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Abstract - In this paper, we analyse the concept of the clique-edge graph, CE(G), which is defined as the edge intersection graph 

of all cliques within a given graph G. We discuss the impact of various binary operations on the structure and properties of the 

clique-edge graph, providing a detailed analysis of how these operations influence CE(G). Additionally, we investigate the 

connectedness of CE(G), offering insights into the conditions under which the clique-edge graph remains connected or becomes 

disconnected. 
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1. Introduction 
Graph operators, in particular, intersection graphs, play a vital role in the study of various structural properties and dynamics 

of graphs and networks. Intersection graphs have been receiving attention in graph theory for some time. The line graph L(G) 

was the first intersection graph to be defined in the literature. The notion of ‘line graph’ as a ‘graph operator’ was introduced by 

Krausz [6]. The line graph L(G) of graph G has all the edges (i.e. K2 subgraphs) of G as its vertices and two vertices of L(G) are 

adjacent if the corresponding edges of G are adjacent. Since then, many other graph operators, such as clique graph, total graph, 

etc, and their dynamics have been studied [7]. This notion led to the definition of another graph operator, triangle graph T(G), 

which was introduced independently several times under different names and in different contexts. [2, 12, 1, 8] T(G) has triangles 

(K3 subgraphs) of G as vertices and two vertices of T(G) are adjacent if the corresponding K3 share an edge. The Cycle Graph, 

Cy(G), is a generalization of T(G). Cy(G) was introduced by Gervacio, in [5]. It has all induced cycles of G as its vertices, and 

two vertices of Cy(G) are adjacent if the corresponding induced cycles share an edge. In [9] and [10], several classes of graphs, 

such as cycle periodic, cycle expanding and inverse cycle graphs, are studied. In this paper, we define a new graph operator 

named Clique-Edge graph, denoted by CE(G). The clique-edge graph, CE(G) of graph G, is the edge intersection graph of all 

cliques of G. Triangles can be considered as cliques of order three. This concept can be generalized to cliques of order n. The 

clique-edge graph is thus a generalization of the triangle graph. It can also be viewed as a generalization of the clique graph 

introduced by Hamelink in [3] and studied by several authors, including Hedge et al. in [4]. The motivation for this definition is 

the close relationship with the well-studied classes- triangle graphs and clique graphs. We deal with some results on the clique-

edge graph. The second section gives a definition, examples and some basic results that follow from the definition. In the third 

section, we discuss about the connectedness of clique-edge graphs of some classes of graphs. The fourth section examines the 

effect of some binary operations on clique-edge graphs. All the graphs considered here are undirected and simple. For all basic 

concepts and notations not mentioned in this paper, we refer to [11]. 

  

Fig. 1 G and CE(G) 

2. The Clique-Edge Graph 
The proposed approach consists of five phases, namely; hand region segmentation, morphological processing, contour 

simplification and fingertip detection and is illustrated in Figure 2. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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In this section, we shall define CE(G) and prove some results on CE(G). 

Definition 2.1. [11] A clique of a graph G is a maximal complete subgraph of G. 

Definition 2.2. [7] The clique graph C(G) of graph G is the intersection graph of all cliques of G. 

Definition 2.3. Let G be a graph. The clique-edge graph of G, CE(G) has its vertices the cliques of G and two vertices of 

CE(G) are adjacent if the corresponding cliques have some common edge. (Figure 1) 

Theorem 2.1. The clique-edge graph of a graph is a subgraph of its clique graph. 

Proof.  

  First, note that both CE(G) and C(G) have the cliques of G as their vertices. Two vertices of C(G) are adjacent if they have a 

nonempty intersection, i.e. they have at least one common vertex. Two vertices of CE(G) are adjacent if they have a common 

edge.  

Thus, any edge of CE(G) is  

also an edge of C(G). Hence, CE(G) ⊆ C(G). 

In what follows, we denote paths, cycles, wheels and complete graphs by Pn, Cn, Wn and Kn, respectively (Figure 2). The square 

of a graph G2 is obtained by joining vertices in G, which are at a distance of at most two. 

Theorem 2.2. 𝐶𝐸(𝑃𝑛) ≅ 𝐾𝑛−1. 
Proof.  

      Each edge forms a clique in Pn, and they are the only cliques in Pn. So, there are n -1 cliques in Pn, each of the form K2. Hence, 

no two of them can have a common edge. Therefore, 𝐶𝐸(𝑃𝑛) has n − 1 vertices, all of which are isolated vertices. Thus, 

𝐶𝐸(𝑃𝑛) ≅ 𝐾𝑛−1. 

Theorem 2.3.  𝐶𝐸(𝐶𝑛) ≅ 𝐾̅𝑛 for 𝑛 ≥ 4 and 𝐶𝐸(𝐶3) ≅ 𝐾̅1. 
Proof.  

     The only clique in C3 is K3. So, clearly 𝐶𝐸(𝐶3) ≅ 𝐾̅1. For 𝑛 ≥ 4, the cliques 𝐶𝑛 are of the form K2 and they are n in 

number. Also, no two of them can share an edge. Thus, 𝐶𝐸(𝐶𝑛) has n isolated vertices. Hence, 𝐶𝐸(𝐶𝑛) ≅ 𝐾̅𝑛. 

Theorem 2.4. 𝐶𝐸(𝑃𝑛
2) ≅ 𝑃𝑛−2.  

Proof.  

Let Pn = v1 v2 . . . vn.  The edges of Pn
2 are of the form vi vi+1, i = 1, 2, . . ., n – 1 and vi vi+2, i = 1, 2, . . . n − 2. Hence, three 

consecutive vertices in Pn will correspond to a clique K3. The sub graph Hi induced by {vi, vi+1, vi+2}, i = 1, 2, . . ., n – 2 will 

form a clique.  

There will be n − 2 such cliques. Also, two cliques Hi and Hi+1 will share an edge in common for each i = 2, 3, . . ., n − 1. 

Therefore, CE(Pn
2) will have n − 2 vertices, and every pair of consecutive vertices will be adjacent. Thus, 𝐶𝐸(𝑃𝑛

2) ≅ 𝑃𝑛−2. 
 

 

 

  
Fig. 2      C6                                                                                                        P4                                                                                                        W7                                                                                               K6 

  

 
v1            v2                 v3     v4         v5            vn                 u1    u2     u3       u4    un2      

𝑃𝑛
2       𝐶𝐸(𝑃𝑛

2) 
       Fig. 3  𝑷𝒏

𝟐  and 𝑪𝑬(𝑷𝒏
𝟐) 
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Theorem 2.5. 𝐶𝐸(𝐶𝑛
2) ≅ 𝐾1  for n = 3, 4, 5; 𝐶𝐸(𝐶6

2) ≅ 𝑄3 and 𝐶𝐸(𝐶𝑛
2) ≅ 𝐶𝑛 for 𝑛 ≥ 7. 

Proof. It is clear that for n = 3, 4, 5,  and 𝐶𝐸(𝐾𝑛) ≅ 𝐾1 as 𝐾𝑛 contains only one clique. Hence, 𝐶𝐸(𝐶𝑛
2) ≅ 𝐾1. From the Fig 4, 

𝐶𝐸(𝐶6
2) ≅ 𝑄3. 

Now, let n ≥ 7 and Cn: v1 v2 . . . vn v1 . If n is an even number, then 𝐶𝑛
2 ≅ 𝐶𝑛 ∪ 𝐶𝑛

′ ∪ 𝐶𝑛
′′ , where 𝐶𝑛

′ ∶ v1 v3 v5 . .  . vn v1 and 𝐶𝑛
′′: 

v2 v4 v6. . . vn-1 v2. If n is an odd number, then 𝐶𝑛
2 ≅ 𝐶𝑛 ∪ 𝐶𝑛

′′′ , where 𝐶𝑛
′′′ ∶ v1 v3 v5. . . vn v2 v4 v6. . . vn-1 v1. In both cases, since n ≥ 

7, the only cliques are triangles Ti induced by vi vi+1 vi+2 for i = 1, 2, . . ., n − 2, Tn−1 induced by vn−1vnv1 and Tn induced vnv1v2. So, 

there are n cliques, and each Ti and Ti+1 share a common edge. Hence, 𝐶𝐸(𝐶𝑛
2) ≅ 𝐶𝑛. 

Theorem 2.6. 𝐶𝐸(𝑊𝑛) ≅ 𝐶𝑛−1 

Proof. The only cliques 𝑊𝑛 are triangles, and there are n − 1 such cliques. Also, each consecutive cliques share a common 

edge. Hence, 𝐶𝐸(𝑊𝑛) ≅ 𝐶𝑛−1. 
 

Theorem 2.7. 𝐶𝐸(𝑃𝑒𝑡𝑒𝑟𝑠𝑒𝑛2) ≅ 𝐾1. 

Proof. 𝑃𝑒𝑡𝑒𝑟𝑠𝑒𝑛2 ≅ 𝐾10. Hence, 𝐶𝐸(𝑃𝑒𝑡𝑒𝑟𝑠𝑒𝑛2) ≅ 𝐾1. 

                                                                     

3. Connectedness  
In this section, we examine the connectedness of 𝐶𝐸(𝐺). In contrast to the case of clique graphs, the clique-edge graph of a 

connected graph need not be connected.  

 

Theorem 3.1. The clique-edge graph of a triangle-free graph is totally disconnected. 

Proof. For a triangle-free graph, any clique is either a single vertex, denoted as 𝐾1, or an edge, denoted as 𝐾2 . As a result, no 

two cliques in such a graph can share an edge. Therefore, the clique-edge graph, which represents the connections between these 

cliques, is totally disconnected.  

 
G                                                                                                     CE(G) 

Fig. 4   𝐶6
2 and 𝐶𝐸(𝐶6

2) 

 
Fig. 5  W7 and CE(W7) 

Theorem 3.2: If a graph G has a cut-vertex, then the clique-edge graph CE(G) is disconnected. 

Proof: Assume that the graph G has a cut-vertex v. When v is removed from G, the graph splits into at least two components, 

say G1 and G2.  

Consider the subgraphs [G1, v] and [G2, v], where [Gi, v] represents the subgraph induced by Gi and the vertex v. These two 
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subgraphs share only the vertex. Consequently, any clique from [G1, v] cannot share an edge with any clique from [G2, v]. 

Therefore, in the clique-edge graph CE(G), any vertex v1, which corresponds to a clique of [G1, v], cannot be connected by a path 

to any vertex v2, which corresponds to a clique of [G2, v]. Thus, CE(G) is disconnected. 

Remark 3.3: The converse of this theorem is not true. That CE(G) is disconnected does not imply that G has a cut-vertex. For, 

CE(C5) is disconnected. But C5 does not have a cut-vertex. 

Theorem 3.4: Let G be a connected graph with connected CE(G). Then for any two vertices, V1 and V2 of CE(G), min D(V1, V2) 

≤ 2d (V1, V2) + 1, where D(V1, V2) = {d(v1, v2) : v1 ∈ V1, v2 ∈ V2}. 

Proof: Consider two vertices, V1 and V2 of. They correspond to two cliques, V1 and V2 of G. Let d (V1, V2) = r. Let U0U1U2 . . . 

Ur be the shortest path connecting U0 = V1 and Ur = V2. Each Ui, i = 0, 1, 2, …, r corresponds to a clique in G, and since Ui−1 and 

Ui being adjacent in  CE(G) , they share a common edge ei = ui
1ui

2  for i = 1, 2, …, r. Then ui
1 ∈ Ui-1 and ui

2 ∈ Ui. Thus, u2
i-1 ∈ 

Ui-1 and ui
1 ∈ Ui-1. Since each Ui is a clique, u2

i-1 and ui
1 are adjacent in G. Therefore u1

1u1
2u2

1u2
2 … ur

1ur
2  forms a walk of length 

2r + 1 in G. Hence min D (V1, V2) ≤ 2r + 1 = 2d (V1, V2) + 1. 

  

𝐺 𝐶𝐸(𝐺) 
Fig. 6 Petersen graph and its square 

 

 

Fig. 7 A connected graph with disconnected CE(G) 

4. Operations on Clique-Edge Graphs 
It would be interesting to examine the effect of some binary operations in relation to clique-edge graphs. Let G1 and G2 be 

vertex disjoint graphs. We consider the following operations. 

Definition 4.1. Union: G1 ∪ G2  is the graph such that V(G1 ∪ G2) = V(G1) ∪ V(G2)   and E(G1 ∪ G2) = E(G1) ∪ E(G2).    

Definition 4.2. Join: G1 + G2 is defined as V(G1 + G2) = V(G1 ∪ G2) and E(G1 + G2) = E(G1 ∪ G2) ∪ [V(G1) ×V(G2)], where 

V(G1) ×V(G2) represents the set of unordered pairs (v1 , v2), with v1 ∈ V(G1) and v2 ∈ V(G2) . 
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Definition 4.3. Cartesian Product: G1 × G2 is the graph where V(G1 × G2) = V(G1) × V(G2) and for v1, w1 ∈ V(G1) and v2, w2 ∈ 

V(G2), (v1 , v2) and (w1 , w2) are adjacent vertices in G1 × G2  precisely when (v1 , w1) ∈ E(G1) and (v2 , w2) ∈ E(G2). 

Definition 4.4. Composition:  G1(G2) is defined as V (G1(G2)) = V (G1) × V (G2) and E(G1(G2)) = {(v1, v2)(w1, w2) / either (v1, 

w1) ∈ E(G1) or v1 = w1 and (v2, w2) ∈ E(G2)}. 

Theorem 4.1. Let G1 and G2 be graphs with disjoint vertex sets. Then CE(G1 ∪ G2) ≅ CE(G1) ∪ CE(G2).     
Proof. Trivial.   

Theorem 4.2. Let G1 and G2 be connected graphs with disjoint vertex sets. Then CE(G1 + G2) ≅ C(G1) × C(G2), where C(G) is 

the clique graph of G. 

Proof. CE(G1 + G2) contains all the edges of G1 and G2 and also all possible edges between G1 and G2. Therefore, a clique in G1 

together with a clique in G2, will form a clique in CE(G1 + G2). Corresponding to a pair of cliques (CG1, CG2) where CG is a clique 

in G, there will be a clique in CE(G1 + G2). Two such cliques will be edge intersecting in CE(G1 + G2) if the corresponding 

cliques in G1 and G2 are intersecting. Consequently, CE(G1 + G2) ≅ C(G1) × C(G2).  

Theorem 4.3. Let G1(n1, m1) and G2(n2, m2) be graphs with disjoint vertex sets. Then CE(G1×G2) ≅ n2CE(G1) ∪ n1CE(G2). 

Proof. G1 × G2 contains n2 copies of G1 and n1 copies G2. Also, no new cliques are formed under the operation cartesian product. 

Hence the result. 

Theorem 4.4. CE[G1(G2)] ≅ L(G1) if and only if G1 is triangle-free and G2 is complete. 

Proof. G1(G2) can be obtained by replacing each vertex of G1 with a copy of G2 and each edge uiuj of G1 by all possible edges 

between the of G2 corresponding to the vertices ui and uj.  

Since G2 is complete and G1 is triangle free, corresponding to every edge of G1, there is a clique in G1 (G2). Two such cliques are 

edge intersecting whenever the corresponding edges are incident. Hence CE[G1 (G2)] ≅ L(G1). Conversely, assume CE[G1 (G2)] 

≅ L(G1). If G2 is not complete, the number of cliques in G1 (G2) will be greater than the number of edges of G1, which is a 

contradiction. If G1 has a triangle corresponding to each triangle, there will be a clique in G1 (G2). Therefore, the number of 

cliques in G1 (G2) will be less than the number of edges in G1, which is a contradiction. Hence the result. 

5. Conclusion and Future Works 
In conclusion, we have analysed the concept of the clique-edge graph, CE(G), which is constructed as the edge intersection 

graph of all cliques within a given graph G. Our detailed investigation of the impact of various binary operations on the structure 

and properties of CE(G) reveals significant changes in its composition and characteristics.  

These operations can lead to alterations in clique connectivity and edge relationships, directly influencing the structure of 

CE(G). Furthermore, our exploration of the connectedness of CE(G) has provided a comprehensive understanding of the 

conditions under which the clique-edge graph remains connected or becomes disconnected. Through this analysis, we offer 

insights into how the underlying graph G and the applied binary operations affect the overall connectedness of CE(G), 

contributing to a deeper understanding of its structural dynamics. Future studies could focus on characterizing clique-edge graphs, 

analyzing parameters like radius, diameter, and domination number, exploring the convergence of the iterated CE operator, and 

investigating the clique-edge graphs of specific graph classes. 
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