 1 in[28]. Thus, we omit the proof. 



Zhaoliang Wang & Suting Zhang / IJMTT, 70(1), 27-39, 2024 

 

35 

 5.1. Proof of Theorem 1 
Let 𝛾0𝑙 is the best approximating spline coefficient for 𝛽0𝑙(𝑢) and 𝑅𝑙(𝑢) = 𝜋(𝑢)⊤𝛾0𝑙 − 𝛽0𝑙(𝑢), 𝑙 = 1, … , 𝑞𝑛. By the 

conditions (C1), (C3), (C5) and Corollary 6.21 in[32]., we have 

 sup
𝑢∈[0,1]

|𝑅𝑙(𝑢)| = 𝑂(𝐾𝑛
−𝑟). (11) 

Note that 

 

1

𝑛
∑ ∑ {𝛽̂𝑙

𝑜(𝑈𝑖) − 𝛽0𝑙(𝑈𝑖)}
2𝑛

𝑖=1𝑙∈𝒮 =
1

𝑛
∑ ∑ {𝜋(𝑈𝑖)⊤(𝛾𝑙

𝑜 − 𝛾0𝑙) + 𝑅𝑙(𝑈𝑖)}2𝑛
𝑖=1𝑙∈𝒮

≤
2

𝑛
∑ ∑ {(𝜋(𝑈𝑖)

⊤(𝛾𝑙
𝑜 − 𝛾0𝑙))

2
+ 𝑅𝑙

2(𝑈𝑖)}𝑛
𝑖=1𝑙∈𝒮

≤ 𝑐1𝐾𝑛
−1‖𝛾𝒮

𝑜 − 𝛾0𝒮‖2 + 𝑐2𝑞𝑛𝐾𝑛
−2𝑟 .

 

where in the last step above we used the well-know relation ‖𝜋(𝑡)⊤𝑎‖2 ∼ 𝐾𝑛
−1‖𝑎‖2 for any 𝑎 ∈ ℝ𝐾𝑛. In order to get the 

rate of convergence, it sufficient to show that ‖𝛾𝒮
𝑜 − 𝛾0𝒮‖ = 𝑂𝑝(𝑞𝑛

1/2
𝐾𝑛𝑛−1/2). 

Let 𝛿𝑛 = 𝑞𝑛
1/2

𝐾𝑛𝑛−1/2 and 𝜇 be a vector, 𝛾𝒮 = 𝛾0𝒮 + 𝛿𝑛𝜇. We want to show that for any given 𝜂 > 0, there 

exists a large constant 𝑐 > 0 such that 

 𝑃𝑟 { 𝑠𝑢𝑝
‖𝜇‖=𝑐

𝑄ℎ(𝛾0𝒮 + 𝛿𝑛𝜇) < 𝑄ℎ(𝛾0𝒮)} ≥ 1 − 𝜂. (12) 

 

This implies that, with probability at least 1 − 𝜂, there is a maximum in the ball {𝛾0𝒮 + 𝛿𝑛𝜇: ‖𝜇‖ ≤ 𝑐}. Hence, their 

exists a local maximizer 𝛾𝒮
𝑂 such that ‖𝛾𝒮

𝑜 − 𝛾0𝒮‖ = 𝑂𝑝(𝑞𝑛
1/2

𝐾𝑛𝑛−1/2). 

To prove (12), we consider the optimization problem in Equation 5 rewritten as 

 𝑄ℎ(𝛾𝒮) = ∑𝑛
𝑖=1 𝜙ℎ (𝜀𝑖 − 𝑅𝑖,𝒮

∗ − 𝛱𝑖,𝒮
⊤ (𝛾𝒮 − 𝛾0𝒮)), 

where 𝑅𝑖,𝒮
∗ = ∑𝑙∈𝒮𝑅𝑙(𝑈𝑖)𝑋𝑖𝑙 . By condition (C2) and the approximation of splines, 

 

 𝑅𝑖,𝒮
∗ = 𝑂𝑃(𝑞𝑛

1/2
𝐾𝑛

−𝑟) and ‖𝑅𝒮
∗ ‖ = 𝑂(𝑛1/2𝑞𝑛

1/2
𝐾𝑛

−𝑟) (13) 

 

where 𝑅𝒮
∗ = (𝑅1,𝒮

∗ , … , 𝑅𝑛,𝒮
∗ )

⊤
. Using the Taylor expansion, we have that 

 

𝑄ℎ(𝛾0𝒮 + 𝛿𝑛𝜇) − 𝑄ℎ(𝛾0𝒮)

= 𝛿𝑛𝜇⊤ ∑𝑛
𝑖=1 𝜙ℎ

′(𝜀𝑖 − 𝑅𝑖,𝒮
∗ )𝛱𝑖,𝒮 +

1

2
𝛿𝑛

2𝜇⊤ ∑𝑛
𝑖=1 𝜙ℎ

′′(𝜁𝑖)𝛱𝑖,𝒮𝛱𝑖,𝒮
⊤ 𝜇

= 𝐼1 + 𝐼2

 

where 𝜁𝑖  is between 𝜀𝑖 − 𝑅𝑖,𝒮
∗  and 𝜀𝑖 − 𝑅𝑖,𝒮

∗ − 𝛿𝑛𝛱𝑖,𝒮
⊤ 𝜇. 

For 𝐼1, using the Cauchy-Schwartz inequality, we have |𝐼1| ≤ 𝛿𝑛‖𝜇‖‖∑𝑖=1
𝑛 𝜙ℎ

′(𝜀𝑖 − 𝑅𝑖,𝒮
∗ )𝛱𝑖,𝒮‖. Note that 

 ∑𝑛
𝑖=1 𝜙ℎ

′(𝜀𝑖 − 𝑅𝑖,𝒮
∗ )𝛱𝑖,𝒮 = ∑𝑛

𝑖=1 {𝜙ℎ
′(𝜀𝑖) − 𝜙ℎ

′′(𝜀𝑖)𝑅𝑖,𝒮
∗ +

1

2
𝜙ℎ

′′′(𝜀𝑖
∗)𝑅𝑖,𝒮

∗2 } 𝛱𝑖,𝒮 , 

where 𝜀𝑖
∗ is between 𝜀𝑖 and 𝜀𝑖 − 𝑅𝑖,𝒮

∗ . Invoking condition (C9), ∑𝑖=1
𝑛 𝜙ℎ

′(𝜀𝑖) = 𝑂𝑝(𝑛−1/2). Then, from Equation 13, we 

have 

 ‖∑𝑛
𝑖=1 𝜙ℎ

′(𝜀𝑖 − 𝑅𝑖,𝒮
∗ )𝛱𝑖,𝒮‖ = 𝑂𝑝(𝑛1/2𝑞𝑛

1/2
) 

Hence, we have 𝐼1 = 𝑂𝑝(𝑞𝑛𝐾𝑛 ∥ 𝜇 ∥). For 𝐼2, with the same argument, it is not difficult to prove that 

 𝐼2 = 𝐸(𝐹(𝑋, 𝑈, ℎ))𝑂𝑝(𝑞𝑛𝐾𝑛 ∥ 𝜇 ∥2). 

Therefore, by choosing a sufficiently large 𝑐, 𝐼2 dominates 𝐼1 uniformly ∥ 𝜇 ∥= 𝑐 for sufficiently large 𝑛. Note that 

𝐼2 is negative for sufficiently large 𝑐. Then the proof is completed. 

5.2. Proof of Theorem 2 

Let 𝛾 = 𝛾𝑜 = (𝛾𝒮
𝑜⊤, 0(𝑝𝑛−𝑞𝑛)𝐾𝑛

⊤ )
⊤

, we will show that 𝛾 satisfies equation (i)-(ii) of Lemma 2. This will immediately 

imply this theorem. Since 𝛾𝒮
𝑜 is the solution of the optimization problem Equation 4, we have 

 

 ∑ 𝜙ℎ
′𝑛

𝑖=1 (𝑌𝑖 − 𝛱𝑖,𝒮
⊤ 𝛾𝒮

𝑜)𝛱𝑖𝑙 = 0, 𝑙 = 1, … , 𝑞𝑛   (14) 

where 𝛱𝑖𝑙 = 𝑋𝑖𝑙𝜋(𝑈𝑖)
⊤. 

First, for 𝑙 = 1, … , 𝑞𝑛 , note that ‖𝛾𝑙‖ = ‖𝛾𝑙 − 𝛾0𝑙 + 𝛾0𝑙‖ ≥ 𝑚𝑖𝑛 1≤𝑙≤𝑞𝑛
‖𝛾0𝑙‖ − ‖𝛾𝑙 − 𝛾0𝑙‖ , then ‖𝛾𝑙‖ ≥ 𝑎𝜆  is 

implied by 

 min
1≤𝑙≤𝑞𝑛

‖𝛾0𝑙‖ ≫ 𝜆, 

and 

 ‖𝛾𝑙 − 𝛾0𝑙‖ ≪ 𝜆, 

and both equations above are implied by condition (C10) as well as Theorem 1. By Equation 14, it follows that (i) trivially 

hold since 𝛱𝑖
⊤𝛾 = 𝛱𝑖,𝒮

⊤ 𝛾𝒮
𝑜. 
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Now it remains to show (ii). For 𝑙 = 𝑞𝑛 + 1, … , 𝑝𝑛, ‖𝛾𝑙‖ < 𝜆 is trivial since 𝛾𝑙 = 0. Furthermore, by condition (C6), 

we have 𝜀𝑖 = 𝑌𝑖 − 𝛱𝑖,𝒮
⊤ 𝛾0𝒮 + 𝑅𝑖,𝒮

∗ . Then, by Taylor expansion, we have 

and 

 

∑ 𝜙ℎ
′𝑛

𝑖=1 (𝑌𝑖 − 𝛱𝑖
⊤𝛾)𝛱𝑖𝑙 = ∑ 𝜙ℎ

′𝑛
𝑖=1 (𝑌𝑖 − 𝛱𝑖,𝒮

⊤ 𝛾𝒮
𝑜)𝛱𝑖𝑙

= ∑ 𝜙ℎ
′𝑛

𝑖=1 (𝜀𝑖 − 𝑅𝑖,𝒮
∗ − 𝛱𝑖,𝒮

⊤ (𝛾𝒮
𝑜 − 𝛾0𝒮)) 𝛱𝑖𝑙

= ∑ 𝜙ℎ
′𝑛

𝑖=1 (𝜀𝑖)𝛱𝑖𝑙 − ∑ 𝜙ℎ
″𝑛

𝑖=1 (𝜀𝑖)𝛱𝑖𝑙(𝛱𝑖,𝒮
⊤ (𝛾𝒮

𝑜 − 𝛾0𝒮) + 𝑅𝑖,𝒮
∗ ){1 + 𝑜𝑝(1)}

= 𝐼3 − 𝐼4{1 + 𝑜𝑝(1)}.

 

and 

 ‖∑ 𝜙ℎ
′𝑛

𝑖=1 (𝑌𝑖 − 𝛱𝑖
⊤𝛾)𝛱𝑖𝑙‖ ≤ ‖𝐼3‖ + ‖𝐼4‖. 

 

Next we will consider 𝐼3 and 𝐼4 respectively. For 𝐼3, note that 

 

𝑚𝑎𝑥
1≤𝑙≤𝑝𝑛

‖∑ 𝜙ℎ
′𝑛

𝑖=1 (𝜀𝑖)𝛱𝑖𝑙‖2 = 𝑚𝑎𝑥
1≤𝑙≤𝑝𝑛

‖∑ 𝜙ℎ
′𝑛

𝑖=1 (𝜀𝑖)𝑋𝑖𝑙𝜋(𝑈𝑖)
⊤‖2

𝑚𝑎𝑥
1≤𝑙≤𝑝𝑛

∑ |∑ 𝜙ℎ
′𝑛

𝑖=1 (𝜀𝑖)𝑋𝑖𝑙𝐵𝑘(𝑈𝑖)|2𝐾𝑛
𝑘=1

≤ 𝐾𝑛 𝑚𝑎𝑥
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

|∑ 𝜙ℎ
′𝑛

𝑖=1 (𝜀𝑖)𝑋𝑖𝑙𝐵𝑘(𝑈𝑖)|2

 

 

Let 𝑇𝑙𝑘 = ∑ 𝜙ℎ
′𝑛

𝑖=1 (𝜀𝑖)𝑋𝑖𝑙𝐵𝑘(𝑈𝑖) and 𝑠𝑛
2 = 𝑚𝑎𝑥

1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

∑ 𝑋𝑖𝑙
2𝑛

𝑖=1 𝐵𝑘
2(𝑈𝑖). By condition (C9), we can prove 

 𝐸 ( max
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

∣ 𝑇𝑙𝑘 ∥ 𝑋𝑖𝑙 , 𝑈𝑖 , 1 ≤ 𝑙 ≤ 𝑝𝑛, 1 ≤ 𝑖 ≤ 𝑛) ≤ 𝑐1𝑠𝑛√log(𝑝𝑛𝐾𝑛) 

Therefore 

 𝐸 ( max
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

|𝑇𝑙𝑘|) ≤ 𝑐1√log(𝑝𝑛𝐾𝑛)𝐸(𝑠𝑛) (15) 

 

By condition (C3) and the properties of B-splines, we have 

              ∑𝐾𝑛
𝑘=1 𝐵𝑘(𝑈𝑖) = 1 and 𝑐1𝐾𝑛

−1 ≤ 𝐸(𝐵𝑘
2(𝑈𝑖)) ≤ 𝑐2𝐾𝑛

−1 (16) 

 

Thus, by condition (C2), we can get 

 ∑𝑛
𝑖=1 𝐸 [𝑋𝑖𝑙

2𝐵𝑘
2(𝑈𝑖) − 𝐸(𝑋𝑖𝑙

2𝐵𝑘
2(𝑈𝑖))]

2

≤ 𝑐3𝑛𝐾𝑛
−2 (17) 

and 

 max
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

∑𝑛
𝑖=1 𝐸(𝑋𝑖𝑙

2𝐵𝑘
2(𝑈𝑖)) ≤ 𝑐2𝑛𝐾𝑛

−1 (18) 

 

By Lemma A. 1 of van de Geer (2008), (16) and (17) imply 

 𝐸 ( max
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

|∑𝑛
𝑖=1 [𝑋𝑖𝑙

2𝐵𝑘
2(𝑈𝑖) − 𝐸(𝑋𝑖𝑙

2𝐵𝑘
2(𝑈𝑖))]|) = 𝑂 (√𝑛𝐾𝑛

−2ln(𝑝𝑛𝐾𝑛) + ln(𝑝𝑛𝐾𝑛)) (19) 

 

Therefore, from (18) and the triangle inequality 

 𝐸(𝑠𝑛
2) = 𝑂(√𝑛𝐾𝑛

−2ln(𝑝𝑛𝐾𝑛) + ln(𝑝𝑛𝐾𝑛) + 𝑛𝐾𝑛
−2) = 𝑂(ln(𝑝𝑛𝐾𝑛) + 𝑛𝐾𝑛

−2) 

 

Now since 𝐸(𝑠𝑛) ≤ √𝐸(𝑠𝑛
2), we have 

 𝐸(𝑠𝑛) = 𝑂(√ln(𝑝𝑛𝐾𝑛) + 𝑛𝐾𝑛
−2) (20) 

From (15) and (20), we have 

 𝐸 ( max
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

|𝑇𝑙𝑘|) ≤ 𝑂(log(𝑝𝑛𝐾𝑛) + √𝑛𝐾𝑛
−2ln(𝑝𝑛𝐾𝑛)) 

 

Integrate the above discussion, for 𝐼3, we have 

 max
1≤𝑙≤𝑝𝑛

‖∑𝑛
𝑖=1 𝜙ℎ

′(𝜀𝑖)𝛱𝑖𝑙‖ = 𝑂(√𝑛𝐾𝑛
−1ln(𝑝𝑛𝐾𝑛)) (21) 

 

For 𝐼4, firstly it is easy to see (using Theorem 1) that 

 |𝛱𝑖,𝒮
⊤ (𝛾𝒮

𝑜 − 𝛾0𝒮)| ≍ 𝐾𝑛
−1‖𝛾𝒮

𝑜 − 𝛾0𝒮‖ = 𝑂𝑝(𝑞𝑛
1/2

𝑛−1/2) 

and 

 ‖𝑅𝑖,𝒮
∗ ‖ = 𝑂𝑝(𝑞𝑛

1/2
𝐾𝑛

−𝑟) (22) 

 

Let 𝑎 = (𝜙ℎ
″(𝜀1), … , 𝜙ℎ

″(𝜀𝑛))
⊤

 and 𝑏𝑙𝑘 = (𝑏𝑙𝑘,1, … , 𝑏𝑙𝑘,𝑛)
⊤

 with ( ),lk i il k ib X B U= (𝛱𝑖,𝒮
⊤ (𝛾𝒮

𝑜 − 𝛾0𝒮)  +𝑅𝑖,𝒮
∗ ) , and 
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we have max𝑖|𝑏𝑙𝑘,𝑖| ≤ 𝑐𝑞𝑛
1/2

(𝑛−1/2 + 𝐾𝑛
−𝑟) ≤ 𝑐𝑞𝑛

1/2
𝐾𝑛

−𝑟. Then 

 

 

𝐼4 = ∑ 𝜙ℎ
″𝑛

𝑖=1 (𝜀𝑖)𝛱𝑖𝑙(𝛱𝑖,𝒮
⊤ (𝛾𝒮

𝑜 − 𝛾0𝒮) + 𝑅𝑖,𝒮
∗ )

= ∑ 𝜙ℎ
″𝑛

𝑖=1 (𝜀𝑖)𝑋𝑖𝑙𝜋(𝑈𝑖)⊤(𝛱𝑖,𝒮
⊤ (𝛾𝒮

𝑜 − 𝛾0𝒮) + 𝑅𝑖,𝒮
∗ )

= (𝑎⊤𝑏𝑙1, 𝑎⊤𝑏𝑙2, … , 𝑎⊤𝑏𝑙𝐾𝑛
)

⊤
.

 

Note that 

 𝑚𝑎𝑥
1≤𝑙≤𝑝𝑛

‖∑ 𝜙ℎ
″𝑛

𝑖=1 (𝜀𝑖)𝛱𝑖𝑙(𝛱𝑖,𝒮
⊤ (𝛾𝒮

𝑜 − 𝛾0𝒮) + 𝑅𝑖,𝒮
∗ )‖

2
≤ 𝐾𝑛 𝑚𝑎𝑥

1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

|𝑎⊤𝑏𝑙𝑘|2 

 

By condition (C9), we have 𝐸|𝜙ℎ
″(𝜀𝑖)|𝑚 ≤

𝑚!

2
𝑆2𝑇𝑚−2,𝑚 = 2,3, …, for some constants 𝑆 and 𝑇. Then we have 

 𝐸|𝑎𝑖𝑏𝑙𝑘,𝑖|
𝑚

≤
𝑚!

2
(𝑏𝑙𝑘,𝑖𝑆)

2
(𝑏𝑙𝑘,𝑖𝑇)

𝑚−2
≤

𝑚!

2
(𝑏𝑙𝑘,𝑖𝑆)

2
(𝑐𝑞𝑛

1/2
𝐾𝑛

−𝑟𝑇)
𝑚−2

 

and 

 ∑𝑛
𝑖=1 𝐸|𝑎𝑙𝑘,𝑖𝑏𝑖|

2
≤ 𝑆2 ∑𝑛

𝑖=1 𝑏𝑙𝑘,𝑖
2 ≤ 𝑐2𝑆2𝑛𝑞𝑛𝐾𝑛

−2𝑟 

By Lemma 1 and a simple union bound 

 

𝑃 ( max
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

|𝑎⊤𝑏𝑙𝑘| > 𝜖) = 𝑃 ( max
1≤𝑙≤𝑝𝑛,1≤𝑘≤𝐾𝑛

|∑𝑛
𝑖=1 𝑎𝑖𝑏𝑙𝑘,𝑖| > 𝜖)

 ≤ 2𝑝𝑛exp {−
𝜖2

2𝑛𝑐2𝑆2𝑞𝑛𝐾𝑛
−2𝑟+2𝑐𝑞𝑛

1/2
𝐾𝑛

−𝑟𝑇𝜖
}
 

Taking 𝜖 = 𝑐1√𝑛𝑞𝑛𝐾𝑛
−𝑟log(𝑝𝑛 ∨ 𝑛) for some 𝑐1 large enough, the above probability tends to zero, thus we have 

 ‖𝐼4‖ ≤ 𝑂𝑝 (
𝑛𝑞𝑛

𝐾𝑛
2𝑟−1 log(𝑝𝑛 ∨ 𝑛)) 

 

From condition (C10), we prove (ii) in Lemma 2. This completes the proof. 
 

6. Conclusion 
The varying coefficient model is flexible and powerful for modeling the dynamic changes of regression coefficients. 

It is important to identify significant covariates associated with response variables, especially for high dimensional settings. 

It has received considerable attention during the past decades. However, many papers were built on either least square or 

likelihood based methods, which are expected to be very sensitive to outliers and their efficiency may be significantly 

reduced for many commonly used non-normal errors. Due to the well-known advantages of modal regression, these facts 

motivate us to extend the modal regression method to the varying coefficient model in high dimensions. 
 

This paper has investigated the robust estimator of the varying coefficient models based on modal regression when the 

number of nonparametric components 𝛽(𝑢)  diverges with sample size increasing. The varying coefficients are 

approximated by B-splines and the relevant variables are selected automatically by the SCAD penalty. Theoretically, the 

oracle theory was derived under mild conditions. In addition, a computation algorithm is developed based on local 

quadratic approximation and EM algorithm. Some Monte Carlo simulations are provided to corroborate our theoretical 

findings in finite samples. 
 

 There are some several possible extensions that further study. First, our approach described in this paper can be easily 

extended to other models, such as the partially linear single index model and the partially linear additive model. Second, a 

challenging problem, particularly for high dimensional data, is how to identify which covariates are parametric or 

nonparametric terms. Another problem of practical interest is to construct prediction intervals based on the observed date. 

Last, it would be interesting to take into account complex data in high dimensional semiparametric models, such as missing 

data, measurement error data, censored data. 
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