Original Article

Complete Strong ϕ -Metric Spaces

Stela Çeno¹, Ledia Subashi², Dhurata Valera³

^{1, 3}Department of Mathematics, University of Elbasan "Aleksandër Xhuvani", Elbasan, Albania. ²Department of Mathematics, University of Tirana, Tirana, Albania.

¹Corresponding Author: stela.ceno@uniel.edu.al

Received: 18 August 2024 Revised: 30 September 2024 Accepted: 16 November 2024 Published: 30 November 2024

Abstract - In this paper, after presenting the concept of the strong φ -metric space, we establish some properties for complete spaces, dense or bounded subsets, and even uniformly continuous functions defined in such spaces. Our results boost (generalize) plenty of pre-existing results in the literature.

Keywords - *Strong* φ -*metric, Strong* φ -*metric space, Completeness, Dense space, Uniformly continuous function.*

1. Introduction

The idea of strong φ -metric was first presented in, inspired by a huge supply of generalizations about the metric function like in [1,2,3,4]. Also, building properties about the strong φ -metric space has been a goal for the authors since then. [5, 6] In this article, we try to list some properties and definitions of the strong φ -metric space in the completeness framework and hope to extend our work in fixed point theory.

Firstly, we introduce some basic definitions of our new metric space.

Definition1.1. [1] The function $d_s: X \times X \to \mathbb{R} \ge 0$, is called a *strong* φ -*metric* and satisfies the following conditions: a) $d_s(x, y) = 0 \Leftrightarrow x = y$;

- b) $d_s(x, y) = d_s(y, x);$
- c) $d_s(x,z) \le Kd_s(x,y) + d_s(y,z) + \varphi(x,y,z), \forall x, y, z \in X$, and $K \ge 1$, with $\varphi: X \times X \times X \to \mathbb{R} \ge 0$ a function fulfilling:
 - i) $\varphi(x, y, z) = 0$ if x = z or y = z;
 - ii) $\varphi(x, y, z) = \varphi(y, x, z);$
 - iii) $\forall \varepsilon > 0, \exists \delta > 0$ such that $\varphi(x, y, z) < \varepsilon$, whenever $d_s(x, y) < \delta$ or $d_s(y, z) < \delta, \forall x, y, z \in X$. The ordered pair (X, d_s) is called a *strong* φ -metric space.

Definition 1.2. Let (X, d_s) be a strong φ -metric space. A sequence (x_n) in X is called a *Cauchy sequence* if, for any $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $d_s(x_m, x_n) < \varepsilon$ for any m > N, n > N.

Definition 1.3. A strong φ -metric space (*X*, *d*_s) is said to be *complete* if every Cauchy sequence in *X* converges to a point in *X*.

Definition 1.4. Let (X, d_s) be a strong φ -metric space and A, a nonempty subset of it. The *diameter of A* is defined as below:

$$diam(A) = \sup\{d_s(x, y) | x, y \in A\}.$$

We say that A is bounded if *diam*(A) is finite.

Definition 1.5. Let *f* be a function from a strong φ -metric space (X, d_s) into a strong φ -metric (Y, p_s) . Then the function *f* is *uniformly continuous* if, for a given $\varepsilon > 0$, there $\exists \delta > 0$ such that for any $x, y \in X$, $d_s(x, y) < \delta$ implies $p(f(x), f(y)) < \varepsilon$.

Definition 1.6. Let *f* be a function from a strong φ -metric space (X, d_s) into a strong φ -metric (Y, p_s) . The function *f* is said to be an isometry if $d_s(a, b) = p(f(a), f(b))$ for any $a, b \in X$.

Definition 1.7. Completion of a strong φ -metric space (X, d_s) is a pair consisting of a completely strong φ -metric space (X', d'_s) and an isometry $\psi: X \to X'$ such that $\psi[X]$ is dense in X'.

2. Main Results

This paper aims to introduce a new couple of these intermediate properties in the context of the strong φ -metric space.

Theorem 2.1. In a strong φ -metric space, any convergent sequence is a Cauchy sequence.

Proof. Suppose that (\mathbf{x}_n) is a sequence that converges to x. For an $\varepsilon > 0$ then there is an $\mathbf{N} \in \mathbb{N}$ such that:

$$d_s(x_n, x) < \frac{\varepsilon}{3}, d_s(x_m, x) < \frac{\varepsilon}{3K}$$
 and $\varphi(x_m, x_n, x) < \frac{\varepsilon}{3}$ for all $n \ge N$

Let $m, n \in \mathbb{N}$ such that $n \ge N$ and $m \ge N$. Then:

$$d_s(x_m, x_n) \leq K d_s(x_m, x) + d_s(x_n, x) + \varphi(x_m, x_n, x) < K \frac{\varepsilon}{3K} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Hence (x_n) is a Cauchy sequence.

Theorem 2.2. A closed subset of a complete strong φ -metric space is a complete subspace.

Proof. Let S, be a closed subspace of a completely strong φ -metric space X. Let (x_n) be a Cauchy sequence in S. Then (x_n) is a Cauchy sequence in X, and hence, it must converge to a point x in X. But then $x \in \overline{S} = S$. Thus, S is complete.

Theorem 2.3. A complete subspace of a strong φ -metric space is a closed subset.

Proof. Let S, be a complete subspace of a strong φ -metric space X. Let $x \in \overline{S}$. Then, there is a sequence (x_n) in S, which converges to $x \in X$. Hence (x_n) is a Cauchy sequence in S. Since S is complete, (x_n) must convergent to some point $y \in S$. By the uniqueness of the limit, we must have $x = y \in S$. Hence $\overline{S} = S$, so S is closed.

Theorem 2.4. A uniformly continuous function maps Cauchy sequences into Cauchy sequences.

Proof. Let $f: (X, d_s) \to (Y, p_s)$ be a uniformly continuous function on strong φ -metric space. Let (x_n) be a Cauchy sequence in *X*. To see that $(f(x_n))$ is a Cauchy sequence, let $\varepsilon > 0$. Then there is a $\delta > 0$ such that:

$$\forall x, y \in X, d_s(x, y) < \delta \Rightarrow p_s(f(x), f(y)) < \varepsilon$$

Thus, there exists an $N \in \mathbb{N}$ such that $d_s(x_m, x_n) < \delta$ for any $m, n \ge N$. It follows that $p_s(f(x_m), f(x_n)) < \varepsilon$ for any $m, n \ge N$. Hence $(f(x_m))$ is a Cauchy sequence in Y.

Theorem 2.5. Let $f: (X, d_s) \to (Y, p_s)$ be an isometry. Then, it is injective and uniformly continuous. Furthermore, its inverse $f^{-1}: (f[X], p_s) \to (X, d_s)$ is also an isometry.

Theorem 2.6. Let *A* be a dense subset of a strong φ -metric space (X, d_s) . Let *f* be a uniformly continuous function (isometry) from *A* to a strong φ -metric (Y, p_s) . Then, there is a unique uniformly continuous function (isometry) $g: X \to Y$, which extends *f*.

Proof. Let (X, d_s) be a strong φ -metric space and (Y, p_s) a complete strong φ -metric space. Let *A* be a dense subset of *X*, and let *f* be a uniformly continuous $f: A \to Y$.

• Define a function $g: X \to Y$.

For each $x \in X = \overline{A}$, there is a sequence (x_n) in A, which converges to x. Then (x_n) is a Cauchy sequence in X. Thus $(f(x_n))$ is a Cauchy sequence in Y. Since Y is complete, $(f(x_n))$ is a convergent sequence. Define:

$$g(x) = \lim_{n \to \infty} f(x_n)$$

for any $x \in X$, where (x_n) is a sequence in A that converges to x.

• The function g is well-defined, independent of the choice of (x_n) .

Let (x_n) and (y_n) be any sequence in A which converges to $x \in \overline{A} = X$. Then the sequence $(x_1, y_1, x_2, y_2, ..., x_n, y_n, ...)$ must converge to x. Hence, the sequence $(f(x_1), f(y_1), f(x_2), f(y_2), ..., f(x_n), f(y_n), ...)$ converges to some point $z \in Y$. Since $(f(x_1), f(x_2), ...)$ and $(f(y_1), f(y_2), ...)$ are its subsequences, they must also converge to z. Hence z = g(x) does not depend on the choice of the sequences.

• The function g is an extension of f.

Let $a \in A$ and let $a_n = a$ for each $n \in \mathbb{N}$. Then (a_n) is a sequence in A which converges to a.

Hence $g(a) = \lim_{n \to \infty} f(a_n) = f(a)$. This shows that g is an extension of f.

• The function g is uniformly continuous on X.

Let $\varepsilon > 0$ then there is a $\delta > 0$ such that:

$$\forall a, b \in A, d_s(a, b) < \delta \Rightarrow p_s(f(a), f(b)) < \frac{\varepsilon}{2}$$

Let $x, y \in X$ be such that $d_s(x, y) < \delta$. Then, there are sequences $(x_n) \to x$ and $(y_n) \to y$. Hence $f(x_n) \to g(x)$ and $f(y_n) \to g(y)$. Choose $N \in \mathbb{N}$ such that:

$$d_s(x_N, x) < \frac{\delta - 2d_s(x, y)}{4K} \text{ and } d_s(y_N, y) < \frac{\delta - 2d_s(x, y)}{4K} \text{ with } \varphi(x_N, x, y) < \frac{\delta}{4} \text{ and } \varphi(x, y, x_N) < \frac{\delta}{4}$$

Also,

Then:

$$p_s(f(x_N), g(x)) < \frac{\varepsilon}{2\kappa}$$
 and $p_s(f(y_N), g(y)) < \frac{\varepsilon}{2\kappa}$.

$$d_s(x_N,y_N) \leq K d_s(x_N,x) + d_s(y_N,y) + \varphi(x_N,x,y) + \varphi(x_N,x,y) < \frac{\delta}{2} + \frac{\delta}{4} + \frac{\delta}{4} = \delta$$

This leads to: $p_s(f(x_N), f(y_N)) < \frac{\varepsilon}{3}$, by the uniform continuity of f on A.

Hence,

$$p_s(g(x), g(y)) \le K p_s(g(x), f(x_N)) + p_s(f(x_N), f(y_N)) + K p_s(f(y_N), g(y)) + \varphi(g(x), f(x_N), f(y_N)) + \varphi(f(x_N), f(y_N), g(y)) \le K \frac{\varepsilon}{2\kappa} + \frac{\varepsilon}{3} + K \frac{\varepsilon}{2\kappa} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

With $\varphi(g(x), f(x_N), f(y_N)) < \frac{\varepsilon}{3}$ and $\varphi(f(x_N), f(y_N), g(y)) < \frac{\varepsilon}{3}$. This shows that *g* is uniformly continuous on *X*.

• The function *g* is unique.

Let g and h be (uniformly) continuous functions on X, which extends f on a dense subset A. To see that g = h, let $x \in X$. Then, there is a sequence (x_n) in A, which converges to x. By continuity of g and h,

g

$$(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} h(x_n) = h(x).$$

Hence g = h.

References

- M. Maurice Fr'echet, "On some Points of Functional Calculation," *Rendiconti del Circolo Matematico di Palermo*, vol. 22, pp. 1–72, 1906. [Google Scholar]
- [2] Shaban Sedghi, Nabi Shobe, and Abdelkrim Aliouche, "A Generalization of Fixed-point Theorems in S-metric Space," *Matematiqki Vesnik*, vol. 64, no. 3, pp. 258–266, 2012. [Google Scholar]
- [3] Stefan Czerwik, "Contraction Mappings in b-metric Spaces," Acta Mathematica et Informatica Universitatis Ostraviensis, vol. 1, no. 1, pp. 5–11, 1993. [Google Scholar]
- [4] Stefan Czrerwik, "Nonlinear Set-valued Contraction Mappings in b-metric Spaces," *Atti del Seminario Matematico e Fisico University Modena Reggio Emilia*, vol. 46, pp. 263–276, 1998. [Google Scholar]
- [5] M. Isabel Garrido, and Ana S. Merono, "New Types of Completeness in Metric Spaces," *Annles Academie Scientarium Fennicae Matematica*, vol. 39, pp. 733-758, 2014. [Google Scholar]