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Abstract - The necessary step government suggests in existing condition of COVID-19 is to get vaccinated. So, this paper reveals 

the importance of the booster dose for COVID-19 by using a relevantly framed Susceptible-Exposed-Infected-Quarantined-

Recovered compartmental model with vaccination class. Foremost, the paper examines the positivity and boundedness by the 

system of equations followed by estimating the reproduction number. Later, the local stability of the equilibria and the global 

stability of the disease-free equilibrium of the model is analyzed. The simulations performed numerically explains the impact of 

getting vaccinated and also analyses the reproduction number at two equilibriums. The analysis concludes with the fact that the 

spread of corona virus declines while people get vaccinated and may be eradicate in future. 
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1. Introduction 
Since late 2019, COVID-19 has posed a significant risk to humanity. The human coronavirus was first identified in 1965. 

SARSCoV-2 originated from bats and was transmitted to humans around the same time. Subsequently, it spread from human to 

human, indicating its contagious nature and leading to a pandemic. The latent period of COVID-19 is estimated to be 

approximately 14 days. SARS-CoV-2 has undergone genetic changes, resulting in various variants, including Alpha, Beta, 

Gamma, Delta, and the recently emerged Omicron. In recent times, there has been a noticeable increase in the number of 

infections, despite a temporary decline in the infection curve on some days. Therefore, it is imperative to focus on controlling 

the spread of the coronavirus. 

As a measure, the government mandated the wearing of face masks. While commendable, not all individuals adhere to this 

requirement consistently, making it challenging to enforce. Therefore, an alternative approach is necessary. The World Health 

Organization (WHO) recommends receiving a precautionary dose, commonly referred to as a booster dose. Hence, an effective 

vaccine could potentially aid in decreasing the number of infections. 

Bhadauria, Devi, and Gupta's study titled "Modelling and analysis of a SEIQR model on COVID-19 pandemic with delay" 

contributes significantly to the ongoing discourse on mathematical modeling of infectious diseases, particularly COVID-19. The 

SEIQR model proposed in their research offers a nuanced understanding of disease transmission dynamics by incorporating delay 

factors, which are crucial for capturing real-world complexities. The authors build upon existing epidemiological models to 

develop a comprehensive framework that accounts for SEIQR (Susceptible-Exposed-Infected-Quarantine-Recovered) 

individuals, along with a vaccination (V) compartment. Through rigorous mathematical analysis and numerical simulations, they 

investigate the global stability of the system, employing Lyapunov function and LaSalle's principle. Their findings underscore 

the pivotal role of vaccination in curbing disease transmission, with the model demonstrating how vaccination efforts contribute 

to reducing the number of infected individuals and increasing recoveries. Moreover, the study evaluates the effectiveness of the 

SEIQR model in predicting COVID-19 spread, offering valuable insights into the dynamics of the pandemic and informing public 

health interventions. Overall, Bhadauria, Devi, and Gupta's research enriches the scientific understanding of COVID-19 

dynamics and provides a valuable tool for policymakers and epidemiologists to devise effective strategies for controlling the 

spread of the disease. [1] 

 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The study by Chengjun Sun and Ying-Hen Hsieh, titled "Global analysis of an SEIR model with varying population size and 

vaccination," published in the journal Applied Mathematical Modelling, contributes significantly to the field of infectious disease 

modeling. The research investigates the dynamics of disease transmission within the framework of an SEIR (Susceptible-

Exposed-Infectious-Recovered) model, considering variations in population size and the impact of vaccination. The authors 

extend previous SEIR models by incorporating demographic factors, such as varying population sizes, into their analysis. 

Through rigorous mathematical analysis and numerical simulations, they explore the global behavior of the model, examining 

stability conditions and identifying critical parameters that influence disease dynamics.  

A key focus of the study is the role of vaccination in controlling disease spread. By integrating vaccination into the SEIR 

model, Sun and Hsieh evaluate its effectiveness in reducing the prevalence of infectious individuals and mitigating the impact of 

epidemics. Their findings provide valuable insights into the optimal allocation of vaccination resources and the potential 

outcomes of different vaccination strategies. Overall, the research by Sun and Hsieh advances our understanding of infectious 

disease dynamics, particularly in the context of varying population sizes and vaccination interventions. The study's 

comprehensive analysis offers valuable guidance for policymakers and public health officials in designing effective strategies 

for disease control and prevention. [3] 

Yavuz, Coşar, Günay, and Özdemir's study titled "A New Mathematical Modeling of the COVID-19 Pandemic Including 

the Vaccination Campaign," published in the Open Journal of Modelling and Simulation, presents a novel approach to modeling 

the COVID-19 pandemic, specifically incorporating the dynamics of vaccination campaigns. The research introduces a 

mathematical model that not only captures the spread of the virus but also accounts for the impact of vaccination efforts. By 

integrating vaccination parameters into the model, the authors assess the effectiveness of vaccination campaigns in controlling 

disease transmission and reducing the burden on healthcare systems. Through mathematical analysis and numerical simulations, 

Yavuz et al. investigate various scenarios to evaluate the potential outcomes of different vaccination strategies.  

Their findings provide insights into the optimal allocation of vaccine doses, vaccination coverage rates, and the timing of 

vaccination campaigns to achieve maximum impact in mitigating the spread of COVID-19. Overall, the study contributes to the 

growing body of literature on mathematical modeling of infectious diseases, offering valuable insights into the dynamics of 

COVID-19 transmission and the role of vaccination in disease control. The research findings have important implications for 

policymakers and public health authorities in formulating effective strategies for combating the pandemic. [9] 

Mathematical models play a crucial role in validating and simulating disease spread patterns, offering insights into pandemic 

management, treatment, and prevention strategies. These models typically comprise of six classes i.e., SEIQRV. In this study, 

the vaccination class serves as a key strategy for disease control, highlighting the significance of vaccination and its impact on 

reducing the infectious curve of the COVID-19 pandemic. 

2. Formulation and Analysis of Mathematical Model  

The model is constructed with the assumptions taken below 
𝑑𝑆

𝑑𝑡
= Λ+𝜆𝐸 − 𝛽𝑆𝐼 − (𝛼 + 𝜂1 + 𝜇)𝑆

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜆 + 𝜂2 + 𝜇)𝐸

𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − (𝛿1 + 𝜂3 + 𝑘1 + 𝜇)𝐼

𝑑𝑄

𝑑𝑡
= 𝜂1𝑆 + 𝜂2𝐸 + 𝜂3𝐼 − (𝛿2 + 𝑘2 + 𝜇)𝑄

𝑑𝑅

𝑑𝑡
= 𝛿1𝐼 + 𝛿2𝑄 − (𝛼 + 𝜇)𝑅

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 + 𝛼𝑅 − 𝜇𝑉 }

 
 
 
 

 
 
 
 

         (1) 

 

 

Provided with the preliminary conditions,  𝑆(0) = 𝑆0,  𝐸(0 = 𝐸0,  𝐼(0) = 𝐼0,  𝑄(0) = 𝑄0,  𝑅(0) = 𝑅0 and 𝑉(0) =  𝑉0. 

Also,  𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝑉(𝑡) = 𝑁(𝑡) where 𝑁denote the population. 
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The parameters used in Equation 1 are described in the given Table 1. 

 

Table 1. Description of parameters of the model 

Parameters Description 

𝑆 Susceptible individuals 

𝐸 Exposed individuals 

𝐼 Infected individuals 

𝑄 Quarantined individuals 

𝑅 Recovered individuals 

𝑉 Vaccination Class 

𝛬  Birth rate 

𝛽  Rate at which individual move from S to I 

𝜆  Rate at which individual move from E to S 

𝛾  Rate at which individual move from E to I 

𝜂1  Rate at which individual move from S to Q 

𝜂2  Rate at which individual move from E to Q 

𝜂3  Rate at which individual move from I to Q 

𝛿1  Rate at which individual recover from I 

𝛿2  Rate at which individual recover from Q 

𝑘1  Disease caused death rate in I 

𝑘2  Disease caused death rate in Q 

𝛼  Rate of vaccination efficacy 
   Death rate 

2.1. Positivity Analysis of the Model 
Theorem 1 

Let 𝛤(𝑡) = [𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝑉(𝑡)]𝑇 ∈ ℝ6 be the solution set of system given in Equation 1.. Then ( )t  is non-

negative for all 𝑡 > 0. 

 

Proof.  

From the system of equations given in Equation 1., it is obtained as below 
𝑑𝑆

𝑑𝑡
= 𝛬 + 𝜆𝐸 − (𝛽𝐼 + 𝛼 + 𝜂1 + 𝜇)𝑆 

𝑑𝑆

𝑆
≥ −(𝛽𝐼 + 𝛼 + 𝜂1 + 𝜇)𝑑𝑡 

Integrating and solving, 

𝑆(𝑡) ≥ 𝑆(0)𝑒−(𝛽𝐼+𝛼+𝜂1+𝜇)𝑡 
Thus, 

𝑆(𝑡) ≥ 0 

Similarly, for𝐸(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0, 𝑄(𝑡) ≥ 0 , 𝑅(𝑡) ≥ 0 and 𝑉(𝑡) ≥ 0 it can be proved. 

Hence, for all𝑡 > 0 the solution set𝛤(𝑡)is non-negative. 

2.2. The Invariant Region of the System 

Theorem 2 

The solution of the system given in Equation 1. along with the preliminary conditions, are bounded in the region𝛷 ⊂ ℝ+
6  , 

where.𝛷 = {(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝑉(𝑡)) ∈ ℝ+
6 ; 𝑁(𝑡) ≤

𝛬

𝜇
} 

 

Proof. 

By the system of equations as given in Equation 1, 
𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑆(𝑡)

𝑑𝑡
+

𝑑𝐸(𝑡)

𝑑𝑡
+

𝑑𝐼(𝑡)

𝑑𝑡
+

𝑑𝑄(𝑡)

𝑑𝑡
+

𝑑𝑅(𝑡)

𝑑𝑡
+

𝑑𝑉(𝑡)

𝑑𝑡
  

          = 𝛬 − 𝜇(𝑆 + 𝐸 + 𝐼 + 𝑄 + 𝑅 + 𝑉) − 𝑘1𝐼 − 𝑘2𝑄  
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𝑑𝑁(𝑡)

𝑑𝑡
 ≤ 𝛬 − 𝜇𝑁 

Thus, 

𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝𝑁 (𝑡) ≤
𝛬

𝜇
  

Therefore, the feasible solution of the system is bounded in 𝛷. 

2.3. Reproduction Number𝑹𝟎 

Every constant in the system, have impact in the characteristic of the disease whereas the most notable constant is the 

Reproduction number. It is generally denoted by 𝑅0. It has two cases as below, 

a. For 𝑅0 < 1, the epidemic will reduce and might come to an end.  

b. For 𝑅0 < 1, the epidemic will prolong. 

 

Thus, the ratio 𝑅0 helps in predicting the sustainability of the disease. The 𝑅0of the system given Equation 1 can be 

determined by the Jacobian matrix of the infectious classes namely Exposed, Infected and Quarantined. 

 

𝐽(𝐸, 𝐼, 𝑄) = (

−(𝛾 + 𝜆 + 𝜂2 + 𝜇) 𝛽𝑆 0

𝛾 −(𝛿1 + 𝜂3 + 𝑘1 + 𝜇) 0

𝜂2 𝜂3 −(𝛿2 + 𝑘2 + 𝜇)
) 

 

The above matrix is reduced into two matrix namely transmission matrix𝐹and transition matrix 𝑉. 

𝐹 = (
0 𝛽𝑆 0
0 0 0
0 0 0

); 𝑉 = (

−(𝛾 + 𝜆 + 𝜂2 + 𝜇) 0 0

𝛾 −(𝛿1 + 𝜂3 + 𝑘1 + 𝜇) 0

𝜂2 𝜂3 −(𝛿2 + 𝑘2 + 𝜇)
)  

 

The inverse of the transition matrix is given by 

𝑉−1 =

(

 
 
 
 

−1

(𝛾 + 𝜆 + 𝜂2 + 𝜇)
0 0

𝛾

(𝛾 + 𝜆 + 𝜂2 + 𝜇)(𝛿1 + 𝜂3 + 𝑘1 + 𝜇)

−1

(𝛿1 + 𝜂3 + 𝑘1 + 𝜇)
0

𝛾𝜂3 + 𝜂2(𝛿1 + 𝜂3 + 𝑘1 + 𝜇)

(𝛾 + 𝜆 + 𝜂2 + 𝜇)(𝛿1 + 𝜂3 + 𝑘1 + 𝜇)(𝛿2 + 𝑘2 + 𝜇)

−𝜂3
(𝛿1 + 𝜂3 + 𝑘1 + 𝜇)(𝛿2 + 𝑘2 + 𝜇)

−1

(𝛿2 + 𝑘2 + 𝜇))

 
 
 
 

 

 

The spectral radius of matrix 𝐹𝑉−1 denoted by 𝜌(𝐹𝑉−1) gives the reproduction number𝑅0as follows 

𝑅0 =
𝛽𝑆𝛾

(𝛾+𝜆+𝜂2+𝜇)(𝛿1+𝜂3+𝑘1+𝜇)
                    (2) 

2.4. Determination of Equilibrium Points 

Every system has equilibria namely DFE (Disease-free equilibrium) and EE (Endemic equilibrium). The DFE is a point 

where a disease doesn’t exist and EE is a point where a disease is frequently balanced at minimum level. Thus, the DFE of the 

system given in Equation 1 at  𝑆0 = 1and 𝐸0 = 𝐼0 = 𝑄0 = 𝑅0 = 0is obtained as 

 

(𝑆0,   𝐸0,   𝐼0,   𝑄0,  𝑅0,  𝑉0) = (
𝛬

(𝛼+𝜂1+𝜇)
,  0,0,0,0,

𝛼𝛬

𝜇(𝛼+𝜂1+𝜇)
)    (3) 

 

 

Similarly, by necessary simplifications the EE can be obtained as below, 

𝑆∗ =
𝛬(𝛾+𝜆+𝜂2+𝜇)

𝛽𝐼∗(𝛾+𝜂2+𝜇)+(𝛼+𝜂1+𝜇)(𝛾+𝜆+𝜂2+𝜇)
  

𝐸∗ =
𝛬𝛽𝐼∗

𝛽𝐼∗(𝛾 + 𝜂2 + 𝜇) + (𝛼 + 𝜂1 + 𝜇)(𝛾 + 𝜆 + 𝜂2 + 𝜇)
 

𝑄∗ =
𝛬[𝜂1(𝛿1 + 𝜂3 + 𝑘1 + 𝜇)(𝛾 + 𝜆 + 𝜂2 + 𝜇) + 𝜂2𝛽𝐼

∗(𝛿1 + 𝜂3 + 𝑘1 + 𝜇) + 𝜂3𝛾𝛽𝐼
∗]

(𝛿2 + 𝑘2 + 𝜇)(𝛿1 + 𝜂3 + 𝑘1 + 𝜇)[𝛽𝐼
∗(𝛾 + 𝜂2 + 𝜇) + (𝛼 + 𝜂1 + 𝜇)(𝛾 + 𝜆 + 𝜂2 + 𝜇)]
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( )( ) ( ) ( )( )

( )( ) ( )

( )( )( ) ( ) ( )( )

*

* 1

*

1 3 1 2 1 2

* *

2 1 1 3 1 2 2 1 3 1 3

*

2 2 1 3 1 2 1 2

Λ

Λ

R

k

I

k I

k I k I

k I

 

               

               

                 

+ + + + + + + + + + + +

+ + + + + + + + + + +
+

+ + + + + + + + + + + + + +

=
  

  

  

 

𝑉∗ =
𝛼𝛬(𝛾 + 𝜆 + 𝜂2 + 𝜇)

𝜇[𝛽𝐼∗(𝛾 + 𝜂2 + 𝜇) + (𝛼 + 𝜂1 + 𝜇)(𝛾 + 𝜆 + 𝜂2 + 𝜇)]
+
𝛼

𝜇
𝑅∗ 

Where, 

𝐼∗ =
𝛬𝛽𝛾−(𝛼+𝜂1+𝜇)(𝛾+𝜆+𝜂2+𝜇)(𝛿1+𝜂3+𝑘1+𝜇)

𝛽(𝛾+𝜂2+𝜇)(𝛿1+𝜂3+𝑘1+𝜇)
      (4) 

2.5. Local Stability Analysis of the Equilibrium Points 

Here, the local stability of the system is determined at disease-free equilibrium and at endemic equilibrium given in Equation 

3 and Equation 4. The equilibrium point will be locally asymptotically stable if it is stable and locally attractive. The local stability 

of the equilibria is determined by the following two theorems. 

Theorem 3 

If 𝑅0 < 1, then the system given in Equation 1. at D. F. E is locally asymptotically stable. 

 

Proof. 

Let the system given in Equation 1. at D. F. E be 𝑀1 = (𝑆, 𝐸, 𝐼, 𝑄, 𝑅, 𝑉). The Jacobian matrix at D. F. E is given by 

𝐽(𝑀1) =

(

 
 
 
 
 

−(𝛼 + 𝜂1 + 𝜇) 𝜆
−𝛬𝛽

(𝛼+𝜂1+𝜇)
0 0 0

0 −(𝛾 + 𝜆 + 𝜂2 + 𝜇)
𝛬𝛽

(𝛼+𝜂1+𝜇)
0 0 0

0 𝛾 −(𝛿1 + 𝜂3 + 𝑘1 + 𝜇) 0 0 0

𝜂1 𝜂2 𝜂3 −(𝛿2 + 𝑘2 + 𝜇) 0 0
0 0 𝛿1 𝛿2 −(𝛼 + 𝜇) 0
𝛼 0 0 0 𝛼 −𝜇)

 
 
 
 
 

             (5) 

 

Thus, the eigenvalues of the above Jacobian matrix are as follows 

𝜆1 = −(𝛼 + 𝜂1 + 𝜇),𝜆2 = −(𝛾 + 𝜆 + 𝜂2 + 𝜇),𝜆3 = −(𝛿1 + 𝜂3 + 𝑘1 + 𝜇), 𝜆4 = −(𝛿1 + 𝑘2 + 𝜇), 𝜆5 = −(𝛼 + 𝜇), 𝜆6 =
−𝜇. 

Clearly, all are negative only if 𝑅0 < 1. 

Hence the system is locally asymptotically stable if 𝑅0 < 1. 

Theorem 4 

The system shown in Equation 1. at the endemic stage,  𝑀2 = (𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗, 𝑉∗) is locally asymptotically stable only if 𝑅0 >
1and the system is unstable if 𝑅0 < 1. 

 

Proof. 

To determine the stability the Jacobian matrix is obtained as specified. 

𝐽(𝑀2) =

(

 
 
 
 

−(𝛼𝛽𝐼∗ + 𝜂1 + 𝜇 ) 𝜆 −𝛽𝑆∗ 0 0 0

𝛽𝐼∗ −(𝛾 + 𝜆 + 𝜂2 + 𝜇) 𝛽𝑆∗ 0 0 0

0 𝛾 −(𝛿1 + 𝜂3 + 𝑘1 + 𝜇) 0 0 0

𝜂1 𝜂2 𝜂3 −(𝛿2 + 𝑘2 + 𝜇) 0 0
0 0 𝛿1 𝛿2 −(𝛼 + 𝜇) 0
𝛼 0 0 0 𝛼 −𝜇)

 
 
 
 

     (6) 

The eigenvalues of the above matrix are 

𝜆1
∗ = −𝜇,𝜆2

∗ = −(𝛼 + 𝜇),𝜆3
∗ = −(𝛿2 + 𝑘2 + 𝜇),𝜆4

∗ = −(𝛿1 + 𝜂3 + 𝑘1 + 𝜇). 
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whereas, 𝜆5
∗and 

*
6  are obtained by solving the below characteristic equation 

𝜆∗
2 + (𝛽𝐼∗ + 𝛼 + 𝜂1 + 𝛾 + 𝜆 + 𝜂2 + 2𝜇)𝜆∗

2 + [(𝛽𝐼∗ + 𝛼 + 𝜂1 + 𝜇)(𝛾 + 𝜆 + 𝜂2 + 𝜇) − 𝛽𝐼
∗𝜆] = 0 

 

Hence, the system is asymptotically stable at the endemic stage if𝑅0 > 1and if 𝑅0 < 1, it is unstable. 

2.6. Global Stability Analysis of the Equilibrium Point 

This section determines, the global stability of the system at disease-free equilibrium shown in Equation 3. 

Theorem 5 

The system in Equation 1. is globally asymptotically stable at the D. F. E, if 𝑅0 < 1 and unstable otherwise. 

 

Proof. 

Let us consider the following Lyapunov function, 

𝐿(𝑡) = 𝐶1𝐸 + 𝐶2𝐼 
The derivative of the Lyapunov function is obtained as follows, 

( )
   

 

 

1 1 2 2

1 2 2 2 1 1

2

1 2 2 1 1

1 1

[ ]

1

dL t
C SI E C E I

dt

C SI C I C C E

C
C SI C I C E

C

   

   


  



= − + −

= − + −

= − + −
 
 
 

 

 

Where 𝜔1 = (𝛾 + 𝜆 + 𝜂2 + 𝜇)and 𝜔2 = (𝛿1 + 𝜂3 + 𝑘1 + 𝜇). 
Choosing 𝐶1 = 𝜔2, 𝐶2 = 𝛽𝑆, the above equation becomes 

𝑑𝐿(𝑡)

𝑑𝑡
= 𝜔1𝜔2[𝑅0 − 1]𝐸 

Thus, it is clear that,  
𝑑𝐿(𝑡)

 𝑑𝑡 
≤ 0for 𝑅0 < 1. 

By LaSalle’s invariance principle, the Lyapunov function is stable which completes the proof. 

3. Numerical Simulation 
Here, certain numerical simulations are performed to expose the optimality of model given in Equation 1 and to show the 

effect of vaccination in dynamical behavior of corona virus. The simulation is performed with the following initial values 

considered [6]. 

For,𝑆 = 100, 𝐸 = 3, 𝐼 = 1, 𝑄 = 0, 𝑅 = 0, 𝑉 = 0, 𝛬 = 0.1, 𝛽 = 0.1, 𝜆 = 0.3, 𝛾 = 0.3, 𝜂1 = 0.1, 𝜂2 = 0.1, 𝜂3 = 0.1, 𝛿1 =
0.4, 𝛿2 = 0.4, 𝑘1 = 0.2, 𝑘2 = 0.2, 𝜇 = 0.003. 

 

Here, the proposed model is compared with the general SEIQR model to show that with the help of vaccination class the 

spread of corona virus can be controlled and reduced. The curve of the SEIQR and SEIQRV model is given in the below figures 

correspondingly. 

 
Fig. 1 SEIQR model without vaccination class 
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Fig. 2 SEIQR model with vaccination with 𝜶 = 𝟎. 𝟎𝟏 

It is possible to solve using various methods and one among them is by using a software named MATLAB. It is a mathematics 

oriented software which is more helpful in solving a tedious problem. 

The impact of getting vaccinated is understood by comparing the Figure 1 and Figure 2. In Figure 1, though the susceptible 

individuals begin to decrease, after some days it again starts to increase slightly. So the risk of getting infected is prevailed. The 

exposed and the infected individuals in SEIQR model is high comparing SEIQR-V model. Also, even for increase in quarantine 

the recovery curve is not appreciably high in SEIQR model. Whereas in SEIQR-V model, for gradual increase in vaccination 

with𝛼 = 0.01, the exposed and the infected individuals decreases more sufficiently. It is also observed that the quarantined 

individuals is also less. The more essential thing to be observed is the recovered individuals is very high comparing the SEIQR 

model. Thus, for a least value of 𝛼 there is an optimal result in the recovery curve. 

3.1. Analysis of the Reproduction Number 𝑅0 

The initial values considered in [6] is used in equation (2) to derive the value of𝑅0at D.F.E. and E.E. as follows:- 

(a) At disease-free equilibrium: 

( ) ( )

( ) ( )

0

2 1 3 1

0.1 0.885 0.3
      

0.3 0.3 0.1 0.003 0.4 0.1 0.2 0.003

S
R

k

 

      
=

+ + + + + +

 
=

+ + +  + + +

  

𝑅0 = 0.0537 < 1 

Thus, the value of R0 is less than 1 showing the spread of COVID-19 will decline and may be removed soon. 

(b) At endemic equilibrium the value of 𝑅0 = 1, which reveals the fact that the disease prevails but it would not be a great 

threat which is the exact present scenario. 
 

4. Conclusion 
The SEIQRV model constructed provides a comprehensive representation of the dynamics of COVID-19. Global stability 

analysis is conducted using Lyapunov function and concluded through LaSalle’s principle. Subsequent numerical simulations 

demonstrate that vaccination reduces the number of infected individuals, consequently increasing the number of recoveries, 

affirming the efficacy of the SEIQRV model. Additionally, numerical analysis of the reproduction number provides further 

evidence of the model's effectiveness, validating its authenticity. The proposed model facilitates the assessment of vaccination 

requirements for controlling COVID-19 spread, thus offering predictive insights into future cases. Accordingly, the model is 

tailored to the current pandemic scenario, enhancing its utility in forecasting future trends and informing public health strategies. 

By providing a reliable framework for analyzing COVID-19 dynamics and vaccination strategies, the SEIQRV model contributes 

significantly to the ongoing efforts to mitigate the impact of the pandemic and prevent future outbreaks. 
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