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Abstract -  In this paper, the theory of Qm -normal families of meromorphic functions of one complex variable is promoted to 

bicomplex meromorphic functions. To study the properties of Qm -normal families in the bicomplex case, we have extended the 

definition of Cm -point and Cm -sequences from one complex variable to the bicomplex case and obtained its important results. 

Many results of Qm -normal families of one complex variable case are seen to hold in the bicomplex case. Moreover, the necessary 

and sufficient condition for Qm -normality in the bicomplex case is obtained. 

Keywords - Bicomplex numbers, Bi-complex meromorphic functions, Normal families, Qm -normal families, Cm -point and Cm-

sequences.   

1. Introduction   
The foundation of bicomplex analysis can be traced back to the pioneering work of William Kingdon Clifford [17] in the 

late 19th century, who introduced the concept of bicomplex numbers as an extension of complex numbers. Clifford's 

contributions laid the groundwork for further developments in this field. In the early 20th century, the field witnessed significant 

advancements with the seminal works of Georg Frobenius [18] and Elie Cartan, who made notable contributions to the theory of 

bicomplex numbers and their algebraic properties. In the latter half of the 20th century, J.D. Riley made significant contributions 

to bicomplex analysis, particularly through his work titled “Contributions to the Theory of Functions of a Bicomplex Variable”.  

The dawn of the 21st century witnessed renewed interest in bicomplex analysis, with researchers such as K.S. Charak, D. Rochan 

and Narinder Sharma [7,8,11] delving into the study of normal families of bicomplex holomorphic and meromorphic functions. 

Their work, along with contributions from others in the field, has led to significant advancements in understanding the geometric, 

analytic and computational aspects of these families. Today, the exploration of Qm-normal families continues to be a vibrant area 

of research, with scholars building upon the foundational works of their predecessors to unravel the intricacies of bicomplex 

analysis and its applications in various domains. Through collaborative efforts and interdisciplinary approaches, researchers aim 

to further expand the frontiers of knowledge in this fascinating field.  

In recent years, the exploration of Qm -normal families of bicomplex meromorphic functions has emerged as a captivating 

frontier within the domain of bicomplex analysis. Building upon foundational works by prominent researchers such as Riley, 

Charak, Sharma, and others, significant strides have been made in unraveling the intricate properties and behaviors inherent to 

these families.Today, the exploration of Qm-normal families continues to be a vibrant area of research, with scholars building 

upon the foundational works of their predecessors to unravel the intricacies of bicomplex analysis and its applications in various 

domains. Through collaborative efforts and interdisciplinary approaches, researchers aim to further expand the frontiers of 

knowledge in this fascinating field. In recent years, the exploration of Qm -normal families of bicomplex meromorphic functions 

has emerged as a captivating frontier within the domain of bicomplex analysis. Building upon foundational works by prominent 

researchers such as Riley, Charak, Sharma, and others, significant strides have been made in unraveling the intricate properties 

and behaviors inherent to these families. The seminal contributions of Riley, dating back to the early 2000s, laid the groundwork 

for understanding the fundamental characteristics of bicomplex meromorphic functions and their relevance within the framework 

of Qm-normal families. Subsequent research endeavors by K. S Charak and Narinder Sharma, among others, have further 

deepened the understanding, shedding light on the geometric and analytic aspects of these families.  Through their collective 

efforts, researchers have illuminated the rich interplay between bicomplex analysis and the theory of Qm-normal families, offering 

valuable insights into the geometric, analytic, and computational facets of this intriguing area of study. As we embark on this 

journey of exploration, we stand poised to unearth new vistas of knowledge and innovation guided by the pioneering works of 

these esteemed scholars. The exploration of bicomplex analysis, spanning from the theory of bicomplex numbers to the study of 
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Qm -normal families, has been a journey marked by significant contributions from various researchers across different periods. 

The concept of Qm-normal families [4] arises from the desire to understand the behavior of functions in the bicomplex plane that 

possess distinctive normalization properties. Qm -normality extends the classical notion of normality, introducing a more nuanced 

criterion for the convergence of certain families of functions. This extension becomes particularly intriguing when applied to 

bicomplex analysis, where the interplay of real and imaginary components introduces complexities that diverge from the 

traditional complex setting.   

Moreover, the study of Qm-normality contributes to the broader understanding of function theory in the bicomplex domain, 

shedding light on the behavior of functions that transcend the classical confines of complex analysis.-normal families in the 

bicomplex setting lie in their potential applications in various branches of mathematics and physics. These families provide a 

versatile framework for modeling phenomena that involve multiple variables and complex interactions. In this study, we explore 

the details of Qm-normal families [4] in the context of the bicomplex plane. Our objectives are to research the basic characteristics 

of these families, as well as their possible applications and linkages with other classes of functions. By undertaking this study, 

we seek to advance the understanding of function theory in bicomplex analysis and contribute valuable insights to the broader 

mathematical community. 

2. Preliminaries  
Here, we introduce some of the basic definitions and results of the theory of bicomplex numbers, which are required for 

defining new definitions and results. Corrado Segre, in 1892, while studying special algebras, published a paper [14] in which 

he carried his research on an infinite family of algebra whose elements are called bicomplex numbers, tricomplex numbers,….. 

n-complex numbers. Bicomplex numbers, also known as tetra-numbers, are defined as follows: 

𝕋 =  {𝑧1 + 𝑧2𝑖2: 𝑧1, 𝑧2 ∈ 𝐶(𝑖1)}, where the imaginary units 𝑖1, 𝑖2 and 𝑗are governed by the rules: 

𝑖1
2 = 𝑖2

2 = −1, 𝑗2 = 1   and   𝑖1𝑖2 = 𝑖2𝑖1 = 𝑗,  𝑖1𝑗 = 𝑗𝑖1 = −𝑖2, 𝑖2𝑗 = 𝑗𝑖2 = −𝑖  
Thus, one can easily see that multiplication of two bicomplex numbers is commutative. In fact, bicomplex numbers have a unique 

character that forms commutative algebra but not division algebra. It is convenient to write the set of bicomplex numbers as 𝕋 =  
{𝑥0 + 𝑥1𝑖1 + 𝑥2𝑖2 + 𝑥3𝑗: 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ ℝ}. It is also important to know that every bicomplex number has the following unique 

idempotent representation: 

𝑧1 + 𝑧2𝑖2 = (𝑧1 − 𝑧2𝑖1)𝑒1 + (𝑧1 + 𝑧2𝑖1)𝑒2 

Where 𝑒1 =
(1+𝑗)

2
 and 𝑒2 =

(1−𝑗)

2
. This idempotent representation of bicomplex numbers is very useful because addition, 

multiplication, and division can be done term-by-term. The operation addition on 𝕋 can be defined by the function ⊕: 𝕋 × 𝕋 → 

𝕋 as: 

(𝑥0 + 𝑥1𝑖1 + 𝑥2𝑖2 + 𝑥3𝑗, 𝑦0 + 𝑦1𝑖1 + 𝑦2𝑖2 + 𝑦3𝑗) = (𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑖1 + (𝑥2 + 𝑦2)𝑖2 + (𝑥3 + 𝑦3)𝑗 

The operation scalar multiplication on 𝕋 is defined by the function ⨀: ℝ × 𝕋 → 𝕋 as: 

(𝑎, 𝑥0 + 𝑥1𝑖1 + 𝑥2𝑖2 + 𝑥3𝑗) = (𝑎𝑥0 + 𝑎𝑥1𝑖1 + 𝑎𝑥2𝑖2 + 𝑎𝑥3𝑗). Thus, the structure (𝕋, ⊕, ⨀) forms a linear space. Therefore, 

the norm on 𝕋 is defined by the function || ||: 𝕋→ℝ≥0 as      ||𝑥0 + 𝑥1𝑖1 + 𝑥2𝑖2 + 𝑥3𝑗|| = (𝑥0
2 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2)
1

2. 

Thus, the structure (𝕋, ⊕, ⨀, || · ||) forms a normed linear space. 

2.1. Conjugation Operations in 𝕋  
The concept of complex conjugation plays a pivotal role in both the algebraic and geometric aspects of 𝐶 complex functions 

as well as in the analysis of them. Conjugation operations in the bicomplex plane provide essential tools for analyzing and 

understanding the structure and behavior of bicomplex holomorphic functions, extending many classical concepts from complex 

analysis to the more intricate bicomplex setting. In the context of bicomplex numbers, there exist three conjugation operations, 

each playing a crucial role in understanding the properties and behaviors of bicomplex holomorphic functions. It's not surprising 

that there exist three distinct conjugations in 𝕋. The three types of conjugations on 𝕋 are defined as follows: 

2.1.1. Complex Conjugation 

For a bicomplex number 𝑤 = 𝑧1 + 𝑗𝑧2, where 𝑧1 = 𝑥1 + 𝑦𝑖and 𝑧2 = 𝑢1 + 𝑣𝑖 with 𝑖2 = −1, the complex conjugate is 

defined as  

   𝑤•
1 = �̄�1 + 𝑖2�̄�2 = (𝑥 − 𝑦𝑖) + 𝑖2(𝑢 − 𝑣𝑖). 

This operation is performed by taking the complex conjugate of each component 𝑧1 and 𝑧2 
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2.1.2. Bicomplex Conjugation 

Another important conjugation operation in the bicomplex context is the bicomplex conjugate.  

𝑤 = 𝑧1 + 𝑖2𝑧2 it is defined as: 𝑤 ∗= 𝑧1 − 𝑖2𝑧2 

This conjugation changes the sign of the 𝑖2-component. 

2.1.3. Mixed Conjugation 

Combining both the complex and bicomplex conjugations, we get the mixed conjugate: 

𝑤⊕ = �̄�1 − 𝑗�̄�2 = (𝑥 − 𝑦𝑖) − 𝑖2(𝑢 − 𝑣𝑖). 

This operation involves taking the complex conjugate of each component and changing the sign of the 𝑖2-component. 

2.2. Cartesian Set and Discuss in 𝕋 

2.2.1. Definition  
The Cartesian set X determined by 𝑋1 and𝑋2, which are subsets of𝐶(𝑖1), is defined as follows: 

𝑋1 ×𝑒 𝑋2 = {𝑤 = 𝑧1 + 𝑧2𝑖2 ∈ 𝑇: 𝑃1(𝑤) ∈ 𝑋1, 𝑃2(𝑤) ∈ 𝑋2},Where 𝑃1 and 𝑃2 are the projections on  𝑋 . 

It can be easily seen that if 𝑋1 and 𝑋2are domains in𝐶(𝑖1), then 𝑋1 ×𝑒 𝑋2it is also a domain in 𝕋.  Then a way to construct 

some "discus" (of center 0) in   is to take 𝕋 -Cartesian product of two discs (of center 0) in𝐶(𝑖1). Let r, r1, r2 denote the real 

numbers such that r>0, r1>0$ and r2 >0. Also, let 𝐴1 = {𝑧1 − 𝑧2𝑖1 ∈ 𝑇: 𝑧1, 𝑧2 ∈ 𝐶(𝑖1) }and  𝐴2 = {𝑧1 + 𝑧2𝑖1 ∈ 𝑇: 𝑧1, 𝑧2 ∈ 𝐶(𝑖1) 
}. Then, the open discussion with the Centre  

𝑎 = 𝑎1 + 𝑎2𝑖1 + 𝑎3𝑖2 + 𝑎4𝑖1𝑖2 = 𝛼 + 𝑖2𝛽  of radius 𝑟1  and 𝑟2  is defined as follows [1]: 

 𝐷(𝑎; 𝑟1, 𝑟2) = 𝐵1(𝛼 − 𝑖1𝛽, 𝑟1) ×𝑒 𝐵
1(𝛼 + 𝑖1𝛽, 𝑟2)= {𝑤1𝑒1 + 𝑤2𝑒2: |𝑤1 − (𝛼 − 𝑖𝛽)| < 𝑟1, |𝑤2 − (𝛼 + 𝑖𝛽)| < 𝑟2}. 

Theorem 2.2.2:   Every 𝑧1 + 𝑧2𝑖2 ∈ 𝕋   is uniquely represented as   𝑧1 + 𝑧2𝑖2 = 𝑃1(𝑧1 + 𝑧2𝑖2)𝑒1 + 𝑃2(𝑧1 + 𝑧2𝑖2)𝑒2 

Proof:     Let Z = 𝑧1 + 𝑧2𝑖2 be any bicomplex number. We want to show that  

Z =𝑃1(𝑍)𝑒1 + 𝑃2(𝑍)𝑒2, where 𝑃1(𝑍) = 𝑧1 + 𝑧2𝑖1 and 𝑃2(𝑍) = 𝑧1 − 𝑧2𝑖1. 

  We know that every bicomplex number can be expressed as:  

   Z = z₁ + z₂i₂ = (z₁ - z₂i₁)e₁ + (z₁ + z₂i₁)e₂ , where e₁ = (1 + i₂i₁)/2 and e₂ = (1 - i₂i₁)/2. 

  Therefore, from (1.2), we have Z = z₁ + z₂i₂ = (z₁ - z₂i₁)e₁ + (z₁ + z₂i₁)e₂. 

Let P₁, P₂ : ℝ → ℂ(i₁) be the two projections such that: P₁(Z) = z₁ + z₂i₁ and P₂(Z) = z₁ - z₂i₁ 

Using the above projections and idempotent basis, Z can be written as Z = P₁(Z)e₁ + P₂(Z)e₂ 

Therefore, P₁(Z)e₁ + P₂(Z)e₂ = (z₁ + z₂i₁)(1 + i₂i₁)/2 + (z₁ - z₂i₁)(1 - i₂i₁)/2 

                                → P₁(Z)e₁ + P₂(Z)e₂ = 1/2[(z₁ + z₂i₁)(1 + i₂i₁) + (z₁ - z₂i₁)(1 - i₂i₁)] 

                                  →P₁(Z)e₁ + P₂(Z)e₂ = 1/2[z₁(1 + i₂i₁) + z₂i₁(1 + i₂i₁) + z₁(1 - i₂i₁) - z₂i₁(1 - i₂i₁)] 

Combining like terms and using i₁² = 1 and i₂i₁ = -i₁i₂, we get: 

P₁(Z)e₁ + P₂(Z)e₂ = 1/2[2z₁ + z₂i₁ + z₂i₁i₂i₁ - z₂i₁ + z₂i₁i₂i₁] 

On further simplification, we get:     P₁(Z)e₁ + P₂(Z)e₂ = 1/2[2z₁ + 2z₂i₂]. Since i₁i₂i₁ = -i₂, therefore  

P₁(Z)e₁ + P₂(Z)e₂ = z₁ + z₂i₂ 

Thus, we have shown that every bicomplex number Z = z₁ + z₂i₂ can be uniquely expressed as: 

Z = P₁(Z)e₁ + P₂(Z)e₂, where P₁(Z) = z₁ + z₂i₁ and P₂(Z) = z₁ - z₂i₁. 

This representation of bicomplex numbers is advantageous because it allows for straightforward addition, multiplication, 

and division term-by-term. Furthermore, it aids in understanding the structure of functions of a bicomplex variable, as we will 

explore in the next section. 
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2.3. Basic definition and properties of bicomplex meromorphic functions 

It is generally known[15] that in the complex plane, a function 𝑓 is meromorphic in an open set  𝑈  if and only if 𝑓 it is a 

quotient 𝑔/ℎ of two functions that are holomorphic in 𝑈  where ℎ it is not identically zero in any component of U. This 

formulation serves as the foundation for how a bicomplex meromorphic function is defined. Based on this definition, K.S Charak 

et al; defined a bicomplex meromorphic function as follows. 

Definition 2.3.1:  [11]   If a function 𝑓 is a quotient of two functions 𝑔/ℎ that are bicomplex holomorphic in 𝛺 and ℎ is not 

identically in the null-cone in any component of 𝛺,    then 𝑓 is said to be a bicomplex meromorphic in the open set  𝛺 ⊂ 𝕋. 

Theorem 2.3.2:  [11]  Let 𝑓: 𝛺 ⊆𝕋 →𝕋 be a bicomplex meromorphic function on the open set   𝛺 ⊂ 𝕋. Then there exist 

meromorphic functions  𝑓𝑒1: 𝛺1 → 𝐶(𝑖1) and 𝑓𝑒2: 𝛺2 →ℂ(𝑖1)  with 𝛺1 = 𝑃1(𝛺)  and 𝛺2 = 𝑃2(𝛺), such that   𝑓(𝑧1 + 𝑧2𝑖2) 

=𝑓𝑒1(𝑧1 − 𝑧2𝑖1)𝑒1 +𝑓𝑒2(𝑧1 + 𝑧2𝑖1)𝑒2  ∀𝑧1 + 𝑧2𝑖2 ∈ 𝛺  

Based on the above definition of  bicomplex  meromorphic function, we extend algebraic properties to bicomplex meromorphic 

functions as follows: 

Theorem 2.3.3:   If 𝑓1, 𝑓2: 𝛺 → 𝕋 be two bicomplex meromorphic functions on the open set  𝛺 . Then 𝑓1 + 𝑓2: 𝛺 → 𝕋 be a 

bicomplex meromorphic function on the open set𝛺. 

Proof : Since 𝑓1 and 𝑓2 are bicomplex meromorphic functions. Therefore, by definition of bicomplex meromorphic 𝑓1 and 𝑓2  

can be written as 

𝑓1(𝑧1 + 𝑧2𝑖2)=𝑓𝑒1
1 (𝑧1 − 𝑧2𝑖1)𝑒1+ 𝑓𝑒2

1 (𝑧1 + 𝑧2𝑖1)𝑒2 ∀𝑧1 + 𝑧2𝑖2 ∈ 𝛺. . . . . . . (1) 

𝑓2(𝑧1 + 𝑧2𝑖2)=𝑓𝑒1
2(𝑧1 − 𝑧2𝑖1)𝑒1+𝑓𝑒2

2 (𝑧1 + 𝑧2𝑖1)𝑒2 ∀𝑧1 + 𝑧2𝑖2 ∈ 𝛺. . . . . . (2) 

Now, let’s define the sum of these two bicomplex meromorphic functions as 

𝑓𝑒2(𝑧1 − 𝑧2𝑖1)𝑒2 

𝑓(𝑧1 + 𝑧2𝑖2) = 𝑓1(𝑧1 + 𝑧2𝑖2) + 𝑓2(𝑧1 + 𝑧2𝑖2) 

                        =  𝑓𝑒1
1 (𝑧1 − 𝑧2𝑖1)𝑒1+ 𝑓𝑒2

1 (𝑧1 + 𝑧2𝑖1)𝑒2+𝑓𝑒1
2(𝑧1 − 𝑧2𝑖1)𝑒1+ 𝑓𝑒2

2 (𝑧1 + 𝑧2𝑖1)𝑒2                                                         

                        =   [𝑓𝑒1
1 (𝑧1 − 𝑧2𝑖1) + 𝑓𝑒1

2(𝑧1 − 𝑧2𝑖1)]𝑒1 + [𝑓𝑒2
1 (𝑧1 + 𝑧2𝑖1) + 𝑓𝑒2

2 (𝑧1 + 𝑧2𝑖1)]𝑒2  

                        =  𝑓𝑒2(𝑧1 − 𝑧2𝑖1)𝑒2 [because the sum of two meromorphic functions is a meromorphic function] 

Therefore,   𝑓(𝑧1 + 𝑧2𝑖2)= 𝑓𝑒2(𝑧1 − 𝑧2𝑖1)𝑒2 is a bicomplex meromorphic function, where 𝑓𝑒𝑖  is meromorphic in  𝛺𝑖 for I = 1, 2. 

Theorem 2.3.4:    If 𝑓1, 𝑓2: 𝛺 → 𝕋 be two bicomplex meromorphic functions on the open set  𝛺 . Then 𝑓1. 𝑓2: 𝛺 →   be a 

bicomplex meromorphic function on the open set 𝛺. 

Proof. Since 𝑓1 and 𝑓2 are bicomplex meromorphic functions on the open set𝛺. Therefore, by Theorem 2.2.2, there exist 

meromorphic functions  𝑓𝑒1: 𝛺1 → 𝐶(𝑖1) and 𝑓𝑒2: 𝛺2 → 𝐶(𝑖1) with 𝛺1 = 𝑃1(𝛺) and 𝛺2 = 𝑃2(𝛺), such that 

                                          𝑓(𝑧1 + 𝑧2𝑖2)=𝑓𝑒1(𝑧1 − 𝑧2𝑖1)𝑒1+𝑓𝑒2(𝑧1 + 𝑧2𝑖1)𝑒2∀𝑧1 + 𝑧2𝑖2 ∈ 𝛺  

                                        𝑓1(𝑧1 + 𝑧2𝑖2) = 𝑓𝑒1
1 (𝑧1 − 𝑧2𝑖1)𝑒1+𝑓𝑒2

1 (𝑧1 + 𝑧2𝑖1)𝑒2 ∀𝑧1 + 𝑧2𝑖2 ∈ 𝛺 

                                       𝑓2(𝑧1 + 𝑧2𝑖2) = 𝑓𝑒1
2(𝑧1 − 𝑧2𝑖1)𝑒1+ 𝑓𝑒2

2 (𝑧1 + 𝑧2𝑖1)𝑒2 ∀𝑧1 + 𝑧2𝑖2 ∈ 𝛺 

To show that the product of two bicomplex meromorphic functions is a bicomplex meromorphic. Let’s define the product 

of these two bicomplex meromorphic functions as 

                                       𝑓(𝑧1 + 𝑧2𝑖2)= 𝑓1(𝑧1 + 𝑧2𝑖2). 𝑓
2(𝑧1 + 𝑧2𝑖2) 

From (1) and (2), we have 

𝑓(𝑧1 + 𝑧2𝑖2)  =  𝑓𝑒2
2 (𝑧1 + 𝑧2𝑖1)𝑒2] 

                  = [(𝑓𝑒2
1 (𝑧1 + 𝑧2𝑖1)). (𝑓𝑒2

2 (𝑧1 − 𝑧2𝑖1)]𝑒2 

                  = [(𝑓𝑒2
1 (𝑧1 + 𝑧2𝑖1)). (𝑓𝑒2

2 (𝑧1 − 𝑧2𝑖1)]𝑒2 

                  = 𝑓𝑒2(𝑧1 + 𝑧2𝑖1)𝑒2 [product of two meromorphic functions is a meromorphic function]              

where𝑓𝑒𝑖  is meromorphic in  𝛺𝑖 for i = 1, 2. 
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Theorem 2.3.5 :  If 𝑓: 𝛺 ⊆𝕋 →𝕋   be a bicomplex meromorphic function on the open set 𝛺 and c  be any complex number. 

Then 𝑐. 𝑓is also a bicomplex meromorphic function. 

Proof. Since   𝑓: 𝛺 ⊆𝕋 →𝕋 be a bicomplex meromorphic function on the open set 𝛺. Then   𝑓is a quotient 
𝑔(𝑤)

ℎ(𝑤)
of two 

bicomplex holomorphic functions, we need to show that 𝑐. 𝑓(𝑤) can be expressed in this form as well. For this, assume that  

𝑓(𝑤) =
𝑔(𝑤)

ℎ(𝑤)
where 𝑔(𝑤) and  ℎ(𝑤)are bicomplex holomorphic functions in  𝛺  and ℎ(𝑤) is not identically zero in any 

component of  𝛺  where 𝑧1 + 𝑧2𝑖2 ∈ 𝛺. Therefore, from Theorem 2.1.2, there exist holomorphic functions  

 𝑓𝑒1 : 𝛺1 → 𝐶(𝑖1) and𝑓𝑒2: 𝛺2 → 𝐶(𝑖1) with 𝛺1 = 𝑃1(𝛺) and 𝛺2 = 𝑃2(𝛺), such that 

𝑓(𝑧1 + 𝑧2𝑖2)=𝑓𝑒1(𝑧1 − 𝑧2𝑖1)𝑒1+𝑓𝑒2(𝑧1 + 𝑧2𝑖1)𝑒2∀𝒛𝟏 + 𝒛𝟐𝒊𝟐 ∈ 𝜴 

To show that 𝑐. 𝑓(𝑤) it is a bicomplex meromorphic function, define a new functions 𝐺(𝑤) = 𝑐. 𝑔(𝑤) and  

𝐻(𝑤) = ℎ(𝑤). Then 𝐺(𝑤)and 𝐻(𝑤) are bicomplex holomorphic functions. Therefore, 𝐺(𝑤)and 𝐻(𝑤) can be written as 
𝐺(𝑤) 𝐺(𝑧1 + 𝑧2𝑖2) = 𝐺𝑒1(𝑧1 − 𝑧2𝑖1)𝑒1 + 𝐺𝑒2(𝑧1 + 𝑧2𝑖1)𝑒2(3)

𝐻(𝑤) 𝐻(𝑧1 + 𝑧2𝑖2) = 𝐻𝑒1
(𝑧1 − 𝑧2𝑖1)𝑒1 + 𝐻𝑒2

(𝑧1 + 𝑧2𝑖1)𝑒2(4)
 

From (1) and (2), we have 

𝑓(𝑤) =
𝐺(𝑤)

𝐻(𝑤)
 =

𝐺𝑒1(𝑧1−𝑧2𝑖1)𝑒1+𝐺𝑒2(𝑧1+𝑧2𝑖1)𝑒2

𝐻𝑒1(𝑧1−𝑧2𝑖1)𝑒1+𝐻𝑒2(𝑧1+𝑧2𝑖1)𝑒2
 

                                                                                =    
𝐺𝑒1(𝑧1−𝑧2𝑖1)

𝐻𝑒1(𝑧1−𝑧2𝑖1)
𝑒1 +

𝐺𝑒2(𝑧1+𝑧2𝑖1)

𝐻𝑒2(𝑧1+𝑧2𝑖1)
 

                                                                                =     𝐹𝑒1(𝑧1 − 𝑧2𝑖1)𝑒1 + 𝐹𝑒2(𝑧1 + 𝑧2𝑖1)𝑒2 

  where 𝐹𝑒𝑖  is meromorphic in 𝛺𝑖 for i = 1, 2. 

Hence, scalar multiplication of bicomplex meromorphic function is bicomplex meromorphic. 

3. Bicomplex 𝑸𝒎- Normal Families 
In [4] 𝑄𝑚- Normal families of one complex variable of finite order is developed in detail. We intend to develop the theory 

for bicomplex variables. The theory of bicomplex functions is currently a topic of interest, as it is closely related to Clifford 

algebras and multicomplex analysis, making it a significant area of study in recent research. In [6], Riley first talked about the 

bicomplex functions. Later, we find a monograph by G.B. Price [1], and recently, a monography [16] has been written by Leuna 

et al. In [8], K.S. Charak and N. sharma have defined bicomplex normal families. For developing bicomplex normal families, 

they have constructed the bicomplex extended plane�̂�. In this paper, we shall define Bicomplex 𝑄𝑚-Normal families and 

investigate its properties. 

Definition 3.1:  Let 𝑆 = {𝑓𝑛}be a sequence of bicomlex meromorphic functions defined in a domain 𝛺. A point 𝑍0 of 𝛺 is 

called a 𝐶0-point of 𝑆 if there exists a discus 𝐷(𝑍0, 𝑟1, 𝑟2) ={||𝑍 − 𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺 such that the sequence 𝑆 is 

uniformly spherically convergent in𝐷(𝑍0, 𝑟1, 𝑟2). 𝑆 is said to be a 𝐶0-sequence in 𝛺  if∀𝑍0 ∈ 𝛺, 𝑆 is a 𝐶0-sequence. 

To understand the definition, let us consider the sequence of bicomplex meromorphic functions 𝑆 = {𝑓𝑛(𝑍)} defined in the 

domain  𝛺 ⊆ 𝕋   where each 𝑓𝑛(𝑍)is given by: 

𝑓𝑛(𝑍) =
1

𝑍1 − 𝑛
+

1

𝑍2 − 𝑛
, 𝑛 ∈ 𝑁 

Then for each𝑛 ∈ 𝑁,  𝑓𝑛(𝑍) has singularities at 𝑍1 = 𝑛 and𝑍2 = 𝑛 . However, as 𝑛 → ∞, the singularities move towards 

infinity, and 𝑓𝑛(𝑍) becomes meromorphic in 𝛺 for large enough 𝑛. Therefore, as𝑛 → ∞, the sequence 𝑆converges uniformly on 

compact subsets of𝛺. Since 𝑆 converges uniformly on compact subsets of 𝛺 as𝑛 → ∞, every point 𝑍0 ∈ 𝛺 can be considered a 

𝐶0-point of𝑆. Hence, 𝑆 it is a 𝐶0-sequence𝛺. This example illustrates the concept of a 𝐶0-point and a 𝐶0-sequence for a sequence 

of bicomplex meromorphic functions in the domain 𝛺 ⊆ 𝕋. 

Definition 3.2:  Let 𝑆 = {𝑓𝑛} be a sequence of bicomlex meromorphic functions in a domain𝛺. A point 𝑍0of  𝛺  is called a 𝐶1-

point of  𝑆 if ∃  a discus  𝐷(𝑍0, 𝑟1, 𝑟2) = {||𝑍 − 𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺  such that each point of  𝐷0(𝑍0, 𝑟1, 𝑟2)  = {0 <
||𝑍 − 𝑍0|| < 𝑟} is a 𝐶0-point of𝑆.  𝑆 is called a 𝐶1-Sequence   𝛺  if each point of  𝛺  is a 𝐶1-point of 𝑆. Suppose we denote by 𝐸 

the set of all non 𝐶0-points of 𝑆 in𝛺. Then 𝐸 = 𝜙 if  𝑆 is a 𝐶0-sequence and  𝐸𝛺
1=𝜙 if  𝑆 is a 𝐶1-Sequence. By generalizing this, 

we see that it is natural to have 𝐸𝛺
2=𝜙, 𝐸𝛺

3=𝜙 enhancing it we define. 
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Definition 3.3: Let 𝑆 = {𝑓𝑛} be a sequence of bicomlex meromorphic functions in a domain 𝛺 and 𝑍0 a point of𝛺. We say that  

𝑍0 is a 𝐶𝑚- point of 𝑆, 𝑚 ≥ 2 if  there  is a discus                     

𝐷(𝑍0, 𝑟1, 𝑟2) = {||𝑍 − 𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺  such that each point of  𝐷0(𝑍0, 𝑟1, 𝑟2)  = {0 < ||𝑍 − 𝑍0|| < 𝑟}  is a 𝐶𝑚−1-

point of𝑆. In this way, 𝐶𝑚-point of 𝑆 can be defined for each integer𝑚 ≥ 0. 

Example of 𝐶𝑚-point Let 𝑆 = {𝑓𝑛(𝑍)} be the sequence of bicomplex meromorphic functions defined in the domain           𝛺 =
{𝑍 ∈ 𝑇: |𝑍1| < 1, |𝑍2| < 1} where each 𝑓𝑛(𝑍) is given by: 

𝑓𝑛(𝑍) =
1

𝑍1 − 𝑛
+

1

𝑍2 − 𝑛
, 𝑛 ∈ 𝑁 

Now, let’s take a point𝑍0 = (1,1) ∈ 𝛺.  We want to show that 𝑍0 is a 𝐶𝑚-point of 𝑆for𝑍. Let 𝐷(𝑍0, 𝑟1, 𝑟2) be a bicomplex 

discus centered at 𝑍0with radii 𝑟1 = 𝑟2 = 1/2 , i.e. 𝐷(𝑍0, 1/2,1/2) = {𝑍 ∈ 𝑇: ||𝑍 − 𝑍0|| < 1/2}. We need to check that each 

point in the annulus  𝐷0(𝑍0, 𝑟1, 𝑟2) = {𝑍 ∈ 𝑇:0 < ||𝑍 − 𝑍0|| < 1/2} is a 𝐶𝑚−1-point 𝑆. For any𝑍 ∈ 𝐷0(𝑍0, 𝑟1, 𝑟2), let’s compute 

𝑓𝑛(𝑍) for some𝑛. For simplicity, let’s take𝑛 = 2.                                                                                                             𝑓2(𝑍) =
1

𝑍1-2
+

1

𝑍2-2
 

Since 𝑍 lies in 𝐷0(𝑍0, 𝑟1, 𝑟2)both |𝑍1-2| and |𝑍2-2| are greater than 1/2, ensuring that 𝑓2(𝑍)is well-defined and 

meromorphic in 𝐷0(𝑍0, 𝑟1, 𝑟2). Thus, 𝑍0 is a 𝐶1-point of 𝑆. Since 𝑍0is a 𝐶1-point of𝑆, by induction, it can be shown that𝑍0is a 

𝐶𝑚-point of for all𝑚 ≥ 2. This example illustrates the concept of a 𝐶𝑚-point of a sequence of bicomplex meromorphic 

functions, where the function behaves well in a neighborhood of the point, even if the point itself is singular. 

Definition 3.4: A sequence 𝑆 is said to be 𝐶𝑚-Sequence in 𝛺   if each point of  𝛺 is a 𝐶𝑚-point of𝑆. 

Theorem 3.5 :  Every 𝐶𝑚-sequence of bicomplex meromorphic function defined in a domain 𝛺 is 𝐶𝑚−1-sequence in 𝛺. But 

converse is not true. 

Proof: 𝐶𝑚-sequence implies 𝐶𝑚−1-sequence: Let 𝑆 be a 𝐶𝑚-sequence in 𝛺. Then by definition, for every point𝑍0 ∈ 𝛺, there 

exists a discus 𝐷(𝑍0, 𝑟1, 𝑟2) such that each point in 𝐷(𝑍0, 𝑟1, 𝑟2) is a 𝐶𝑚−1-point of 𝑆. Therefore, 𝑆 behaves well enough in a 

neighborhood of each point to have no singularities up to order 𝑚 − 1. Hence, 𝑆it is also a 𝐶𝑚−1-sequence in 𝛺.  

The converse of the theorem is not true. To prove that the converse is not necessarily true, let’s consider a specific 

example: 

Let 𝑆 = {𝑓𝑛(𝑍)}be the sequence of bicomplex meromorphic functions defined in the domain𝛺 ⊆ 𝐶2, where each 𝑓𝑛(𝑍) is given 

by: 

𝑓𝑛(𝑍) =
1

(𝑍1 − 𝑛)2
+

1

(𝑍2 − 𝑛)2
, 𝑛 ∈ 𝑁 

Then each 𝑓𝑛(𝑍)has singularities at 𝑍1 = 𝑛 and 𝑍2 = 𝑛. As 𝑛  increases, the singularities become stronger (second-order 

poles). Therefore, for each 𝑛,  there exists a discus 𝐷0(𝑍0, 𝑟1, 𝑟2) centered at (𝑛, 𝑛) such that 𝑆 behaves well enough to be a 𝐶1-

sequence. To prove that the sequence 𝑆 = {𝑓𝑛(𝑍)}does not become a 𝐶2-sequence𝑛 → ∞, we need to show that there exist points 

in 𝛺 where the functions in 𝑆 do not behave well enough to have no singularities up to order 2. For a sequence to be a 𝐶2-

sequence, every point in 𝛺 must be a 𝐶2-point of 𝑆. This means that there must exist a discus centered at each point 𝑍0 ∈ 𝛺 such 

that every point in the annulus 𝐷0(𝑍0, 𝑟1, 𝑟2)is a 𝐶1-point of 𝑆. Now, consider the behavior of  𝑆 as𝑛 → ∞.  The functions 𝑓𝑛(𝑍) 
have singularities at 𝑍1 = 𝑛 and𝑍2 = 𝑛, and as 𝑛   increases, the singularities become stronger (second-order poles). However 

𝑛 → ∞, the distance between the singularities and any fixed point in 𝛺 also tends to infinity. This means that for any fixed 

point𝑍0 ∈ 𝛺, no matter how large 𝑛 becomes, there will always be a neighborhood around𝑍0 that contains the singularities of 

𝑓𝑛(𝑍). Therefore, there does not exist a discus centered at 𝑍0  such that every point in the annulus 𝐷0(𝑍0, 𝑟1, 𝑟2) is a 𝐶1-point of𝑆. 

Consequently, 𝑆 does not become a 𝐶2-sequence as𝑛 → ∞. Generalizing in this way, we conclude that every 𝐶𝑚-sequence in a 

domain 𝛺 is 𝐶𝑚−1-sequence, but the converse is not true. 

The converse of the theorem is not true. To prove that the converse is not necessarily true, let’s consider a specific example: 

Let 𝑆 = {𝑓𝑛(𝑍)} be the sequence of bicomplex meromorphic functions defined in the domain 𝛺 ⊆ 𝐶2, where each 𝑓𝑛(𝑍) is 

given by: 
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𝑓𝑛(𝑍) =
1

(𝑍1 − 𝑛)2
+

1

(𝑍2 − 𝑛)2
, 𝑛 ∈ 𝑁 

Then, each 𝑓𝑛(𝑍) has singularities at𝑍1 = 𝑛 and 𝑍2 = 𝑛. As 𝑛 increases, the singularities become stronger (second-order 

poles). Therefore, for each 𝑛, there exists a discus 𝐷0(𝑍0, 𝑟1, 𝑟2) centered at (𝑛, 𝑛) such that 𝑆 behaves well enough to be a 𝐶1-

sequence. To prove that the sequence 𝑆 = {𝑓𝑛(𝑍)} does not become a 𝐶2-sequence𝑛 → ∞, we need to show that there exist points 

in 𝛺 where the functions  𝑆 do not behave well enough to have no singularities up to order2. For a sequence to be a 𝐶2-sequence, 

every point in 𝛺 must be a 𝐶2-point of 𝑆. This means that there must exist a discus centered at each point 𝑍0 ∈ 𝛺 such that every 

point in the annulus 𝐷0(𝑍0, 𝑟1, 𝑟2) is a 𝐶1-point of𝑆. Now, consider the behavior of 𝑆 as𝑛 → ∞. The functions 𝑓𝑛(𝑍) have 

singularities at 𝑍1 = 𝑛 and𝑍2 = 𝑛, and as 𝑛 increases, the singularities become stronger (second-order poles). However𝑛 → ∞, 

the distance between the singularities and any fixed point in 𝛺 also tends to infinity. This means that for any fixed point 𝑍0 ∈ 𝛺, 

no matter how large 𝑛 becomes, there will always be a neighborhood around 𝑍0that contains the singularities of𝑓𝑛(𝑍). Therefore, 

there does not exist a discus centered at 𝑍0 such that every point in the annulus 𝐷0(𝑍0, 𝑟1, 𝑟2) is a 𝐶1-point of𝑆. Consequently, 

𝑆does not become a 𝐶2-sequence as𝑛 → ∞. Generalizing in this way, we conclude that every 𝐶𝑚-sequence in a domain  𝛺 is 

𝐶𝑚−1-sequence, but the converse is not true. 

Lemma 3.6: If for some integers m≥ 2 , 𝑍0 is a 𝐶𝑚-point of𝑆, then 

(I) 𝑍0is a𝐶𝑚+1-point of 𝑆  

(II) there exists a discussion 𝐷(𝑍0, 𝑟1, 𝑟2) ={||𝑍 − 𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺 such that each point of which is a  

     𝐶𝑚-point of 𝑆. 

(III)  𝑍0is a 𝐶𝑚-point of every subsequence of 𝑆. 

Proof. Assume that  𝑍0 is a 𝐶𝑚-point of  𝑆 . Then, by definition of 𝐶𝑚-point, there exists a discus 𝐷(𝑍0, 𝑟1, 𝑟2) ={||𝑍 −
𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺 such that each point of 𝐷0(𝑍0, 𝑟1, 𝑟2) ={0 < ||𝑍 − 𝑍0|| < 𝑟} is a 𝐶1-point of𝑆. We have to 

prove that 𝑍0 is a 𝐶3-point of𝑆. Since 𝑍0 it is a 𝐶2-point of𝑆, there exists a disk 𝛥 ={||𝑍 − 𝑍0|| < 𝑟} ⊆ 𝛺 such that each point of 

𝛥0={0 < ||𝑍 − 𝑍0|| < 𝑟} is a 𝐶1-point of𝑆. Now, each 𝐶1-point is a 𝐶0-point by definition. 

Assume that the result is true for𝑚 = 𝑘, that is, if 𝑍0 is a 𝐶𝑘-point of𝑆, then 𝑍0 is a 𝐶𝑘+1-point of𝑆, there exists a disk such 

that each point is a 𝐶𝑘-point of 𝑆 and hence 𝑍0 is a 𝐶𝑘-point of every sub-sequence. 

Now, we have to prove the result for 𝑚 = 𝑘 + 1. For this, we have to prove that 𝑍0 is a 𝐶𝑘+2-point. 

By the assumption, 𝑍0 it is a 𝐶𝑘+1-point. Therefore, there exists a discus  

𝐷(𝑍0, 𝑟1, 𝑟2) ={||𝑍 − 𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺 such that each point of 𝐷0(𝑍0, 𝑟1, 𝑟2) ={0 < ||𝑍 − 𝑍0|| < 𝑟} is a 𝐶𝑘-point 

of 𝑆.Now, by the inductive hypothesis, each 𝐶𝑘-point is a 𝐶𝑘+1-point. Therefore, 𝑍0 is a 𝐶𝑘+2- point 

Proof of II Assume that 𝑍0 is a 𝐶𝑚-point of 𝑆. Then, by definition of 𝐶𝑚-point, there exists a discus 𝐷(𝑍0, 𝑟1, 𝑟2) ={||𝑍 −
𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺 such that each point of  𝐷0(𝑍0, 𝑟1, 𝑟2) ={0 < ||𝑍 − 𝑍0|| < 𝑟} is a 𝐶𝑚−1-point of𝑆. Now we want 

to show that each point of 𝐷0 is also a 𝐶𝑚-point of𝑆. For the sake of simplicity, let’s take this disk as𝐷1. Let 𝑍′ be a 𝐶𝑚−1-point 

of 𝐷1. Since 𝐷1 is a subset of𝐷. Therefore, 𝑍′ is also a point of𝐷, and thus, 𝑍′ is a 𝐶𝑚−1-point of𝑆. 

Since the above reasoning holds for any 𝑍′ in 𝐷1, and 𝐷1 is a subset of 𝐷, it is concluded that every point in 𝐷 is a 𝐶𝑚−1-point 

of 𝑆. Since each point of 𝐷 is already is a 𝐶𝑚−1-point of𝑆, we can use the same disk 𝐷 to show that every point in 𝐷 is also a 

𝐶𝑚-point of 𝑆. Thus we have shown that if  𝑍0 is a 𝐶𝑚-point of𝑆, then there exists a discus {|𝑍 − 𝑍0| < 𝑟} such that every point 

of this discus is also a 𝐶𝑚-point of𝑆. 

Proof  (III)   Assume that 𝑍0 is a 𝐶𝑚-point of 𝑆. Then by definition of 𝐶𝑚-point, there exists a discus 𝐷0(𝑍0, 𝑟1, 𝑟2) ={||𝑍 −
𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺 such that each point of 𝐷(𝑍0, 𝑟1, 𝑟2) ={0 < ||𝑍 − 𝑍0|| < 𝑟} is a 𝐶𝑚−1-point of𝑆. Now, consider 

any subsequence 𝑆′ of𝑆. We want to prove that 𝑍0 is a 𝐶𝑚-point of𝑆′. Since 𝑍0 is a 𝐶𝑚-point of𝑆. Therefore, there exists a disk 

such that every point of which is a 𝐶𝑚−1-point of𝑆. Thus the same disk works for the subsequence 𝑆′ as well. Clearly 𝑍0 is a 

𝐶𝑚−1-point of𝑆′.  Now, 𝑍0 is a 𝐶𝑚−1-point of𝑆′, by the definition of  𝐶𝑚-point, 𝑍0 is also a 𝐶𝑚-point 𝑆′. Since 𝑆′ is an arbitrary 

subsequence𝑆. Therefore, it holds for all subsequences of 𝑆. Thus we have proved that if 𝑍0 is a 𝐶𝑚-point of𝑆, then 𝑍0 is a 𝐶𝑚-

point of every subsequence of 𝑆. 

Lemma 3.7: For some integers m≥ 2 , if 𝑆 is a 𝐶𝑚-sequence in𝛺. Then 𝑆 is 𝐶𝑚+1 sequence in 𝛺 and every subsequence of 𝑆 is 

a 𝐶𝑚-sequence in𝛺. 
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Proof: Suppose 𝑆 is a 𝐶𝑚-sequence in𝛺. This means that for every 𝐶𝑚-point 𝑍0of 𝑆, there exists a discus  𝐷(𝑍0, 𝑟1, 𝑟2) ⊆ 𝛺 

such that each point of 𝐷(𝑍0, 𝑟1, 𝑟2) ={0 < ||𝑍 − 𝑍0|| < 𝑟} is a 𝐶𝑚−1-point of 𝑆 Now, let’s show that 𝑆 is a 𝐶𝑚+1-sequence in 𝛺. 

Let 𝑍0 be a 𝐶𝑚-point of 𝑆, and let 𝐷(𝑍0, 𝑟1, 𝑟2) be the corresponding discus as per the definition. Since each point of 𝐷0(𝑍0, 𝑟1, 𝑟2) 
is a 𝐶𝑚−1-point of 𝑆, by the induction hypothesis, 𝑆 is a 𝐶𝑚-sequence in 𝐷0(𝑍0, 𝑟1, 𝑟2). Now, consider the compact subset 

𝐷′(𝑍0, 𝑟1, 𝑟2) = 𝐷(𝑍0, 𝑟1, 𝑟2) ∪ 𝐷0(𝑍0, 𝑟1, 𝑟2) of 𝛺.  By the continuity of𝑆, 𝑆 is bounded on 𝐷′(𝑍0, 𝑟1, 𝑟2). Now, let’s consider an 

arbitrary compact subset 𝐾 of 𝛺. Since 𝐾 is compact, there exists a finite number of 𝐶𝑚-points of 𝑆 contained in𝐾. Let 

𝑍1, 𝑍2, … , 𝑍𝑛 be these 𝐶𝑚-points. For each 𝑍𝑖, we can find a corresponding disc 𝐷(𝑍𝑖 , 𝑟1𝑖 , 𝑟2𝑖) such that 𝑆 is a 𝐶𝑚-sequence in 

𝐷(𝑍𝑖 , 𝑟1𝑖 , 𝑟2𝑖). Now, consider the union of all these discs and 𝐾: 𝐷′ =∪𝑖=1
𝑛 𝐷(𝑍𝑖 , 𝑟1𝑖 , 𝑟2𝑖) ∪ 𝐾. This is a compact subset of 𝛺. 

Since 𝑆 is bounded on 𝐷′and 𝐾 ⊆ 𝐷′, 𝑆 is bounded on 𝐾. Hence, 𝑆 is a 𝐶𝑚+1-sequence in 𝛺. 

Now, to prove that every subsequence of 𝑆 is a 𝐶𝑚-sequence in 𝛺. Let 𝑆′ be a subsequence of𝑆. Since 𝑆′ is a subset of𝑆, it 

inherits the property of being a 𝐶𝑚-sequence in𝛺. 

Thus we have shown that if 𝑆 is a 𝐶𝑚-sequence in 𝛺, then 𝑆 is a 𝐶𝑚+1-sequence in 𝛺, and every subsequence of 𝑆 is also a 𝐶𝑚-

sequence in 𝛺. 

Definition 3.8:   A point 𝑍0 ∈ 𝛺 is said to be non-𝐶𝑚-point of 𝑆 if 𝑍0 is not 𝐶𝑚-point of𝑆. The set of all non-𝐶𝑚-points is 

denoted by 𝐸. 

𝑊𝑚- property: If 𝐸𝛺
𝑗
, j=0,1, ... m ≠ 𝜙, we say that the set 𝐸 has 𝑊𝑚- property w.r.t 𝛺. 

Theorem 3.9:  Let   𝑆 = {𝑓𝑛(𝑍)} be a sequence of bicomplex meromorphic functions in a domain𝛺. Let 𝑍0 ⊆ 𝛺. Then 𝑍0 is a 

non 𝐶𝑚-point of 𝑆 if and only if  𝑍0 ∈ 𝐸𝛺
𝑚 , where 𝐸 is the set of non  

𝐶0 -points of 𝑆 in 𝛺. 

Proof :  Let 𝐸 denote the set of non-𝐶0-points of 𝑆 in 𝛺. Then, 𝐸 contains all points where the functions in 𝑆 have singularities.  

To prove the theorem, we shall establish the equivalence between a point 𝑍0 being a non-𝐶𝑚-point of 𝑆 and 𝑍0 belonging 

to 𝐸𝛺
𝑚, where 𝐸 is the set of non-𝐶0-points of 𝑆 in 𝛺. 

For this, first assume that 𝑍0 is a non-𝐶𝑚-point of 𝑆. This means that there does not exist a discus 𝐷(𝑍0, 𝑟1, 𝑟2) such that 

every point in 𝐷0(𝑍0, 𝑟1, 𝑟2) is a 𝐶𝑚−1-point of 𝑆. Since 𝑍0 is not a 𝐶𝑚-point, it implies that 𝐸𝛺
𝑚 ≠ 𝜙, because there exists at 

least one point, namely 𝑍0, in 𝐸𝛺
𝑚. 

Conversely assume that 𝑍0 ∈ 𝐸𝛺
𝑚. we shall prove that 𝑍0 is a non-𝐶𝑚-point of 𝑆. Since 𝑍0 ∈ 𝐸𝛺

𝑚. This means that there 

exists a discus 𝐷0(𝑍0, 𝑟1, 𝑟2) such that every point in 𝐷0(𝑍0, 𝑟1, 𝑟2) is a non-𝐶𝑚−1-point of 𝑆. If 𝑍0 is a 𝐶𝑚-point, then every 

point in 𝐷0(𝑍0, 𝑟1, 𝑟2) would be a 𝐶𝑚−1-point by definition. Since this is not the case, 𝑍0 cannot be a 𝐶𝑚-point. Therefore, 𝑍0 is 

a non-𝐶𝑚-point of  𝑆. Which completes the proof of the theorem. 

Definition 3.10 :  Let 𝐹 be a family of bicomplex  meromorphic functions in a domain 𝛺 and  𝑚 ≥ 0 ∈ 𝑍,  we say that 𝐹 is 

𝑄𝑚- Normal family in 𝛺 if from every sequence of functions of the family 𝐹, we can extract a subsequence which is 𝐶𝑚-

sequence in 𝛺. That is 𝐹 is 𝑄𝑚- Normal at point 𝑍0 ∈ 𝛺 if there exists a discus 𝐷(𝑍0, 𝑟1, 𝑟2) ⊆ 𝛺 such that 𝐹 is 𝑄𝑚- Normal in 

𝐷(𝑍0, 𝑟1, 𝑟2). In particular, 𝑄0- Normal family is normal family and 𝑄1- Normal family is quasi-normal family in 𝛺.  

Theorem 3.11:  Let 𝐹 be a family of bicomplex meromorphic functions in a domain 𝛺 and 𝑚 ≥ 0 ∈ 𝑍 if 𝐹 is 𝑄𝑚- Normal at 

each point of 𝛺, then 𝐹 is 𝑄𝑚- Normal in 𝛺. 

Proof: First of all , we consider a sequence {𝑍𝑗}, j=1,2,3,....... in 𝛺 such that each point of 𝛺 is a limiting point of the sequence 

{𝑍𝑗}. Now by hypothesis  a discus𝐷(𝑍𝑗, 𝑟1𝑗 , 𝑟2𝑗) ⊆ 𝛺 such that 𝐹 is 𝑄𝑚-normal in 𝐷(𝑍𝑗, 𝑟1𝑗 , 𝑟2𝑗). Let 𝑅𝑗 be the least upper 

bound of the set of members {𝑟1𝑗 , 𝑟2𝑗} having this property. Define discuss𝐷𝑗 = 𝐷(𝑍𝑗 , 𝑅𝑗/2, 𝑅𝑗/2) for each 𝑍𝑗. If 𝑅𝑗 = ∞, then 

𝐷𝑗  covers 𝛺, otherwise, 𝐷𝑗  is contained in 𝛺 and the family is 𝑄𝑚. Normal in 𝐷𝑗 .Now let 𝑆1={𝑓𝑛(𝑧)}, n=1,2,.... be sequence of 

functions of the family 𝐹 from 𝑆 be just a subsequence 𝑆1 = 𝑓𝛼1(𝑧),𝑓𝛼2(𝑧), ......, which is a 𝐶𝑚 -sequence in 𝐷1. From 𝑆1 we can 

get a sequence𝑆𝑔 : 𝑓𝛽1(𝑧),𝑓𝛽2(𝑧), ......, which is a 𝐶𝑚 -sequence in 𝐷2. In this way we get successively a sequence𝑆𝑝, 𝑝 =

1,2,3, . .. such that for each 𝑝 ≥ 1, 𝑆𝑝is a 𝐶𝑚 -sequence in 𝐷𝑝 and 𝑆𝑝+1 is a subsequence of 𝑆𝑝. Consider the diagonal sequence  
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𝑆′=𝑓𝛼1(𝑧), 𝑓𝛽2(𝑧), 𝑓𝛾3(𝑧),.......𝑓𝜆𝑘(𝑧)....... Now 𝑆′ is a subsequence of {𝑓𝑛𝑘(𝑧)},( k=1,2,3,...) of 𝑆 since for each k the terms 

𝑓𝑛𝑘(𝑧), 𝑓𝑛𝑘+1(𝑧), .... all belongs the sequence {𝑆𝑘}. Hence 𝑆′ is a 𝐶𝑚-sequence in each of the 𝐷𝑗 , j=1,2,3,.... 

Consider the point 𝑍′ of 𝛺. Since each 𝐷𝑗  covers𝛺, there exists a discus 𝐷(𝑍′, 𝜌1, 𝜌2) contained in some 𝐷𝑗 . By 

construction, 𝐹 is 𝑄𝑚-normal in 𝐷(𝑍′, 𝜌1, 𝜌2). If 𝑅𝑗 < ∞, then 𝜌1 < 𝑅𝑗/2 and 𝜌2 < 𝑅𝑗/2 for some 𝑗. Hence, 𝐹 is 𝑄𝑚-normal in 

𝐷(𝑍′, 2𝜌1, 2𝜌2) ⊂ 𝐷𝑗. If 𝑅𝑗 < ∞, then since 𝜌1, 𝜌2 < 1, 𝐷(𝑍′, 𝜌1, 𝜌2) is contained in 𝐷𝑗 . Thus, 𝐹 is 𝑄𝑚-normal in 𝐷(𝑍′, 𝜌1, 𝜌2). 

Since 𝑍′ is arbitrary, 𝑆′ is a 𝐶𝑚-sequence in 𝛺. Hence, 𝐹 is 𝑄𝑚-normal in 𝛺 

Which completes the proof of the theorem. 

Lemma 3.12 : For an integer  𝑚 ≥ 0, If the family 𝐹 of bicomplex meromorphic functions defined in a domain 𝛺 is 𝑄𝑚- 

Normal in 𝛺, then 𝐹 is 𝑄𝑚+1- Normal in 𝛺. 

Proof:  We shall prove this result by the Principle of Mathematical Induction. First, we prove the base case when 𝑚 = 0. Suppose 

𝐹 is 𝑄0-normal in𝛺. By definition, this means that for every compact subset 𝐾of𝛺, there exists a constant 𝑀𝐾 such that for every 

𝑓 ∈ 𝐹, we have |𝑓(𝑧)| ≤ 𝑀𝐾 for all 𝑍 ∈ 𝐾. Now, let 𝐾 be a compact subset of 𝛺. Since 𝐹 is 𝑄0-normal, there exists 𝑀𝐾 such 

that |||𝑓(𝑍)||| ≤ 𝑀𝐾 for all 𝑓 ∈ 𝐹and 𝑍 ∈ 𝐾. Now, consider the set 𝑄1(𝐾) = {𝑍 ∈ 𝛺: |||𝑍||| ≤ 𝑀𝐾}. This set is compact since 

it is closed and bounded. Therefore, 𝐹 is 𝑄1-normal in 𝛺. Now, assume that for some integer 𝑚 ≥ 0, if 𝐹 is 𝑄𝑚-normal in 𝛺, 

then 𝐹 is 𝑄𝑚+1-normal in 𝛺. Now, let’s prove that if 𝐹 is 𝑄𝑚+1-normal in 𝛺, then 𝐹 is 𝑄𝑚+2-normal in 𝛺. Suppose 𝐹 is 𝑄𝑚+1-

normal in 𝛺. By definition, this means that for every compact subset 𝐾 of 𝛺, there exists a constant 𝑀𝐾 such that for every 𝑓 ∈
𝐹, we have ||𝑓(𝑍)||| ≤ 𝑀𝐾(1 + |𝑍|)𝑚+1 for all 𝑍 ∈ 𝐾. Now, let 𝐾 be a compact subset of  𝛺. Since 𝐹 is 𝑄𝑚+1-normal, there 

exists 𝑀𝐾 such that |||𝑓(𝑍)||| ≤ 𝑀𝐾(1 + |𝑍|)𝑚+1 for all 𝑓 ∈ 𝐹 and  𝑍 ∈ 𝐾. Now, consider the set𝑄𝑚+2(𝐾) = {𝑍 ∈ 𝛺: |𝑧| ≤
𝑀𝐾}. This set is compact since it is closed and bounded. Therefore, 𝐹 is 𝑄𝑚+2-normal in 𝛺. 

By induction, the result follows for all non-negative integers𝑚. Therefore, if 𝐹 is 𝑄𝑚-normal in𝛺, then 𝐹 is 𝑄𝑚+1-normal in 

𝛺. 

Theorem 3.13 : A family 𝐹 of bicomplex meromorphic functions defined on a domain 𝛺 ⊆ 𝑇 is 𝑄𝑚- normal with respect to the 

bicomplex chordal metric if and only if the family of meromorphic functions on 𝐹𝑒𝑖= 𝑃𝑖(𝐹) is 𝑄𝑚- normal in 𝑃𝑖(𝛺) for i=1,2 with 

respect to the chordal metric. 

Proof: Assume that 𝐹 is 𝑄𝑚- normal with respect to the bicomplex chordal metric on 𝛺. We want to show that 𝐹𝑒𝑖= 𝑃𝑖(𝐹) is 𝑄𝑚- 

normal in 𝑃𝑖(𝛺) for i=1,2. For this, let {(𝑓𝑛)1} be a sequence in 𝐹𝑒1= 𝑃1(𝐹). We want to show, without loss of generality that 

from the sequence of meromorphic functions {(𝑓𝑛)1, we can extract a subsequence which is 𝐶𝑚-sequence in𝑃1(𝛺). 

]Since 𝐹 is normal in 𝛺 , we can find a sequence {𝑓𝑛} in 𝐹 such that {𝑃1(𝑓𝑛)}={(𝑓𝑛)1}. Moreover for any 𝑧0 ∈ 𝑃1(𝛺), we can 

find a 𝑤0 ∈ 𝛺 such that 𝑃1(𝑤0) = 𝑧0. Now consider a closed discus �̄�(𝑤0, 𝑟, 𝑟) in 𝛺. 

By hypothesis, the sequence {𝑓𝑛} contains a subsequence {𝑓𝑛𝑘} which is 𝐶𝑚-sequence in �̄�(𝑤0, 𝑟, 𝑟). Thus there exists a closed 

ball �̄�(𝑧0, 𝑟) ⊆ 𝑃1(𝛺) such that {𝑃1(𝑓𝑛𝑘)}={(𝑓𝑛𝑘)1
} is a 𝐶𝑚-sequence in �̄�(𝑤0, 𝑟, 𝑟). 

Similarly, we can prove it for the sequence {(𝑓𝑛)2} in 𝐹𝑒2= 𝑃2(𝐹) 

Therefore, 𝐹𝑒𝑖= 𝑃𝑖(𝐹) is 𝑄𝑚- normal in 𝑃𝑖(𝛺) for i=1,2 with respect to the chordal metric. 

Conversely, assume that 𝐹𝑒𝑖= 𝑃𝑖(𝐹) is 𝑄𝑚-normal in 𝑃𝑖(𝛺) =𝛺𝑖 for i=1, 2  with respect to the chordal metric. we need to show 

that 𝐹 is 𝑄𝑚- normal in 𝛺 with respect to the bicomplex chordal metric. Let {𝑓𝑛} be any sequence in 𝐹 and 𝐾 be any compact 

subset of 𝛺. Then {𝑃1(𝑓𝑛)}={(𝑓𝑛)1} and {𝑃2(𝑓𝑛)}={(𝑓𝑛)2} are sequences in 𝐹𝑒1= 𝑃1(𝐹) and 𝐹𝑒2= 𝑃2(𝐹) respectively. Since 𝐹𝑒1= 

𝑃1(𝐹) is 𝑄𝑚- normal in 𝑃1(𝛺), {(𝑓𝑛)1} has a subsequence {(𝑓𝑛𝑘)1
} which is a 𝐶𝑚- sequence on compact subsets of 𝑃1(𝐾) =𝐾1. 

Similarly, for the sequence {𝑃2(𝑓𝑛)}={(𝑓𝑛)2} in  𝐹𝑒2= 𝑃2(𝐹) and by assumption that 𝐹𝑒2= 𝑃2(𝐹) is 𝑄𝑚- normal in 𝑃2(𝐾). 

Therefore, {(𝑓𝑛)2} has a subsequence {(𝑓𝑛𝑘)2
} which is a 𝐶0- sequence on compact subsets of 𝑃2(𝐾). This implies that 

{(𝑓𝑛𝑘)1
𝑒1+(𝑓𝑛𝑘)2

𝑒2} is a subsequence of {𝑓𝑛} which is a 𝐶𝑚-sequence in 𝑃1(𝐾) × 𝑃2(𝐾) ⊇ 𝐾. Thus 𝐹 is 𝑄𝑚- normal with respect 

to the bicomplex chordal metric. 

Definition 3.13 : Let 𝑆 = {𝑓𝑛}  be a sequence of bicomplex meromorphic functions in a domain 𝛺, and 𝑍0 a point of 𝛺. We say 

that 𝑍0 is a 𝜇1-point of 𝑆 if for each closed neighborhood 
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 �̄�(𝑍0, 𝑟1, 𝑟2) ={||𝑍 − 𝑍0|| ≤ 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)} ⊆ 𝛺, we have   ( )maxlim n
Z Dn +

Z, f =+
→ 

  ,  

𝑍0 is called a 𝜇2-point of 𝑆, if for each open discus 𝐷(𝑍0, 𝑟1, 𝑟2) ={||𝑍 − 𝑍0|| < 𝑟} ⊆ 𝛺, 𝑆 has a 𝜇1-point 𝑧′ in the domain {0 <
| |𝑍 − 𝑍0| | < 𝑟}. In general, 𝑚 ≥ 2, 𝑍0 is called a 𝜇𝑚-point of 𝑆, if for each domain  

𝐷(𝑍0, 𝑟1, 𝑟2) ={||𝑍 − 𝑍0|| < 𝑟} ⊆ 𝛺, 𝑆 has a 𝜇𝑚−1-point in the domain{0 < ||𝑍 − 𝑍0|| < 𝑟, 𝑟 = 𝑚𝑖𝑛(𝑟1, 𝑟2)}. Let 𝑆′ be a 

subsequence of 𝑆. Then clearly, if 𝑍0 is a 𝜇1-point of 𝑆, then 𝑍0 is a 𝜇1-point of 𝑆′. By mathematical induction, we see that in 

general, 𝑚 ≥ 1 being an integer, if 𝑍0 is 𝜇𝑚-point of𝑆, then 𝑍0 is 𝜇𝑚-point of 𝑆 ′ 

Consider the sequence 𝑆 = {𝑓𝑛(𝑍)} defined as follows: 

𝑓𝑛(𝑍) =
1

(𝑍−𝑛)2
, where 𝑍 = (𝑧1, 𝑧2) is a point in the bicomplex plane 𝐶2 and 𝑛 ∈ 𝑁. 

Then 𝑍0 = (0,0) is a 𝜇1-point of 𝑆, 𝑍0 = (1,1) is a 𝜇2-point of 𝑆 and 𝑍0 = (𝑚,𝑚) is a 𝜇𝑚-point of 𝑆 

1.𝜇1-point: Suppose𝑍0 = (0,0), and consider a closed discus�̄� = {𝑍 ∈ 𝛺: ||𝑍 − 𝑍0|| ≤ 𝑟}. For any𝑟 > 0, as𝑛 → ∞, the 

function 𝑓𝑛(𝑍) grows unbounded as ||𝑍 − 𝑍0|| → 𝑟. Therefore, 𝑍0 is a 𝜇1-point of 𝑆. 

2.     𝜇2-point: Now consider𝑍0 = (1,1), and a discus𝛥 = {𝑍 ∈ 𝛺: ||𝑍 − 𝑍0|| < 𝑟}. In this case, for any𝑟 > 0, there exists a 𝜇1-

point 𝑍′ such that 0 < ||𝑍′ − 𝑍0|| < 𝑟, because 𝑓𝑛(𝑍) grows unbounded as 𝑍 → 𝑍0. Therefore, 𝑍0 is a 𝜇2-point of 𝑆. 

3.     𝜇𝑚-point: For 𝑚 ≥ 3, consider 𝑍0 = (𝑚,𝑚). For any discus 𝛥 = {𝑍 ∈ 𝛺: ||𝑍 − 𝑍0|| < 𝑟}, there exists a 𝜇𝑚−1-point 𝑍′ such 

that 0 < ||𝑍′ − 𝑍0|| < 𝑟. Hence, 𝑍0 is a 𝜇𝑚-point of 𝑆. 

Definition 3.14 : Let 𝑚 ≥ 1 be an integer. Let 𝐹 be a family of of bicomplex meromorphic functions defined on a domain 𝛺 

and 𝜈 ≥ 0 an integer. We say that 𝐹 is 𝑄𝑚- normal of order 𝜈 if from every sequence of functions of the family 𝐹. We can 

extract a subsequence which is a 𝐶𝑚-sequence in 𝐷 and has atmost 𝜈 non 𝐶𝑚−1-point in 𝐷. Thus for 𝜈 = 0, 𝐹is 𝑄𝑚−1 -normal 

in 𝐷 

Definition 3.15:  𝑄𝑚- Normal family of infinite order. 

A family 𝐹 is said to be 𝑄𝑚- Normal of infinite order if 𝐹 is 𝑄𝑚- Normal but not a 𝑄𝑚- Normal family of order at most𝜈 ≥
1. on this definition we have the theorem: 

Theorem 3.16:  A family 𝐹 of  bicomplex  meromorphic functions is 𝑄𝑚- Normal in 𝛺 if and only if every sequence of functions 

{𝑓𝑛} of 𝐹 has no 𝜇𝑚+1-point in 𝛺.  

Proof: Suppose 𝐹 is 𝑄𝑚-normal in 𝛺. then, by definition, from every sequence of functions {𝑓𝑛} of 𝐹, we can extract a 

subsequence which is a 𝐶𝑚-sequence in 𝛺. 

We shall prove it by contradiction. Suppose that there exists a 𝜇𝑚+1-point 𝑍0 of some sequence {𝑓𝑛} in 𝐹, i.e., for every open 

discus 𝐷(𝑍0, 𝑟1, 𝑟2) contained in 𝛺, there exists a 𝜇𝑚-point 𝑧′ in the domain {0 < ||𝑍 − 𝑍0|| < 𝑟}. This implies that we can 

construct a subsequence of {𝑓𝑛} that converges to +∞ at𝑍0, which contradicts the assumption that 𝐹 is 𝑄𝑚-normal. Therefore, 

𝐹cannot have a 𝜇𝑚+1-point in 𝛺. Suppose 𝐹 is 𝑄𝑚-normal in 𝛺.  

By definition, this means that from every sequence of functions {𝑓𝑛} of𝐹, we can extract a subsequence which is a 𝐶𝑚-

sequence in 𝛺. To prove this statement, we shall use proof by contradiction. We assume that there exists a -point 𝑍0 of some 

sequence {𝑓𝑛} in 𝐹. This implies that for every open discus 𝐷(𝑍0, 𝑟1, 𝑟2) contained in 𝛺, there exists a 𝜇𝑚-point 𝑧′ in the domain 

{0 < ||𝑍 − 𝑍0|| < 𝑟}. Now, consider a sequence {𝑓𝑛} in 𝐹 and let 𝑍0 be a 𝜇𝑚+1-point of this sequence. For any open discus 

𝐷(𝑍0, 𝑟1, 𝑟2) contained in 𝛺, there exists a 𝜇𝑚-point 𝑧′ in the domain {0 < ||𝑍 − 𝑍0|| < 𝑟}. This implies that we can construct a 

subsequence of {𝑓𝑛} that converges to +∞ at 𝑍0, which contradicts the assumption that 𝐹 is 𝑄𝑚-normal. If 𝐹 were 𝑄𝑚-normal, 

there should be no such 𝜇𝑚+1-point. Therefore, we have shown that 𝐹 cannot have a 𝜇𝑚+1-point in𝛺. In summary, we have 

demonstrated that if 𝐹 is 𝑄𝑚-normal in𝛺, then it cannot have a 𝜇𝑚+1-point in 𝛺. To prove the converse part, let’s assume that 𝐹 

does not have any 𝜇𝑚+1-point in𝛺. We aim to show that 𝐹 is 𝑄𝑚-normal in𝛺. Let {𝑓𝑛} be any sequence of functions in 𝐹. Since 

{𝑓𝑛} has no 𝜇𝑚+1-point in𝛺, it means that for every sequence {𝑍𝑘} in 𝛺, there exists a subsequence {𝑓𝑛𝑘} of {𝑓𝑛} such that 

𝑙𝑖𝑚  𝑘→∞ 𝑓𝑛𝑘(𝑍𝑘) = +∞. This implies that for any closed disc �̄�(𝑍0, 𝑟1, 𝑟2) contained in 𝛺, we can find a subsequence of {𝑓𝑛}, 

denoted by {𝑓𝑛𝑘}, such that 𝑓𝑛𝑘(𝑍𝑘) diverges to +∞ as 𝑘 approaches infinity, where 𝑍𝑘 is a sequence of points in 𝐷(𝑍0, 𝑟1, 𝑟2). 

Therefore, {𝑓𝑛} satisfies the condition of being a 𝐶𝑚-sequence. Since this holds for any sequence {𝑓𝑛} in 𝐹, it follows that 𝐹 is 

𝑄𝑚-normal in 𝛺.  Therefore, we have shown that a family 𝐹 of bicomplex meromorphic functions is 𝑄𝑚-normal in 𝛺 if and only 

if every sequence of functions {𝑓𝑛} of 𝐹 has no 𝜇𝑚+1-point in 𝛺. 
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4. Conclusion 
This paper extends the theory of Qm- normal families of meromorphic functions using the concept of Cm-sequences from the 

complex variable setting to the bicomplex variable setting. It begins with a discussion of the properties of bicomplex 

meromorphic functions and establishes its key results in the bicomplex plane. Using Cm-sequences, the concept of Qm- normal 

families is generalized to bicomplex meromorphic functions, offering new insights and a broader scope for understanding 

normality in this richer setting.This study highlights Qm- normal families of bicomplex meromorphic functions as a specialized 

and emerging area in bicomplex analysis. It provides a foundation for future research into deeper theoretical aspects, including 

their properties, characterizations, and connections with other mathematical structures. Furthermore, this research encourages 

exploration into how the behaviors of Qm- normal families in the bicomplex domain differ from those in the complex domain, 

necessitating the development of new theoretical frameworks. Additionally, such families have the potential to model physical 

phenomena in multi-dimensional spaces, making them relevant for applications in fields like quantum mechanics and relativity 

theory. The results presented in this paper pave the way for further studies, contributing to both the theoretical and applied 

dimensions of bicomplex analysis.     
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