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1. Introduction and Preliminaries 

The Banach Contraction Principle [ 1 ] is one of the key tools to show the existence of solutions related to various 

mathematical problems, especially those characterizing differential equations, integral equations, and fractional differential 

equations. Bakhtin [ 2 ]and Czerwik[ 3  ] initiated the concept of b-metric spaces, which resulted in many fixed-point results 

(see [4],[12],[13 ]). Kamran et al.  [ 5 ] generalized b-metric spaces and the triangle inequality, due to which control functions 

in the contractive condition do not have a role. This generalization enabled the extension of the Banach contraction from 

metric spaces to b-metric spaces and then to controlled metric-type spaces.(see [6],[9],[13 ]). 

 

Abdeljawad et al.[ 7 ] also introduced double control metric spaces, later obtaining many fixed-point results (see [ 7],[15 

]). Harandi[ 22 ]  introduced the concept of metric-like spaces in 2012 as a generalization of metric spaces. Subsequently, 

Mlaiki   [ 16 ] generalized controlled metric spaces by introducing controlled metric-like spaces in which the self-distance 

does not necessarily have to be zero. After this, Azam et al.[14 ] gave their concept of complex-valued metric spaces, which 

Hosseini and Karazaki[ 21] more generally extended to complex-valued metric-like spaces(see[18] ). Building on this, Aslam 

et al.[ 19  ] extended this concept into complex-valued controlled metric-type spaces and complex-valued double controlled 

metric-like spaces. Recently, Singh et al.[ 20 ] provided several new interpolative contractions, such as the (λ, a)-interpolative 

Kannan contraction, the (λ, a, b)-interpolative Kannan contraction, and the (λ, a, b, c)-interpolative Reich contraction, with 

all extensive fixed-point results formed in complete controlled metric spaces. 

          This article contains fixed-point results for the Kannan and Reich interpolating contractions in complex-valued double-

controlled metric-like spaces. Examples have also been provided to underpin and exemplify the results of this study. 

 

2. Preliminaries 
        Further, let us remember some definitions and results. 

 

        Let C be the set of complex numbers and w1 and w2 be elements of C. w1 ≤ w2 iff Re (w1) ≤ Re (w2) or (Re (w1) = Re 

(w2) and Im (w1) ≤ Im (w2)). Regarding the earlier definition, we have that w1 ≤ w2 if one of the other conditions is satisfied 

1.  Re (w1) < Re (w2) and  Im(w1) < Im (w2), 

2.  Re (w1) < Re (w2) and Im (w1) = Im (w2), 

3.  Re (w1) < Re (w2) and Im (w1) > Im (w2), 

4.  Re (w1) = Re (w2) and Im (w1) < Im (w2). 
           

Definition 2.1 [ 2 ] Let Ԩ ≠ ɸ and α ≥ 1be a given real number. Let Ꝓb  : Ԩ x Ԩ  → [0,+ ∞) be a function is called b- metric 

if  1. Ꝓb( ρ, σ) ≥ 0,                                                                                                                                                                                                         

2.  Ꝓb( ρ, σ) = 0 if and only if ρ  =   σ,                                                                                                                                                                                                                            

3.  Ꝓb( ρ, σ) =   Ꝓb( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓb( ρ, σ)  ≤ α [ Ꝓb( ρ, δ) +  Ꝓb(  δ, σ )], for all ρ, σ, δ ε Ԩ.                                                                                                                                                    

A pair (Ԩ, Ꝓb) is called a b-metric space. It is clear that b-metric space is an extension on usual metric space. 

http://www.internationaljournalssrg.org/
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Definition 2.2 [ 5 ] Let Ԩ ≠ ɸ and given a function  α: Ԩ x Ԩ→ [1,+ ∞). Let  Ꝓeb: Ԩx Ԩ → [0,+ ∞) be a function is called 

extended b- metric if   1. Ꝓeb( ρ, σ) ≥ 0,                                                                                                                                                                                                           

2.  Ꝓeb( ρ, σ) = 0 if and only if ρ  =   σ,                                                                                                                                                                                                                            

3.  Ꝓeb( ρ, σ) =   Ꝓeb( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓeb( ρ, σ)  ≤ α(ρ, σ) [ Ꝓeb( ρ, δ) +  Ꝓeb(  δ, σ )], for all ρ, σ, δ ε Ԩ.                                                                                                                                           

A pair (Ԩ, Ꝓeb) is called a extended b-metric space. It is clear that  extension b-metric space is an extension of              b- 

metric  metric space. 

Definition 2.3 [ 6 ] Let Ԩ≠ ɸ and given a function α : Ԩ x Ԩ → [1,+ ∞). Let Ꝓc : Ԩx Ԩ → [0,+ ∞) be a function is called 

controlled metric if                                                                                                                                              1. Ꝓc( ρ, σ) ≥ 0,                                                                                                                                                                                                           

2.  Ꝓc( ρ, σ) = 0 if and only if ρ  =   σ,                                                                                                                                                                                                                            

3.  Ꝓc( ρ, σ) =   Ꝓc( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓc( ρ, σ)  ≤ α(ρ, δ)  Ꝓc( ρ, δ) + α( δ,σ )  Ꝓc(  δ, σ ), for all ρ, σ, δ ε Ԩ.                                                                                                                                           

A pair (Ԩ, Ꝓc) is called a controlled metric space. It is clear that controlled space is an b- metric and  extension b- metric 

space. 

Definition 2.4 [ 7 ] Let Ԩ ≠ ɸ and given a function α, β : Ԩ x Ԩ → [1,+ ∞). Let Ꝓdc : Ԩ x Ԩ  → [0,+ ∞) be a function .is 

called double controlled metric if                                                                                                                                                                                                          

1. Ꝓdc( ρ, σ) ≥ 0,                                                                                                                                                                                                           

2.  Ꝓdc( ρ, σ) = 0 if and only if ρ  =  σ,                                                                                                                                                                                                                            

3.  Ꝓdc( ρ, σ) =  Ꝓdc( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓdc( ρ, σ)  ≤ α(ρ, δ) Ꝓdc( ρ, δ) + β( δ,σ ) Ꝓdc(  δ, σ ), for all ρ, σ, δ ε Ԩ.                                                                                                                                           

A pair (Ԩ, Ꝓdc) is called a  double controlled metric space. It is clear that  double controlled space is an b- metric, extension 

b- metric and controlled  metric space 

Definition 2.5 [ 14 ] Let Ԩ ≠ ɸ and α ≥ 1 be a given real number. Let  Ꝓcvb  : Ԩ x Ԩ  → C  be a function called complex 

valued b- metric if                                                                                                                                              1. Ꝓcvb( ρ, σ) ≥ 

0,                                                                                                                                                                                                         

2.  Ꝓcvb( ρ, σ) = 0 if and only if ρ  =   σ,                                                                                                                                                                                                                            

3.  Ꝓcvb( ρ, σ) =   Ꝓcvb( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓcvb( ρ, σ)  ≤ α [ Ꝓcvb( ρ, δ) +  Ꝓcvb(  δ, σ )], for all ρ, σ, δ ε Ԩ.                                                                                                                                                    

A pair (Ԩ, Ꝓcvb) is called complex valued b-metric space. Complex-valued b-metric space is an extension of complex-

valued metric space. 

Definition 2.6 [ 7 ] Let Ԩ ≠ ɸ and α : Ԩ x Ԩ → [1,+ ∞). Let  Ꝓecvb : Ԩ x Ԩ → C be a function is called complex valued 

extended b- metric if                                                                                                                                                  1. Ꝓecvb( ρ, 

σ) ≥ 0,                                                                                                                                                                                                        

2.  Ꝓecvb( ρ, σ) = 0 if and only if ρ  =   σ,                                                                                                                                                                                                                            

3.  Ꝓecvb( ρ, σ) =   Ꝓecvb( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓecvb( ρ, σ)  ≤ α(ρ, σ)  [ Ꝓecvb( ρ, δ) +  Ꝓecvb(  δ, σ )], for all ρ, σ, δ ε Ԩ.                                                                                                                                                    

A pair (Ԩ, Ꝓecvb) is called complex valued extended b-metric space. It is clear that  complex vaued  extended b-metric space 

is an extension of  complex valued  b- metric space. 

Definition 2.7 [ 21 ] Let Ԩ ≠ ɸ and α : Ԩ x Ԩ → [1,+ ∞). Let  Ꝓcvc : Ԩ x Ԩ  → C be a function is called complex valued  

controlled  metric space  if                                                                                                                                                                                                                      

1. Ꝓcvc( ρ, σ) ≥ 0,                                                                                                                                                                                                         

2.  Ꝓcvc( ρ, σ) = 0 if and only if ρ  =   σ,                                                                                                                                                                                                                            

3.  Ꝓcvc( ρ, σ) =   Ꝓcvc( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓcvc( ρ, σ)  ≤ α(ρ, σ)  [ Ꝓcvc( ρ, δ) +  Ꝓcvc(  δ, σ )], for all ρ, σ, δ ε Ԩ.                                                                                                                                                    

A pair (Ԩ, Ꝓcvc) is called complex valued controlled metric space. It is clear that  complex valued  controlled metric space 

is an extension of  complex valued  b- metric space and complex valued extended b- metric space. 

Definition 2.8 [ 18 ] Let Ԩ ≠ ɸ and α,β : Ԩ x Ԩ → [1,+ ∞). Let  Ꝓcvdc : Ԩ x Ԩ  → C be a function is called complex valued  

double controlled  metric space  if                                                                                                                                                                                                                    
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1. Ꝓcvdc( ρ, σ) ≥ 0,                                                                                                                                                                                                         

2.  Ꝓcvdc( ρ, σ) = 0 if and only if ρ  =   σ,                                                                                                                                                                                                                            

3.  Ꝓcvdc( ρ, σ) =   Ꝓcvdc( σ, ρ ),                                                                                                                                                                                                                           

4.  Ꝓcvc( ρ, σ)  ≤ α(ρ, δ)  Ꝓcvdc( ρ, δ) + α( δ, σ)  Ꝓcvdc(  δ, σ )], for all ρ, σ, δ ε Ԩ.                                                                                                                                                    

A pair (Ԩ, Ꝓcvdc) is called complex valued  double controlled metric space. It is clear that  complex valued   doble 

controlled metric space is an extension of  complex valued  b- metric space , complex valued extended b- metric space and 

complex valued controlled metric space 

 Definition 2.9  [16  ]. Let Ԩ ≠ ɸ and α : Ԩ x Ԩ → [1,+ ∞). Let  Ꝓcvcl : Ԩ x Ԩ  → [ 0, ∞) be a function is called complex 

valued  controlled  metric like- space  if                                                                                                                                                                                                                     

1.  Ꝓcvcl( ρ, σ) = 0 implies  ρ  =   σ,                                                                                                                                                                                                                            

2.  Ꝓcvcl( ρ, σ) =   Ꝓcvcl( σ, ρ ),                                                                                                                                                                                                                           

3.  Ꝓcvcl( ρ, σ)  ≤ α(ρ, δ)  Ꝓcvcl( ρ, δ) + α( δ, σ)  Ꝓcvcl(  δ, σ )], for all ρ, σ, δ ε Ԩ.                                                                                                                                                    

A pair (Ԩ, Ꝓcvcl) is called complex valued  controlled metric- like space. 

Definition2.10 [ 19 ]  Let Ԩ ≠ ɸ and α,β : Ԩ x Ԩ → [1,+ ∞). Let  Ꝓcvdcl : Ԩ x Ԩ  → [ 0, ∞) be a function called complex valued  

double controlled  metric like- space  if                                                                                                                                                                                                                      

A1.  Ꝓcvdcl ( ρ, σ) = 0 => ρ  =   σ,                                                                                                                                                                                                                            

A2.  Ꝓcvdcl ( ρ, σ) =  Ꝓcvdcl ( σ, ρ ),                                                                                                                                                                                                                           

A3.  Ꝓcvdcl ( ρ, σ)  ≤ α( ρ, δ) Ꝓcvdcl ( ρ, δ) +  β(  δ, σ ) Ꝓcvdcl (  δ, σ ), for all ρ, σ, δ ε Ԩ.                                                                                                                                                     

A pair (Ԩ, Ꝓcvdcl) is a complex-valued double controlled metric like space. A complex-valued double-controlled metric-like 

space is an extension of a complex-valued controlled metric-like space. 

    A complex-valued double controlled metric- type space is also a complex-valued double controlled metric –space in 

general. The converse is not true in general. Further, this is also a more generalized form than complex-valued extended b–

metric–type space. 

Example 2.1 [ 19 ]  Let  Ԩ  = {1,2,3}. Consider the complex-valued double controlled metric- like  Ꝓcvdcl, defined by 

Ꝓcvdcl 

( ρ, σ) 
1 2 3 

1 0 2+4i 1-i 

2 2+4i 0 1 

3 1-i 1 i/2 

 

Take α, β : Ԩ x Ԩ → [1, ∞) to be symmetric and defined by 

α ( ρ, 

σ) 
1 2 3 

1 1 6/5 151/100 

2 6/5 1 8/5 

3 151/100 8/5 1 

One can easily show that (Ԩ, Ꝓcvdcl) is double controlled metric–like space rather than a controlled metric-type space.                                                                                                                                                                                        

when ρ = 2, δ = 3, σ = 1,                                                                                                                                                                                                                       

I Ꝓcvdcl (ρ,σ) I =  I Ꝓcvdcl (2,1) I  = √20  ≥ 6[1 + √2] /5  = α (2,1)[ I Ꝓcvdcl (2,3) I + I Ꝓcvdcl (3,1) I] = α (ρ,σ ) I Ꝓcvdcl (ρ,δ) I + 

I Ꝓcvdcl (δ,σ) I]. Thus, Ꝓcvdcl is not a complex-valued extended b- metric space. 

Definition 2.11 [ 19 ] Let ( Ɦ, Ꝓcvdcl) be a complex-valued double controlled metric like space by one or two functions. 

1. The sequence {σn} is convergent to some σ in Ԩ if for each positive ε, there is some integer Zε such that Ꝓcvdcl (σn,σ) < ε 

for each n ≥ Zε. 

It is written as limn→∞ σn = σ. 

β  ( ρ, 

σ) 
1 2 3 

1 1 6/5 8/3 

2 6/5 1 33/20 

3 8/3 33/20 1 
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2. The sequence {σn} is said Cauchy, if for every ε > 0, Ꝓcvdcl (σn,σm) < ε for all m,n ≥ Zε,  where  Zε is some integer. 

3. ( Ɦ, Ꝓcvdcl) is complete if every Cauchy sequence converges. 

Definition 2.12 [19 ] Let ( Ɦ, Ꝓcvdcl) be a complex-valued double controlled metric like space by one or two functions for σ 

ε Ԩ and l > 0.  

1. B(σ, l ) = [ y εԨ, Ꝓcvdcl ( σ, y) < l }. 

2. The self-mapping Ţ on Ԩ is said to be continuous at σ in Ԩ if, for all δ > 0, there exists l > 0 such that                     

Ţ(B(σ, l)) ⊆ B(Ţσ,δ). 

If Ţ is continuous at σ in (Ԩ, Ꝓcvdcl), then σn → σ implies that Ţσn →Ţσ when n →∞. 

Lemma 2.1. [ 19 ]  Let ( Ɦ, Ꝓcvdcl) be a complex-valued double controlled metric like space and assume a sequence {σn} in 

Ԩ. Then {σn} is Cauchy sequence  Ꝓcvdcl ( σn,σm) → 0 as n, m →∞where n,m ε N. 

Lemma 2.2  [19  ]  Let ( Ɦ, Ꝓcvdcl) be a complex-valued double controlled metric like space . Then a sequence {σn} in Ԩ is 

a Cauchy sequence, such that σn  ≠ σm, whenever m ≠ n. Then  { σn} converges to at most one point. 

Lemma 2.3  [19  ]  Let ( Ɦ, Ꝓcvdcl) be a complex-valued double controlled metric like space and assume a sequence {σn} in 

Ԩ. Then {σn} is converges to σ    Ꝓcvdcl ( σn,σ) → 0 as n→∞. 

Lemma2.3[19 ] For a given complex-valued controlled space (Ԩ, Ꝓcvdcl), the complex-valued double controlled metric like 

function Ꝓ: Ԩ x Ԩ → C is continuous, with respect to the partial order “ ≤ ”.  

Lemma 2.4[19 ]  Let ( Ɦ, Ꝓcvdcl) be a complex-valued double controlled metric like space. The limit of every convergent 

sequence in Ԩ is unique if the functional  Ꝓcvdcl: Ԩ x Ԩ →Ԩ is continuous. 

3. Result                                                                                                                                                                                           
This section provides several new interpolative contractions, such as the (λ, a)-interpolative Kannan contraction, the 

(λ, a, b)-interpolative Kannan contraction, and the (λ, a, b, c)-interpolative Reich contraction in complex-valued double 

controlled metric –like space, with a given theorem on the Kannan contraction and Reich contraction with examples to 

support the theorem. 
Definition 3.1  Let ( Ɦ, Ꝓcvdcl) be a complex, double-controlled metric-like space. Let Ţ: Ԩ → Ԩ be self mapping. We shall 

Ţ  a ( k, a) – interpolative Kannan contraction if exists k ε [ 0,1). A ε (0,1) such that  

                               Ꝓcvdcl ( Ţσ, Ţρ ) ≤  k (Ꝓcvdcl ( σ, Ţσ ))a  (Ꝓcvdcl ( ρ, Ţρ ))1-a                                                3.1 

for all σ, ρ ε Ԩ , with σ  ≠  ρ. 

Definition 3.2 Let ( Ɦ, Ꝓcvdcl) be a complex, double-controlled metric-like space. Let Ţ: Ԩ → Ԩ be self mapping. We shall  

Ţ  a ( k, a, b) – interpolative Kannan contraction if there exists k ε [ 0,1), a, b ε (0,1) ,                         a + b < 1 such that  

                               Ꝓcvdcl ( Ţσ, Ţρ ) ≤  k (Ꝓcvdcl ( σ, Ţσ ))a  (Ꝓcvdcl ( ρ, Ţρ ))b                                                  3.2 

for all σ, ρ ε Ԩ , with σ  ≠  ρ. 

Definition 3.3  Let ( Ɦ, Ꝓcvdcl) be a complex-valued double controlled metric like space. Let Ţ: Ԩ → Ԩ be self mapping. 

We shall Ţ  a ( k, a, b, c) – interpolative Riech  contraction if there exists k ε [ 0,1), a, b, c ε (0,1) ,                  a + b + c < 1 

such that  

                               Ꝓcvdcl ( Ţσ, Ţρ ) ≤  k (Ꝓcvdcl ( σ, ρ ))a (Ꝓcvdcl ( σ, Ţσ ))b  (Ꝓcvdcl ( ρ, Ţρ ))c                               3.3 

for all σ, ρ ε Ԩ , with σ  ≠  ρ. 

Theorem 3.1 Let ( Ɦ, Ꝓcvdcl) be a complete complex valued double controlled metric like space. Let Ţ: Ԩ → Ԩ be self 

mapping. We shall Ţ  a ( k, a) – interpolative Kannan contraction. For σ0 ε Ԩ, take σn = Ţnσ0. Assume that 

              supm≥1limi→∞ α( σi+1 , σi+2) β( σi+1 , σm)/ α( σi , σi+1) < 1/k                                                                           3.4  

Then Ţ has a fixed point. 
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Proof. Let σ0 ε Ԩ be an initial point. Define a sequence { σn}  as σn+1 = Ţσn for all n ε N. Obviously, if there exists n0 ε N 

for which σn0+1 = σn0, then Ţσn0 = σn0, and the proof is complete. Thus, we suppose that σn+1 ≠ σn  for each n ε N. Thus, by 

3.1, we have  

Ꝓcvdcl (σn , σn+1) =  Ꝓcvdcl (Ţσn-1 , Ţσn)  ≤ k  (Ꝓcvdcl (σn-1 , Ţσn-1))a  ( Ꝓcvdcl (σn , Ţσn))1-a                                                                                      

= k (Ꝓcvdcl (σn-1 , σn))a  ( Ꝓcvdcl (σn , σn+1))1-a   

         (Ꝓcvdcl (σn , σn+1))a  ≤  k(Ꝓcvdcl (σn-1 , σn))a                                                                                                              3.5 

Since a < 1, we have  

Ꝓcvdcl (σn , σn+1) ≤  k1/a(Ꝓcvdcl (σn-1 , σn))  ≤ k Ꝓcvdcl (σn-1 , σn) 

Ꝓcvdcl (σn , σn+1) ≤  k Ꝓcvdcl (σn-1 , σn) ≤  k2 Ꝓcvdcl (σn-2 , σn-1)  ≤  k3 Ꝓcvdcl (σn-3 , σn-2)… ≤  kn Ꝓcvdcl (σ0 , σ1)                  3.6 

For all n,m ε  N and n < m, we have 

Ꝓcvdcl (σn, σm)  ≤ α(σn, σn+1)  Ꝓcvdcl (σn, σn+1)  + β(σn+1, σm)  Ꝓcvdcl (σn+1, σm)   

 ≤ α(σn, σn+1)  Ꝓcvdcl (σn, σn+1)  + β(σn+1, σm) {  α(σn+1, σn+2)  Ꝓcvdcl (σn+1, σn+2)  + β(σn+2, σm)  Ꝓcvdcl (σn+2, σm) }  

            = α(σn, σn+1)  Ꝓcvdcl (σn, σn+1)  + β(σn+1, σm)  α(σn+1, σn+2)  Ꝓcvdcl (σn+1, σn+2)     

              + β(σn+1, σm)  β(σn+2, σm)  Ꝓcvdcl (σn+2, σm)                                                                                      

     ≤ α(σn, σn+1)  Ꝓcvdcl (σn, σn+1)  + β(σn+1, σm)  α(σn+1, σn+2)  Ꝓcvdcl (σn+1, σn+2)     

          + β(σn+1, σm)  β(σn+2, σm)  α(σn+2, σn+3)  Ꝓcvdcl (σn+2, σn+3)   

          + β(σn+1, σm)  β(σn+2, σm) β(σn+3, σm)  Ꝓcvdcl (σn+3, σm)                                                                                                                                                                                                                                                  

     ≤ α(σn, σn+1)  Ꝓcvdcl (σn, σn+1)  + ∑ (𝑚−2
𝑖=𝑛+1 ∏  𝑖

𝑗=𝑛+1  β(σj, σm) ) α(σi, σi+1)  Ꝓcvdcl (σi, σi+1) 

           + ∏  m−1
k=n+1    β(σk, σm)  Ꝓcvdcl (σm-1, σm)   

     ≤ α(σn, σn+1) kn Ꝓcvdcl (σ0, σ1)  + ∑ (𝑚−2
𝑖=𝑛+1 ∏  𝑖

𝑗=𝑛+1  β(σj, σm) ) α(σi, σi+1) ki Ꝓcvdcl (σo, σ1) 

           + ∏  𝑚−1
𝑘=𝑛+1    β(σk, σm) km-1 Ꝓcvdcl (σo, σ1)   

     ≤ α(σn, σn+1) kn Ꝓcvdcl (σ0, σ1)  + ∑ (𝑚−1
𝑖=𝑛+1 ∏  𝑖

𝑗=𝑛+1  β(σj, σm) ) α(σi, σi+1) ki Ꝓcvdcl (σo, σ1)  …          3.7 

Let Si  =   ∑ (𝑖
𝑖=0 ∏  𝑖

𝑗=0  β(σj, σm) ) α(σi, σi+1) ki Ꝓcvdcl (σo, σ1).   …                                                       3.8 

Consider Vi =  ∏  𝑖
𝑗=0  β(σj, σm) α(σi, σi+1)ki Ꝓ(σo, σ1).    …                                                                  3.9 

We have      Vi+1 / Vi    =   β(σi+1, σm) α(σi+1, σi+2)k / α(σi, σi+1) . 

In view of condition (3.1) and the ratio test, we ensure that the series.  ∑  𝑖 Vi converges. Thus  

limn→∞ Sn exists. Hence , the real sequence { Sn} is Cauchy. Now, using (3.7), we have  

      Ꝓcvdcl (σn, σm)  ≤  Ꝓcvdcl (σo, σ1)   [kn α(σn, σn+1)  + Sm-1 – Sn  ].    …                                              3.10 

Above, we used  α(σ, ρ) ≥ 1. Letting n,m →∞ in (3.10) we obtain  

       Lim m,n→∞ Ꝓcvdcl (σn, σm)   = 0.   …                                                                                                3.11 

Thus, the sequence { σn} ia a Cauchy in the complete double metric space (Ԩ,Ꝓcvdcl), so there is some     σ*ε Ԩ so the  
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    Lim n→∞ Ꝓcvdcl (σn, σ*)   = 0.   …                                                                                                       3.12    

That is    σm→σ* as n→∞.  Now we prove that σ* is a fixed point of Ԩ. By (3.1) and condition (4) in def[ 2.10], we get 

Ꝓcvdcl (σ*, Ţσ*)  ≤ α(σ*, σn+1)  Ꝓcvdcl (σ*, σn+1)  + β(σn+1, Ţσ*)  Ꝓcvdcl (σn+1, Ţσ*)   

                   = α(σ*, σn+1)  Ꝓcvdcl (σ*, σn+1)  + β(σn+1, Ţσ*)  Ꝓcvdcl (Ţσn, Ţσ*)   

                   ≤ α(σ*, σn+1)  Ꝓcvdcl (σ*, σn+1)  + β(σn+1, Ţσ*)  [k(Ꝓcvdcl (σn, Ţσn))a (Ꝓcvdcl (ꝓ*, Ţσ*))1—a]   

                   ≤ α(σ*, σn+1)  Ꝓcvdcl (σ*, σn+1)  + β(σn+1, Ţσ*)  [k(Ꝓcvdcl (σn, σn+1))a (Ꝓcvdcl (σ*, Ţσ*))1—a]. 

Taking n→∞ and using (3.11 ), (3.12) we obtain that 

                  Ꝓcvdcl (σ*, Ţσ*)    = 0.   …                                                                                                       3.13 

 Implies, σ*   =   Ţσ*.   

Now, we prove the uniqueness of σ*. Let ρ* be another fixed point of Ţ inԨ, then 

by 3.1, we have 

Ꝓcvdcl (σ*,  ρ*)  = Ꝓcvdcl (Ţσ*,  Ţρ*) ≤ k [Ꝓcvdcl (σ*,  Ţσ*) ]a [Ꝓcvdcl (ρ*,  Ţρ*)]1-a  = 0. 

 Implies ,      σ*   =    ρ*.  Complete the proof. 

 Example 2.1  Let  Ԩ  = {1,2,3}. Consider the complex-valued double controlled metric- like  Ꝓcvdcl defined by  

Ꝓcvdcl 

( ρ, σ) 

1 2 3 

1 0 2-4i 1+i 

2 2-4i 0 1 

3 1+i 1 i/2 

 

Take α, β: Ԩ x Ԩ → [1, ∞) to be symmetric and defined by 

α ( ρ, 

σ) 
1 2 3 

1 1 6/5 151/100 

2 6/5 1 8/5 

3 151/100 8/5 1 

Now we define the self mapping Ţ on Ԩ as follows  Ţ1 = Ţ2 = Ţ3 = 2. 

Now we verify the  first condition of theorem 3.1 

Case 1. σ = 1, ρ = 2                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ1, Ţ2 )I = I Ꝓcvdcl (2,2)I = 0 ≤   k I(Ꝓcvdcl (1, Ţ1 ))Ia I(Ꝓcvdcl (2, Ţ2 ))I1-a = 0                                                                                   

= k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a   

Case 2. σ = 1, ρ = 3                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ1, Ţ3 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (1, Ţ1 ))Ia I(Ꝓcvdcl (3, Ţ3 ))I1-a = k I(Ꝓcvdcl (1, 2 ))Ia 

I(Ꝓcvdcl (3, 2 ))I1-a = k (√20)a . 1 =  k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a                                                            

β  ( ρ, 

σ) 
1 2 3 

1 1 6/5 8/3 

2 6/5 1 33/20 

3 8/3 33/20 1 
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Case 3. σ = 2, ρ = 1                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ2, Ţ1 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (2, Ţ2 ))Ia I(Ꝓcvdcl (1, Ţ1 ))I1-a = k I(Ꝓcvdcl (2, 2 ))Ia 

I(Ꝓcvdcl (1, 2 ))I1-a = 0 = k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a   

Case 4. σ = 2, ρ = 3                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ2, Ţ3 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (2, Ţ2 ))Ia I(Ꝓcvdcl (3, Ţ3 ))I1-a = k I(Ꝓcvdcl (2, 2 ))Ia 

I(Ꝓcvdcl (3, 2 ))I1-a  = 0 = k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a   

Case 5. σ = 3, ρ = 1                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ3, Ţ1 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (3, Ţ3 ))Ia I(Ꝓcvdcl (1, Ţ1 ))I1-a = k I(Ꝓcvdcl (3, 2 ))Ia 

I(Ꝓcvdcl (1, 2 ))I1-a  = k 1. (√20)1-a  = k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a   

Case 6. σ = 3, ρ = 2                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ3, Ţ2 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (3, Ţ3 ))Ia I(Ꝓcvdcl (2, Ţ2 ))I1-a = k I(Ꝓcvdcl (3, 2 ))Ia 

I(Ꝓcvdcl (2, 2 ))I1-a  = 0 = k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a   

Case 7. σ = 1, ρ = 1                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ1, Ţ1 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (1, Ţ1 ))Ia I(Ꝓcvdcl (1, Ţ1 ))I1-a = k I(Ꝓcvdcl (1, 2 ))Ia 

I(Ꝓcvdcl (1, 2 ))I1-a  = k  (√20)1  = k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a  

Case 8. σ = 2, ρ = 2                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ2, Ţ2 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (2, Ţ2 ))Ia I(Ꝓcvdcl (2, Ţ2 ))I1-a = k I(Ꝓcvdcl (2, 2 ))Ia 

I(Ꝓcvdcl (2, 2 ))I1-a   = 0  = k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a   

Case 9. σ = 3, ρ = 3                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ3, Ţ3 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (3, Ţ3 ))Ia I(Ꝓcvdcl (3, Ţ3 ))I1-a = k I(Ꝓcvdcl (3, 2 ))Ia 

I(Ꝓcvdcl (3, 2 ))I1-a  =  1 = k I(Ꝓcvdcl (σ, Ţσ ))Ia I(Ꝓcvdcl (ρ, Ţρ ))I1-a   

For all an ε (0,1) , hence, all the above conditions are satisfied, and these conditions are also satisfied for                        Ţ1 

= Ţ2 = Ţ3 = 1. For any σ0 ε Ԩ, the second condition of theorem 3.1 holds. Therefore, a fixed point exists at 1. 

Theorem3.2 Let ( Ɦ, Ꝓcvdcl) be a complete complex valued double controlled metric like space. Let Ţ: Ԩ → Ԩ be self 

mapping. We shall Ţ  a ( k, a,b) – interpolative Kannan contraction. For σ0 ε Ԩ, take σn = Ţnσ0. Assume that 

              supm≥1limi→∞ α( σi+1 , σi+2) β( σi+1 , σm)/ α( σi , σi+1) < 1/k                                                                       3.15 

Then Ţ has a fixed point. 

Proof. Let σ0 ε Ԩ be initial point. Define a sequence { σn}  as σn+1 = Ţσn for all n ε N. Obviously, if there exists n0 ε N for 

which σn0+1 = σn0, then Ţσn0 = σn0, and the proof is complete. Thus, we suppose that σn+1 ≠ σn  for each n ε N. Thus ,by 3.2, 

we have  

Ꝓcvdcl (σn , σn+1) =  Ꝓcvdcl (Ţσn-1 , Ţσn)  ≤ k  (Ꝓcvdcl (σn-1 , Ţσn-1))a  (Ꝓcvdcl (σn , Ţσn))b   = k (Ꝓcvdcl (σn-1 , σn))a  (Ꝓcvdcl (σn , σn+1))b 

(Ꝓcvdcl (σn , σn+1))1-b  ≤  k(Ꝓcvdcl (σn-1 , σn)                                                                                                       3.16 

  When,a+b < 1                                                                                    

Ꝓcvdcl (σn , σn+1) ≤  k1/1-b(Ꝓcvdcl (σn-1 , σn))  ≤ k Ꝓcvdcl (σn-1 , σn) 

and then   

Ꝓcvdcl (σn , σn+1) ≤  k Ꝓcvdcl (σn-1 , σn) ≤  k2 Ꝓcvdcl (σn-2 , σn-1)  ≤  k3 Ꝓcvdcl (σn-3 , σn-2)… ≤  kn Ꝓcvdcl (σ0 , σ1)            3.17 

As already elaborated in the proof of theorem 3.1, the classical procedure leads to the existence of a fixed point σ* ε Ԩ. 

Theorem 3.3 Let ( Ɦ, Ꝓcvdcl) be a complete complex valued double controlled metric like space. Let Ţ: Ԩ → Ԩ be self 

mapping. We shall Ţ  a ( k, a,b,c) – interpolative Riech contraction. For σ0 ε Ԩ, take σn = Ţnσ0. Assume that 

              supm≥1limi→∞ α( σi+1 , σi+2) β( σi+1 , σm)/ α( σi , σi+1) < 1/k                                                                           3.18                                                                                    
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Then Ţ has a fixed point. 

Proof. Let σ0 ε Ԩ be an initial point. Define a sequence { σn}  as σn+1 = Ţσn for all n ε N. Obviously, if there exists n0 ε N 

for which σn0+1 = σn0, then Ţσn0 = σn0, and the proof is complete. Thus, we suppose that σn+1 ≠ σn  for each n ε N. Thus, by 

3.3, we have  

Ꝓcvdcl (σn , σn+1) =  Ꝓcvdcl (Ţσn-1 , Ţσn)  ≤ k Ꝓcvdcl (σn-1 , σn)a   (Ꝓcvdcl (σn-1 , Ţσn-1))b  (Ꝓcvdcl (σn , Ţσn))c                                                                                                    

= k Ꝓcvdcl (σn-1 , σn)a (Ꝓcvdcl (σn-1 , σn))b  (Ꝓcvdcl (σn , σn+1))c  =  k Ꝓcvdcl (σn-1 , σn)a+b (Ꝓcvdcl (σn , σn+1))c  

Since a+b < 1-c, the last inequalities gives,  

         (Ꝓcvdcl (σn , σn+1))1-c  ≤  k(Ꝓcvdcl (σn-1 , σn))a+b   ≤  k(Ꝓcvdcl (σn-1 , σn))1-c                                                 3.19                                                                         

Ꝓcvdcl (σn , σn+1) ≤  k1/1-c(Ꝓcvdcl (σn-1 , σn))  ≤ k Ꝓcvdcl (σn-1 , σn) 

and then   

Ꝓcvdcl (σn , σn+1) ≤  k Ꝓcvdcl (σn-1 , σn) ≤  k2 Ꝓcvdcl (σn-2 , σn-1)  ≤  k3 Ꝓcvdcl (σn-3 , σn-2)… ≤  kn Ꝓcvdcl (σ0 , σ1)   3.21                          

As already elobrated in the proof of Theorem 3.1, the classical procedure leads to the existence of a fixed point σ* ε Ԩ. 

Example 3.2  Let  Ԩ  = {1,2,3}. Consider the complex- valued double controlled metric- like  Ꝓcvdcl defined by  

Ꝓcvdcl 

( ρ, σ) 
1 2 3 

1 0 2+i 1-i 

2 2+i 0 i 

3 1-i i i/2 

 

Take α, β: Ԩ x Ԩ → [1, ∞) to be symmetric and defined by 

α ( ρ, 

σ) 
1 2 3 

1 1 1 3/2 

2 1 1 8/7 

3 3/2 8/7 1 

Now we define Ţ: Ԩ→Ԩ as follows  Ţ1 = Ţ2 = Ţ3 = 2. 

Now, we verify the first condition of theorem 3.3. 

Case 1. σ = 1, ρ = 2                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ1, Ţ2 )I = I Ꝓcvdcl (2,2)I = 0 ≤   k  I Ꝓcvdcl (1, 2 )Ia I(Ꝓcvdcl (1, Ţ1 ))Ib I(Ꝓcvdcl (2, Ţ2 ))Ic                         = k  I 

Ꝓcvdcl (1, 2 )Ia I(Ꝓcvdcl (1, 2 ))Ib I(Ꝓcvdcl (2, 2 ))Ic  = 0  = k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic   

Case 2. σ = 1, ρ = 3                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ1, Ţ3 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (1,3 ))Ia I(Ꝓcvdcl (1, Ţ1 ))Ib I(Ꝓcvdcl (3, Ţ3 ))Ic                             = k 

I(Ꝓcvdcl (1,3 ))Ia I(Ꝓcvdcl (1, 2 ))Ib I(Ꝓcvdcl (3, 2 ))Ic  = k. (√2 )a (√5 )b.1=  k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic       

Case 3. σ = 2, ρ = 1                                                                                                                                                                                                            

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ2, Ţ1 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (2,1 ))Ia I(Ꝓcvdcl (2, Ţ2 ))Ib I(Ꝓcvdcl (1, Ţ1 ))Ic                            = k 

I(Ꝓcvdcl (2,1 ))Ia I(Ꝓcvdcl (2, 2 ))Ib I(Ꝓcvdcl (1, 2 ))Ic = 0 = k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic    

Case 4. σ = 2, ρ = 3                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ2, Ţ3 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (2,3 ))Ia I(Ꝓcvdcl (2, Ţ2 ))Ib I(Ꝓcvdcl (3, Ţ3 ))Ic                              = k 

I(Ꝓcvdcl (2,3 ))Ia I(Ꝓcvdcl (2, 2 ))Ib I(Ꝓcvdcl (3, 2 ))Ic  = 0 = k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic                                                             

β  ( ρ, 

σ) 
1 2 3 

1 1 7/6 1 

2 7/6 1 9/2 

3 1 9/2 1 
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 Case 5. σ = 3, ρ = 1                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ3, Ţ1 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (3,1 ))Ia I(Ꝓcvdcl (3, Ţ3 ))Ib I(Ꝓcvdcl (1, Ţ1 ))Ic                                         

= k I(Ꝓcvdcl (3,1 ))Ia I(Ꝓcvdcl (3, 2 ))Ib I(Ꝓcvdcl (1, 2 ))Ic = k. (√2 )a . 1. (√5 )c = k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic                                                             

 Case 6. σ = 3, ρ = 2                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ3, Ţ2 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (3,2 ))Ia I(Ꝓcvdcl (3, Ţ3 ))Ib I(Ꝓcvdcl (2, Ţ2 ))Ic                                = k 

I(Ꝓcvdcl (3,2 ))Ia I(Ꝓcvdcl (3, 2 ))Ib I(Ꝓcvdcl (2, 2 ))Ic =  0 =  k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic                                                             

Case 7. σ = 1, ρ = 1                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ1, Ţ1 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (1,1 ))Ia I(Ꝓcvdcl (1, Ţ1 ))Ib I(Ꝓcvdcl (1, Ţ1 ))Ic                                      

= k I(Ꝓcvdcl (1,1 ))Ia I(Ꝓcvdcl (1, 2 ))Ib I(Ꝓcvdcl (1, 2 ))Ic  = 0  = k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic                                                             

 Case 8. σ = 2, ρ = 2                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ2, Ţ2 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (2,2 ))Ia I(Ꝓcvdcl (2, Ţ2 ))Ib I(Ꝓcvdcl (2, Ţ2 ))Ic                                     

= k I(Ꝓcvdcl (2,2 ))Ia I(Ꝓcvdcl (2, 2 ))Ib I(Ꝓ(2, 2 ))Ic =  0 = k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic                                                             

 Case 9. σ = 3, ρ = 3                                                                                                                                                                                                             

I Ꝓcvdcl (Ţσ, Ţρ )I = I Ꝓcvdcl (Ţ3, Ţ3 )I = I Ꝓcvdcl (2,2)I = 0 ≤  k I(Ꝓcvdcl (3,3 ))Ia I(Ꝓcvdcl (3, Ţ3 ))Ib I(Ꝓcvdcl (3, Ţ3 ))Ic                                           = k 

I(Ꝓcvdcl (3,3 ))Ia I(Ꝓcvdcl (3, 2 ))Ib I(Ꝓcvdcl (3, 2 ))Ic  = k.1/2 .1 =  k I(Ꝓcvdcl (σ, ρ ))Ia I(Ꝓcvdcl (σ, Ţσ ))Ib I(Ꝓcvdcl (ρ, Ţρ ))Ic                                                             

 For all a, b,c  ε (0,1) with a+ b+ c < 1, it is clear that the above conditions are satisfied; these conditions are also satisfied 

for  Ţ1 = Ţ2 = Ţ3 = 1. For any σ0 ε Ԩ, the second condition of theorem 3.3 holds. Therefore, a fixed point exists at 1. 

4. Conclusion 
Considering the results [ 19  ], this paper has some fixed point results on complex-valued double-controlled metric-like 

spaces and supporting examples in this setting. The related Kannan Type and Reich type fixed point results are presented. 

This result is more generalized than [ 19 ] and others. This work contributes to understanding complex valued double 

controlled metrics like space in mathematical analysis and its allied areas. 
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