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Abstract - In this paper, using Q*-closed sets, we introduce a new version of normality called Q*-normality, which is a weak 

form of normality. Further utilizing Q*g-closed sets, we obtain some characterizations of Q*-normal and normal spaces and also 

obtain some preservation theorems for Q*-normal spaces.  
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1. Introduction  
In 1968, Zaitsev introduced the notion of quasi normal space [5]. In 1970, Levine [3] initiated the study of closed sets called 

generalized closed (briefly g-closed) sets to extend many of the most important properties of closed sets to a large family. In 

1973, Singal and Singal [4] introduced the concept of mildly normal spaces and obtained their characterizations. 1986 Munshi 

introduced and studied notions of g-normal and g-regular spaces. In 1990, Lal and Rahman have further studied notions of quasi 

normal and mildly normal spaces. In 2000, Dontchev and Noiri [1] introduced the notion of ℼg-closed sets and, using ℼg-closed 

sets, obtained a new characterization of quasi normal spaces. In 2010, M. Murugalingam and N. Lalitha introduced the concept 

of Q*-closed sets and obtained some properties of Q*-closed sets. In 2015, P. Padma and S. Udaya kumar introduced the concept 

of Q*g-closed sets and obtained some basic properties of Q*g-closed sets. In 2018, H. Kumar [2] introduced and studied various 

forms of normal spaces in topological spaces in his Ph. D. Thesis. In 2024, H. Kumar et al. introduced Fg-closed sets and obtained 

some properties of F-normal spaces in topological spaces in terms of Fg-closed sets. In 2024, H. Kumar further studied Q*g-

closed sets and obtained a result. 

2. Preliminaries  
Throughout this paper, spaces (X, τ), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological spaces on which no 

separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are 

denoted by cl(A) and int(A), respectively. A subset A of a topological space (X, τ) is said to be regular open  

(resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A)). 

2.1. Definition. A subset A of a space (X, τ) is said to be Q*-closed if int(A) =  and A is closed. The complement of a Q*-closed 

set is said to be Q*-open 

2.2. Definition. A subset A of a topological space (X, τ) is said to be 

 Generalized closed (briefly g-closed) if cl(A)  U whenever A  U and U  τ 

2. Q*g-closed if cl(A)  U whenever A  U and U is Q*-open in X. 

The complement of A is g-closed (resp. Q*g-closed) set is said to be g-open (resp. Q*g-open). The family of all Q-closed 

(resp. Q-open, Qg-closed, Qg-open) sets of a space X is denoted by Q-C(X) (resp. Q-O(X), Qg-C(X), Qg-O(X)). 

2.3. Remark. We have the following implications for the properties of subsets: 

regular closed 

 

Q*-closed           closed          g-closed     Q*g-closed 

Where none of the implications is reversible, as can be seen from the following examples: 
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2.4. Example. Let X = {a, b, c} and τ = {, X, {a}, {b}, {a, b}}. Then  

1. closed sets are  , X, {c}, {a, c}, {b, c}. 

2. Q*-closed sets are  , {c}. 

3. g-closed sets are  , X, {c}, {a, c}, {b, c}. 

4. Q*g-closed sets are  , X, {b}, {c}, {a, c}, {b, c}. 

5. regular closed sets are  , X, {c}, {a, c}, {b, c}. 

In the above example, every g-closed set is Q*g-closed, but the converse is not true. Then the set A = {b} is Q*g-closed but 

not g-closed. 

2.5. Example. In R with the usual metric, finite sets are Q*-closed but not regularly closed. [0, 1] is regular closed but not Q*-

closed. Hence, regular closed and Q*-closed sets are independent of each other. 

2.6. Theorem. For Qg-closed sets of a space X, the following properties hold: 

(a) Every finite union of Qg-closed sets is always a Qg-closed. 

(a) Every finite intersection of Qg-closed sets is always a Qg-closed. 

2.7. Lemma. If A be a subset of X, then 

(a) Q-cl(X – A) = X – Q-int(A). 

(b) Q-int(X – A) = X – Q-cl(A). 

2.8. Theorem. A subset A of a space X is Qg-open iff F  int(A) whenever F is Q-closed and F  A. 

Proof. Let F be Q-closed set such that F  A. Since X – A is Qg-closed and X – A  X – F where F  int(A). Conversely, Let 

F  int(A) where F is Q-closed and F  A. Since F  A and X – F is Q-open, cl(X – A) = X – int(A)  X – F. Therefore, A is 

Qg-open. 

3. Q*- Normal Spaces 
3.1. Definition. A space X is said to be Q*-normal if for every pair of disjoint Q-closed subsets A, B of X, there exist disjoint 

open sets U, V of X such that A  U and  B  V. 

3.2. Definition. A space X is said to be g-normal [5] if, for every pair of disjoint g-closed subsets A, B of X, there exist disjoint 

open sets U, V of X such that A  U and B  V. 

3.3. Definition. A space X is said to be quasi normal [11] if, for every pair of disjoint -closed subsets A, B of X, there exist 

disjoint open sets U, V of X such that A  U and  B  V. 

3.4. Definition. A space X is said to be mildly normal [10] if, for every pair of disjoint regular closed subsets A, B of X, there 

exist disjoint open sets U, V of X such that A  U and B  V. 

By the definitions stated above, we have the following diagram: 

                                              g-normal         normal                  Q*-normal 

                                                                              

                                                                  quasi normal             mildly normal   

Where none of the implications is reversible, as can be seen from the following examples: 

3.5. Example. Let X = {a, b, c, d} and  = {, {a}, {c}, {a, c}, {a, b, d}, {b, c, d}, X}. Then the space X is normal as well as Q* 

-normal. 

3.6. Example. In R with the usual metric, finite sets are Q*-closed but not regularly closed. [0, 1] is regular closed but not Q*-

closed. Hence, regular closed and Q*-closed sets are independent of each other. 



Hamant Kumar & Neeraj Kumar Tomar / IJMTT, 70(11), 32-37, 2024 

 

34 

From the above example, we can say that mildly normal and Q*-normal spaces are independent of each other. 

3.7. Theorem. For a space topological X, the following properties are equivalent: 

a) X is Q*-normal. 

b) For every pair of Q*-open subsets U and V of X whose union is X, closed subsets G and  H of X exist such that G  U, H 

 V  and G  H = X. 

c) For any Q*-closed set A and every Q*-open set B in X such that A  B, there exists an open subset U of X such that A  U 

 cl(U)  B. 

d) For every pair of disjoint Q*-closed subsets A and B of X, there exist open subsets U and V of X such that A  U, B  V 

and cl(U)  cl(V) = . 

Proof. (a)   (b), (b)  (c), (c)  (d) and (d)  (a). 

(a)  (b). Let U and V be any Q*-open subsets of a Q*-normal space X such that U  V = X. Then, X – U and X – V are disjoint 

Q*-closed subsets of X. By Q*-normality of X, there exist disjoint open subsets U1 and V1 of X such that X − U  U1 and X 

− V  V1. Let G = X − U1 and H = X − V1. Then, G and H are closed subsets of X such that G  U, H  V, and  

G  H = X. 

(b)  (c). Let A be a Q*-closed and B is a Q*-open subset of X such that A  B. Then, X − A and B are Q*-open subsets of X 

such that (X − A)  B = X. Then, by part (b), there exist closed subsets G and H of X such that G  (X − A), H  B and  G 

 H = X. Then, A  (X − G), (X − B)  (X − H) and (X − G)  (X − H) = . Let U = X – G and V = X − H. Then U and 

V are disjoint open sets such that A  U  X − V  B. Since X − V is closed, then we have cl(U)  (X − V).  

Thus, A  U  cl(U)  B. 

(c)  (d). Let A and B be any disjoint Q*-closed subset of X. Then A  X − B, where X – B is Q*-open. By the part (c), there 

exists an open subset U of X such that A  U  cl(U)  X − B. Let V = X − cl(U). Then, V is an open subset of X. Thus, 

we obtain A  U, B  V and cl(U)  cl(V) = .   

(d)  (a). It is obvious. 

3.8. Theorem. For a topological space X, the following properties are equivalent: 

(a) X is Q*-normal. 

(b) for any disjoint H, K  Q*-C(X), there exist disjoint Q*g-open sets U, V such that H   U and K   V. 

(c) for any H  Q*-C(X) and any V  Q*-O(X) containing H, there exists a Q*g-open set U of X such that, H  U  Q*g-cl(U) 

 V. 

(d) for any H Q*-C(X) and any V  Q*-O(X) containing H, there exists an open set U of X such that H  U  cl(U)  V. 

(e) for any disjoint H, K  Q*-C(X), there exist disjoint regular open sets U, V such that H  U and K  V. 

Proof. (a)  (b): Since every open set is Q*g-open, the proof is obvious.  

(b)  (c): Let H  Q*-C(X) and V be any Q*-open set containing H. Then H, X – V  Q*-C(X) and H  (X – V) = . By (b), 

there exist Q*g-open sets U, G such that H  U, X – V  G and U  G = . Therefore, we have H  U  (X – G)  V. Since U 

is Q*g-open and X – G is Q*g-closed, we obtain H  U  Q*g-cl(U)  (X – G)  V.  

(c)  (d): Let H  Q*-C(X) and H  V  Q*-O(X). By (c), there exists a Q*g-open set U0 of X such that, 

 H  U0  Q*g-cl(U0)  V. Since Q*g-cl(U0) is Q*g-closed and V  Q*-O(X), cl(Q*g-cl(U0))  V. Put int(U0) = U, then U is 

open and H  U  cl(U)  V.  

(d)  (e): Let H, K be disjoint Q*-closed sets of X. Then H  (X – K)  Q*-O(X) and by (d) there exists an open set U0 such 

that H  U0  cl(U0)  (X – K). Therefore, V0 = (X – cl(U0)) is an open set such that H  U0, K  V0 and U0  V0 = . Moreover, 

put U = int(cl(U0)) and V = int (cl(V0)), then U, V are regular open sets such that H  U, K  V and U  V = .  

(e)  (a): This is obvious.  
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3.9. Theorem. For a topological space X, the following properties are equivalent:  

(a) X is normal. 

(b) for any disjoint closed sets A and B, there exist disjoint Q*g-open sets U and V such that A  U and B  V.  

(c) for any closed set A and any open set V containing A, there exists a Q*g-open set U of X such that A  U  cl(U)  V.  

Proof. (a)  (b): This is obvious since every open set is Q*g-open.  

(b)  (c): Let A be a closed set and V be any open set containing A. Then, A and (X – V) are disjoint closed sets. There exist 

disjoint Q*g-open sets U and W such that A  U and (X – V)  W. Since X – V is closed, we have (X – V)  int(W) and  

U  int(W) = . Therefore, we obtain cl(U)  int(W) =  and hence A  U  cl(U)  (X – int(W))  V.  

(c)  (a): Let A, B be disjoint closed sets of X. Then A  (X – B) and (X – B) is open. By (c), there exists a Q*g-open set G of 

X such that A  G  cl(G)  (X – B). Since A is closed, we have A  int(G). Put U = int(G) and V = (X – cl(G)). Then U and 

V are disjoint open sets of X such that A  U and B  V. Therefore, X is normal.  

3.10. Proposition. Let f: X → Y be a function, then: 

(a) The image of open subset under an open continuous function is open. 

(b) The inverse image of Q*-open (resp. Q*-closed) subset under an open continuous function is Q*-open (resp. Q*-closed) 

subset. 

(c) The image of a closed subset under an open and a closed continuous surjective function is open. 

3.11. Theorem. The image of a Q*-normal space under an open continuous injective function is a Q*-normal. 

Proof. Let X be a Q*-normal space, and let f: X → Y be an open continuous injective function. We need to show that f(X) is a 

Q*-normal. Let A and B be any two disjoint Q*-closed sets in f(X). Since the inverse image of a Q*-closed set under an open 

continuous function is a Q*-closed. Then, f −1(A) and f −1(B) are disjoint Q*-closed sets in X. By Q*-normality of X, there exist 

open subsets U and V of X such that f −1(A)  U, f −1(B)  V and U  V = . Since f is an open continuous injective function, 

we have A  f(U), B  f(V) and f(U)  f(V) = . By Proposition 3.10, we obtain f(U) and f(V) are disjoint open sets in f(X) 

such that A  f(U) and B   f(V). Hence, f(X) is Q*-normal. 

3.12. Theorem. For a topological space X, the following properties are equivalent: 

(a) X is Q*-normal. 

(b) For any disjoint Q*-closed sets H and K, there exist disjoint g-open sets U and V such that H  U and K  V.  

(c) For any disjoint Q*-closed sets H and K, there exist disjoint Q*g-open sets U and V such that H  U and K V. 

(d) For any Q*-closed set H and any Q*-open set V containing H, there exists an g-open set U of X such that, H  U  cl(U)  

V.  

(e) For any Q*-closed set H and any Q*-open set V containing H, there exists a Q*g-open set U of X such that, H   U  cl(U) 

 V. 

Proof.  (a)  (b), (b)  (c), (c)  (d), (d)  (e) and (e)  (a). 

(a) (b). Let X be Q*-normal space. Let H, K be disjoint Q*-closed sets of X. By assumption, there exist disjoint open sets U, V 

such that H  U and K  V. Since every open set is g-open, so U and V are g-open sets such that H  U and K  V. 

(b) (c). Let H and K be two disjoint Q*-closed sets. By assumption, there exist disjoint g-open sets U and V such that H  U 

and K  V. Since every g-open set is Q*g-open, so U and V are Q*g-open sets such that H  U and K  V. 

(c) (d). Let H be any Q*-closed set, and V be any Q*-open set containing H. By assumption, there exist disjoint Q*g-open sets 

U and W such that H  U and X − V  W. By Theorem 2.8, we get X − V  int(W) and cl(U)  int (W) = . Hence H  

U  cl(U)   X − int(W)  V. 

(d) (e). Let H be any Q*-closed set, and V be any Q*-open set containing H. By assumption, there exists g-open set U of X such 

that H  U  cl(U)  V. Since every g-open set is Q*g-open, there exists Q*g-open set U of X such that, H  U  cl(U)  

V. 
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(e) (a). Let H, K be any two disjoint Q*-closed sets of X. Then H  X − K and X − K is Q*-open. By assumption, there exists 

Q*g-open set G of X such that H  G  cl(G)  X − K. Put U = int(G), V = X − cl(G). Then U and V are disjoint open sets 

of X such that H  U and K  V. 

4. Some Related Functions with Q*- Normal Spaces 
4.1. Definition. A function f: X → Y  is said to be 

(1) almost Q*g-continuous if for any regular open set V of Y,  f −1(V)  Q*g-O(X). 

(2) almost Q*g-closed if for any regular closed set F of X, f (F)  Q*g-C(Y).  

4.2. Definition. A function f: X → Y  is said to be 

(1) Q*-irresolute (resp. Q*- continuous ) if for any Q*-open (resp. open) set V of Y, f −1( V) is Q*-open in X.  

(2) pre-Q*-closed (resp. Q*- closed ) if for any Q*-closed (resp. closed) set F of X, f(F) is Q*-closed in Y. 

4.3. Theorem. A function f: X → Y  is an almost Q*g-closed surjection if and only if for each subset S of Y and each regular 

open set U containing f −1(S), there exists a Q*g-open set V such that S  V and f −1(V)  U.  

Proof.  Necessity. Suppose that f is almost Q*g-closed. Let S be a subset of Y and U be a regular open set of X containing f −1(S). 

Put V = Y – f(X – U), then V is a Q*g-open set of Y such that S  V and f −1(V)  U.  

Sufficiency. Let F be any regular closed set of X. Then f −1(Y − f(F))  (X – F) and X − F is regular open. There exists a Q*g-

open set V of Y such that (Y − f(F))  V and f −1(V)  (X – F). Therefore, we have f(F)  (Y – V) and F  f −1(Y – V). Hence, 

we obtain f(F) = Y − V and f(F) are Q*g-closed in Y. This shows that f is almost Q*g-closed. 

4.4. Theorem: If f: X → Y  is an almost Q*g-closed Q*-irresolute (resp. Q*-continuous) surjection and X is Q*-normal, then Y 

is Q*-normal (resp. normal).  

Proof. Let A and B be any disjoint Q*-closed (resp. closed) sets of Y. Then f −1(A) and f −1(B) are disjoint Q*-closed sets of X. 

Since X is Q*-normal, there exist disjoint open sets U and V of X such that f −1(A)  U and f −1(B)  V. Put G = int(cl(U)) and 

H = int(cl(V)), then G and H are disjoint regular open sets of X such that f −1(A)  G and f −1(B)  H.  

By Theorem 4.3, there exist Q*g-open sets K and L of Y such that A  K, B  L. f −1(K)  G and f −1(L)  H. Since G and H 

are disjoint, so K and L are also disjoint. It follows from Theorem 3.8 (resp. Theorem 3.9) that Y is Q*-normal (resp. normal). 

4.5. Theorem. If f: X → Y is a continuous almost Q*g-closed surjection, and X is a normal space, then Y is normal.  

Proof. The proof is similar to that of Theorem 4.4.  

4.6. Theorem. If f: X → Y is an almost Q*g-continuous pre-Q*-closed (resp. Q*-closed) injection, Y is Q*-normal, and X is Q*-

normal (resp. normal).  

Proof. Let H and K be disjoint Q*-closed (resp. closed) sets of X. Since f is a pre-Q*-closed (resp. Q*-closed) injection, f(H) and 

f(K) are disjoint Q*-closed sets of Y. Since Y is Q*-normal, there exist disjoint open sets P and Q such that f(H)  P and f(K)  

Q. Now, put U = int(cl(P)) and V = int(cl(Q)), then U and V are disjoint regular open sets such that f(H)  U and  f(K)  V.  

Since f is almost Q*g-continuous, f −1(U) and f −1(V) are disjoint Q*g-open sets such that H  f −1(U) and, K  f −1(V). It follows 

from Theorem 3.8 (resp. Theorem 3.9) that X is Q*-normal (resp. normal).  

5. Conclusion  
In this paper, we introduce and study a new class of spaces, namely Q*- normal spaces, using Q*- open sets. The relationship 

among normality, Q*- normality, which is a weaker form of normality. Also, we obtained some characterization of Q*- normal 

spaces and properties of the forms of Q*g- closed functions. Of course, the entire content will be a successful tool for the 

researchers to find a way to obtain the results in the context of such types of normal spaces. This idea can be extended to 

topologically ordered, bitopological ordered, fuzzy topological spaces, etc.  
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