Original Article

Metrizability of the Strong φ -metric Space

Stela Çeno¹, Dhurata Valera²

^{1,2}Department of Mathematics, Faculty of Natural Science, University of Elbasan "Aleksandër Xhuvani", Albania.

¹Corresponding Author : stela.ceno@uniel.edu.al

Received: 15 August 2024 Revised: 28 September 2024 Accepted: 14 November 2024 Published: 27 November 2024

Abstract - After presenting a strong φ -metric space and proving that this space is regular and normal, in this article, we prove the Stone-type theorem in a strong φ -metric space. Also, it is used Bing metrization theorem for access to a satisfactory condition of metrizability.

Keywords - *Strong* φ -*metric, Strong* φ -*metric space, Metrizability, Topological space, Regular metric space.*

1. Introduction

This article is a consecutive of previous work [1], where the strong φ -metric space is proved to be a regular and a normal space. In this paper, we are committed to studying the metrizability of the strong φ -metric space. The definitions and results in this section are given to support the proof.

Definition1.1. [2] Let *X* be a topological space and $B = \{B_m : m \in M\}$ be a family of subsets of *X*. Then:

- a) If, for $\forall x \in X$, exists a neighbourhood U of x such that $B_m \cap U = \emptyset$ for at most one $m \in M$, then B is called *discrete*.
- b) If for $\forall x \in X$, exists a neighbourhood U of x such that $\{m \in M : A_m \cap U \neq \emptyset\}$ is finite, then B is called *locally finite*.
- c) If $B = \bigcup_{i \in \mathbb{N}} B_i$, where every B_i is locally finite, then *B* is called σ -*locally finite*.
- d) If $B = \bigcup_{i \in \mathbb{N}} B_i$, where every B_i is discrete, then B is called σ -discrete.
- e) If $X = \bigcup_{m \in M} B_m$ then B is called a *cover* of X.
- f) A cover $A = \{A_i : i \in I\}$ of subsets of X is called a *refinement* of the cover B_i , if for each $i \in I$ there exists $m \in M$ such that $A_i \subset B_m$.

Definition 1.2. [2] Let (X, τ) be a topological space. Then:

- a) X is regular space if for any closed subsets $A \subset X$ and for $x \in X \setminus A$, there exist two disjoint open sets U and V containing A and X, respectively.
- b) X is normal space if, for any two disjoint closed subsets A and B of X, there exists two disjoint open sets U and V, containing A and B, respectively.

Definition 1.3. [3,4] Let (X, τ) be a topological space.

- a) A subset U of X is called sequentially open if each sequence $\{x_n\} \subset X$ converging to a point $x \in U$, then there exists $N \in \mathbb{N}$ such that $\{x_n\} \in U$ for all $n \ge N$.
- b) A subset U of X is called sequentially closed if no sequence in U converges to a point not in U.
- c) X is called semi-metrizable if there exists a function $d: X \times X \to [0, \propto [$ such that for all $x, y \in X$:
 - i) $d(x, y) = 0 \Leftrightarrow x = y;$

- ii) d(x, y) = d(y, x)
- iii) $x \in \overline{A} \Leftrightarrow d(x, A) = \inf\{d(x, y) : y \in A\} = 0$ for any $A \subset X$.
- d) (X, τ) is said to be metrizable if there exists a metric on X whose topology is the same as topology τ .

Theorem 1.4. [2] (The Stone Theorem) Every open cover of a metrizable space has an open refinement which is both locally finite and σ -discrete.

Theorem 1.5. [5] (The Bing Metrization Theorem) A topological space is metrizable if and only if it is regular and has a σ -discrete base.

In [1], as it is mentioned at the beginning, we have presented the definition of the strong φ -metric and proved two theorems regarding strong φ -metric space, as it follows:

Definition 1.6. The function $d_s: X \times X \to \mathbb{R} \ge 0$, is called a *strong* φ -*metric* and satisfies the following conditions: a) $d_s(x, y) = 0 \Leftrightarrow x = y$;

b) $d_s(x, y) = d_s(y, x);$

c) $d_s(x,z) \le Kd_s(x,y) + d_s(y,z) + \varphi(x,y,z), \forall x, y, z \in X, \text{ and } K \ge 1, \text{ with } \varphi: X \times X \times X \to \mathbb{R} \ge 0 \text{ a function fulfilling:}$ i) $\varphi(x,y,z) = 0 \text{ if } x = z \text{ or } y = z;$

- ii) $\varphi(x, y, z) = \varphi(y, x, z);$
- iii) $\forall \varepsilon > 0, \exists \delta > 0$ such that $\varphi(x, y, z) < \varepsilon$, whenever $d_s(x, y) < \delta$ or $d_s(y, z) < \delta, \forall x, y, z \in X$.

The ordered pair (X, d_s) is called a *strong* φ *-metric space*.

Theorem 1.7. Every strong φ -metric space (*X*, *d*_s), is regular.

Theorem 1.8. Every strong φ -metric space (*X*, *d*_s), is normal.

2. Main Results

Theorem 2.1. (Stone-type theorem) In a strong φ -metric space (*X*, *d*_s), every open cover of *X* has an open refinement, which is σ -locally finite and σ -discrete at the same time.

Proof. Let $\{\mathcal{U}_m : m \in M\}$ be an open cover of *X*. By the Zermelo theorem on well-ordering [2], we can take a well-ordering relation < on *M*. Define the families $\mathcal{V}_i = \{\mathcal{V}_{m,i} : m \in M\}$ of subsets of *X* by letting $\mathcal{V}_{m,i} = \bigcup_{c \in \mathcal{C}} B_s(c, \frac{1}{2^i})$ where \mathcal{C} is the set of all points $c \in X$ satisfying the following conditions:

i) *m* is the smallest element of *M* such that $c \in U_m$.

- ii) $c \notin \mathcal{V}_{t,i}$ for all j < i and for all $t \in M$.
- iii) $B_s(c, \frac{5}{2^i}) \subset \mathcal{U}_m$.

Apparently, the sets $\mathcal{V}_{m,i}$ are open, and by the third statement (iii), we have $\mathcal{V}_{m,i} \subset \mathcal{U}_m$. For each $x \in X$, take the smallest $m \in M$ such that $x \in \mathcal{U}_m$ and a natural number *i* such that $B_s(c, \frac{5}{2^i}) \subset \mathcal{U}_m$. It implies that $x \in \mathcal{C}$ if an only if $x \notin \mathcal{V}_{t,j}$ for all $t \in M$ and j < i. Then $x \in \mathcal{V}_{m,i}$. Thus, we have either $x \in \mathcal{V}_{t,j}$ for all j < i and all $t \in M$ or $x \in \mathcal{V}_{m,i}$. This proves that $\mathcal{V} = \bigcup_{i \in \mathbb{N}} \mathcal{V}_i$ is an open refinement of the cover $\{\mathcal{U}_m : m \in M\}$.

Now, for every $i \in \mathbb{N}$, let $x_1 \in \mathcal{V}_{m_1,i}$ and $x_2 \in \mathcal{V}_{m_2,i}$ with $m_1 \neq m_2$. Let us suppose $m_1 < m_2$. By the definition of $\mathcal{V}_{m_1,i}$ and $\mathcal{V}_{m_2,i}$, there exists $c_1, c_2 \in X$ satisfying conditions (i), (ii), (iii) and $x_1 \in B_s(c_1, \frac{1}{2i})$, $x_2 \in B_s(c_2, \frac{1}{2i})$. Again, we have $B_s(c_1, \frac{5}{2i}) \subset \mathcal{U}_{m_1}$ and $c_2 \notin \mathcal{U}_{m_1}$ and this implies $d_s(c_1, c_2) \geq \frac{5}{2i}$. But we have:

$$d_{s}(c_{1},c_{2}) \leq Kd_{s}(c_{1},x_{1}) + d_{s}(x_{1},x_{2}) + Kd_{s}(x_{2},c_{2}) + \varphi(c_{1},c_{2},x_{1}) + \varphi(x_{1},c_{2},x_{2})$$

$$d_{s}(x_{1},x_{2}) \geq \frac{5}{2^{i}} - Kd_{s}(c_{1},x_{1}) - Kd_{s}(x_{2},c_{2}) - \varphi(c_{1},c_{2},x_{1}) - \varphi(x_{1},c_{2},x_{2}).$$
(2.1)

Again for $\frac{1}{2^{i+1}} > 0$ there $\exists \beta_1, \beta_2 > 0$ such that $\varphi(c_1, c_2, x_1) < \frac{1}{2^{i+1}}$ whenever $d_s(c_1, x_1) < \frac{\beta_1}{K}$ and $\varphi(x_1, c_2, x_2) < \frac{1}{2^{i+1}}$, whenever $d_s(x_2, c_2) < \frac{\beta_2}{K}$. Let $\beta = \min\{\frac{\beta_1}{K}, \frac{\beta_2}{K}, \frac{1}{2^i}\}$. Then $d_s(c_1, x_1) < \beta$, $d_s(x_2, c_2) < \beta$ and $\varphi(c_1, c_2, x_1) < \frac{1}{2^{i+1}}$, $\varphi(x_1, c_2, x_2) < \frac{1}{2^{i+1}}$. Then (2.1) gives:

$$d_s(x_1, x_2) \ge \frac{5}{2^i} - 2\beta - 2\frac{1}{2^{i+1}} \ge \frac{5}{2^i} - 2\frac{1}{2^i} - \frac{1}{2^i} = \frac{1}{2^{i-1}}.$$

To prove that the families \mathcal{V}_i are σ -discrete, suppose there exists $x \in X$ such that $x_1, x_2 \in B_s(x, \frac{1}{2^{i+1}})$. Then we have $d_s(x, x_1) < \frac{1}{2^{i+1}}, d_s(x, x_2) < \frac{1}{2^{i+1}}$ and: $\frac{1}{2^{i-1}} < d_s(x, x_2) \le K d_s(x_1, x) + d_s(x, x_2) + \varphi(x_1, x_2, x).$ (2.2)

Now for $\frac{1}{K(2^{i+1})} > 0$ there exists $\beta' > 0$ such that $\varphi(x_1, x_2, x) < \frac{1}{2^{i+1}}$ whenever $d_s(x_2, x) < \beta'$. If $\delta = \min\left\{\beta', \frac{1}{K(2^{i+1})}, \frac{1}{2^{i+1}}\right\}$, then $d_s(x_2, x) < \delta$ and $\varphi(x_1, x_2, x) < \frac{1}{2^{i+1}}$. The inequality (2.2) gives:

$$\frac{1}{2^{i-1}} < d_s(x_1, x_2) < K \frac{1}{K(2^{i+1})} + \delta + \frac{1}{2^{i+1}} \le 2\frac{1}{2^{i+1}} + \frac{1}{2^{i+1}} < \frac{1}{2^i} + \frac{1}{2^i} = \frac{1}{2^{i-1}}.$$

This is a contradiction, and hence, it proves that each ball of radius $\frac{1}{2^{i+1}}$ meets at most one element of \mathcal{V}_i that is $\mathcal{V} = \bigcup_{i \in \mathbb{N}} \mathcal{V}_i$ is σ -discrete. Let $i \in \mathbb{N}$ then for all $t \in M$, $i \ge j + k$ and $c \in \mathcal{C}$ implies $c \notin \mathcal{V}_{t,j}$. Now if $B_s(x, \frac{1}{2^{i-1}}) \subset \mathcal{V}_{t,j}$, then $c \notin B_s(x, \frac{1}{2^{k-1}})$ and $d_s(x, c) \ge \frac{1}{2^{k-1}}$.

Again, $j + k \ge k + 1$ and $i \ge k + 1$ implies $\frac{1}{2^{j+k}} \le \frac{1}{2^{k+1}}$ and $\frac{1}{2^i} \le \frac{1}{2^{k+1}}$. Next, suppose there exists $y \in B_s(x, \frac{1}{2^{j+k}}) \cap B_s(c, \frac{1}{2^i})$. Then: $d_s(x, c) \le Kd_s(x, y) + d_s(y, c) + \varphi(x, c, y)$ (2.3)

For $\frac{1}{2^k} > 0$ there $\exists \alpha > 0$ such that $\varphi(x, c, y) < \frac{1}{2^k}$ whenever $d_s(x, y) < \frac{\alpha}{\kappa}$. Let $\gamma = \min\left\{\frac{\alpha}{\kappa}, \frac{1}{2^{j+k}}\right\}$. Then: $d_s(x, y) < \gamma$ and $\varphi(x, c, y) < \frac{1}{2^k}$. Therefore from (2.3) we obtain:

$$\frac{1}{2^{k-1}} \le d_s(x,c) < \gamma + \frac{1}{2^i} + \frac{1}{2^k} \le \frac{1}{2^{j+k}} + \frac{1}{2^{k+1}} + \frac{1}{2^k} \le \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} + \frac{1}{2^k} = \frac{1}{2^{k-1}}.$$

Which concludes $B_s\left(x, \frac{1}{2^{i+k}}\right) \cap B_s\left(c, \frac{1}{2^i}\right) = \emptyset$ and this implies $B_s\left(x, \frac{1}{2^{i+k}}\right) \cap \mathcal{V}_{m,i} = \emptyset$ for $i \ge j + k$ and $m \in M$ with $B_s\left(x, \frac{1}{2^{k-1}}\right) \subset \mathcal{V}_{t,j}$. Since \mathcal{V} is a refinement of $\{\mathcal{U}_m : m \in M\}$, so for each $x \in X$, there exists l, j and t such that $B_s\left(x, \frac{1}{2^t}\right) \subset \mathcal{V}_{t,j}$ and thus, there exists k, j and t such that $B_s\left(x, \frac{1}{2^{k-1}}\right) \subset \mathcal{V}_{t,j}$. Then the ball $B_s\left(x, \frac{1}{2^{i+k}}\right)$ meets at most (j + k - 1) members of \mathcal{V} . This proves that \mathcal{V}_i is locally finite, that is \mathcal{V} is σ -locally finite.

Corollary 2.2. Let is (X, d_s) a strong φ -metric space. Then X has σ -discrete base.

Proof. For every $i \in \mathbb{N}$, let $\mathcal{A}_i = \{B_s(x, \frac{1}{i}) : x \in X\}$. Then \mathcal{A}_i is an open cover of *X*. By Theorem 2.1, there exists an open σ -discrete refinement \mathcal{B}_i of \mathcal{A}_i . Put $\mathcal{B} = \bigcup_{i \in \mathbb{N}} \mathcal{B}_i$. Then \mathcal{B} is a σ -discrete base of *X*.

Corollary 2.3. Every strong φ -metric space is metrizable.

Proof. From the proven theorem, a strong φ -metric space is a normal space [1], and Corollary 2.3. it follows that *X* is regular space with a σ -discrete base. Then from Bing Metrization Theorem (Theorem 1.5.), *X* is metrizable.

3. Conclusion

The main conclusion of this paper is the fact that a strong φ -metric space is metrizable.

References

- S. Çeno, and Dh. Valera, "Introduction to Strong Φ-Metric and Some Basic Properties," 4th International Conference on Engineering, Natural and Social Science, Konya, Turkey, 2024.
- [2] Ryszard Engelking, General Topology, Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, 1989. [Publisher Link]
- [3] Frank Siwiec, "On Defining a Space by a Weak-Base," *Pacific Journal of Mathematics*, vol. 52, pp. 233-245, 1974. [CrossRef] [Google Scholar] [Publisher Link]
- [4] S.P. Franklin, "Spaces in which Sequences Suffice," Fundamenta Mathematicae, vol. 57, pp. 107-115, 1965. [Google Scholar]
- [5] R.H. Bing, "Metrization of Topological Spaces," *Canadian Journal of Mathematics*, vol. 3, pp. 175-186, 1951. [CrossRef] [Google Scholar] [Publisher Link]
- [6] Mehmet Kir, and Hükmi Kiziltunc, "On Some Well-Known Fixed Point Theorems in B-Metric Spaces," *Turkish Journal of Analysis and Number Theory*, vol. 1, no. 1, pp. 13-16, 2013. [CrossRef] [Google Scholar] [Publisher Link]