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Abstract - This paper sets forth a new model for the coupling and simultaneous implementation of integrated pest management 

in pulsed mode with variable time and fixed dose. In this case, the optimization problem takes the pest population below an 

economic threshold as a constraint and the control cost as an objective function. Finally, numerical simulations were carried 

out to evaluate the optimal control model for the pests. 
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1. Introduction 
The whitefly stands as a paramount agricultural pest, posing substantial detriment to numerous vital crops worldwide [1]. 

Cassava is playing a key role in ensuring food security in the midst of famine, owing to its protracted storage capacity in the soil 

preceding harvest [2]. Nevertheless, agricultural cassava's production faces substantial constraints, notably from the whitefly. 

Bokil et al. [3] employed optimal control theory within the framework of the continuous frequency-replanting model to 

investigate the impacts of both infected plant removal and insecticide application. Their findings underscored the heightened 

efficacy of a combined approach, surpassing the effectiveness of singular control measures. 

Building on the preceding discussion, we constructed a mathematical model involving cassava plants, whiteflies, together 

with cassava mosaic virus and then integrated pulse interventions such as pesticide application and infected plant removal in 

Section 2. Optimization problems are subsequently formulated, integrating the economic threshold of pests as a constraint. 

Moreover, numerical simulations are conducted to explore pest control strategies in section 3. Finally, we provide concluding 

remarks in section 4. 

2. Optimization Problem Creation 
2.1.  ODE  model 

 Utilizing the frequency-replanting model established in [4], we have devised a new model comprising susceptible plants 

indicated with S, infected plants indicated with I, non-infective whiteflies indicated with U, and infective whiteflies indicated 

with W.  
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with initial condition 

𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑈(0) = 𝑈0,𝑊(0) = 𝑊0.                                                       (2) 

 

In this context, the overall cassava population is symbolized as 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡), while the aggregate whitefly population 

is articulated as 𝑉(𝑡) = 𝑈(𝑡) +𝑊(𝑡). Table 1 furnishes elucidation on the parameters employed within the designated model. 
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Table 1. Parameters values of model (1) and (2)  

Parameter Description Value Reff 

𝜃 Maximum plant population pressure (per m2) 10 ~ 

휀 Infected plants selection frequency 0.1 [5] 

b Maximum replanting rate (per day) 0.01 [3] 

𝛽 
whiteflies to plants inoculation rate (per day per 

whiteflies ) 
0.00001 ~ 

h Plants harvesting rate (per day) 0.003 [3] 

g Infected plants recovery rate (per day) 0.003 [3] 

𝜅 Maximum whiteflies density per host plant 500 [5] 

a Maximum whiteflies birth rate (per day) 0.2 [3] 

𝛾 
Plant to whiteflies acquisition rate (per day per 

plant) 
0.001 [3] 

c Whiteflies mortality (per day) 0.16 [5] 

 

In Figure 1, we present the simulated trajectories of the pest population under uncontrolled conditions, with the Economic 

Threshold (ET) set at a fixed value of 350. Evidently, human intervention is imperative for the efficacious management of pest 

populations. Herein, we implement a pulsed pattern strategy involving pesticides and the removal of infected plants to counteract 

pest proliferation. 

2.2. Impulse ODE  Model 

Firstly, we formulated an ODE model incorporating pulse interference, wherein the effects of pulse interference stemming 

from pesticide application and the removal of infected plants were taken into account. That is 

{
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0 ≤ 𝑡 ≤ 𝑇, 𝑡 ≠ 𝑡𝑖 ,                                         (3) 

and  the impulse conditions are 

{
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} 𝑡 = 𝑡𝑖, 𝑖 = 1,2, … , 𝑛 − 1,                                                       (4) 

and initial condition is (2). where T denotes the terminal time. The time points of impulse, denoted as 𝑡𝑖, adhere to the following 

criteria: 

                 0 ≤ 𝑡1 ≤ 𝑡2 ≤,… ,≤ 𝑡𝑛 = 𝑇, 
𝑡𝑖 − 𝑡𝑖−1 = 𝜏𝑖 , ∑ 𝜏𝑖

𝑛
𝑖=1 = 𝑇, 𝑎𝑖 ≤ 𝜏𝑖 ≤ 𝑏𝑖 , 𝑖 = 1,2, … , 𝑛 − 1,                                                    (5) 

where 𝑎𝑖and 𝑏𝑖 are  given non-negative constants. 

Moreover, specific conditions are proposed to regulate the release of pesticides and the removal of infected plants: 

0 ≤ 𝜂 ≤ 𝑐𝑖
1, 0 ≤ 𝛼 ≤ 𝑐𝑖

2, 𝑖 = 1,2, … , 𝑛 − 1,                                                            (6) 

where 𝑐𝑖
1 and 𝑐𝑖

2, are also the given non-negative constants. 

2.3. Optimal  Control Problem 

For convenience, we introduce the following notations: 
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Define a cost function 

𝐽(𝜂, 𝛼, 𝜏) = (𝑛 − 1)𝜌𝑉𝐴𝜂 + ∑ 𝜌𝐼𝑛
𝑖=1 𝛼𝐼(𝑡𝑖),                                                    (7)  

Where 𝜌𝑉  and 𝜌𝐼 , denote the cost per unit area of pesticide spraying, the labor price of removing unit infected plants, 

respectively, whereas A refers to the aggregate area of the cropland cultivating cassava, 𝐼(𝑡𝑖) signifies the value of infected plants 

at 𝑡𝑖 

Additionally, postulate that the pest population at time t adheres to the following inequality constraint: 

𝑉(𝑡) ≤ 𝜗, ∀𝑡 ∈ [0, 𝑇],                                                                          (8) 

Where, 𝐸𝑇 = 𝜗 is the Economic Threshold . 

Hence, our optimal pest control problem can now be formally framed as: 

 Problem P 

Subject to impulsive dynamic system (3)-(4), with the initial condition (2) and inequality constraint (8), find a combined 

parameter vector pair (𝜂, 𝛼, 𝜏), such that the cost function 𝐽(𝜂, 𝛼, 𝜏) is minimized. 

Note 

Based on literatures [6], system (3)-(4) with initial condition (2) has a unique solution. Further, for each pair (𝜂, 𝛼, 𝜏) meeting 

(5) and (6), Problem P exists an optimal solution. Likewise, the subsequent optimization problems all possess optimal solutions, 

which will not be elaborated further. 

Given the inherent uncertainty associated with the states I, characterized by uncertain jump times and magnitudes, the 

complexity of resolving the issue is notably compounded. To mitigate this challenge, Control Parameter Enhanced 

Transformation (CPET) [7,8], a time scale transformation technique, is used to transform the system from the time scale (0,T) to 

(0,1) . The new modified model is 

{
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0 ≤ 𝑠 ≤ 1, 𝑖 = 1,…𝑛,                        (9) 

and the impulse conditions are 

{

𝑈𝑖(0) = (1 − 𝜂)𝑈𝑖−1(1)

𝑊𝑖(0) = (1 − 𝜂)𝑊𝑖−1(1)

𝐼𝑖(0) = (1 − 𝛼)𝐼𝑖−1(1)

} 𝑖 = 1,2, … , 𝑛,                                                          (10) 

and initial conditions are 

 𝑆0(0) = 𝑆0, 𝐼0(0) = 𝐼0, 𝑈0(0) = 𝑈0,𝑊0(0) = 𝑊0.                                               (11) 

And inequality constraint is is updated to 

𝑉𝑖(𝑠) ≤ 𝜗, 𝑖 = 1,2, … , 𝑛, 𝑠 ∈ [0,1]. 

As the problem at hand entails an optimization challenge with inequality constraints, the incorporation of a penalty function 

[9] becomes imperative to render it as a more encompassing constrained optimization problem. Define penalty function: 

𝛥(𝜇) = ∑∫ [𝑚𝑎𝑥{0, 𝑉𝑖(𝑠) − 𝜗}]
1
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and  𝛥(𝜇) = 0 holds if and only if the inequality constraint is satisfied. Thus we get the solvable optimization problem 

Problem P1 

Subject to impulsive dynamic system (9)-(10), with the initial condition (11), search a combined parameter vector (𝜂, 𝛼, 𝜏, 𝜎), 
such that the cost function  

𝐽1(𝜂, 𝛼, 𝜏, 𝜎) = (𝑛 − 1)𝜌
𝑉𝐴𝜂 + ∑ 𝜌𝐼

𝑛

𝑖 = 1

𝛼𝐼(𝑡𝑖) + 𝜎
−𝛿 1 ∑∫ [𝑚𝑎𝑥{0, 𝑉𝑖(𝑠) − 𝜗}]

1

0

𝑛

𝑖 = 1

2

𝑑𝑠 + 𝜔𝜎𝛿 2 

 is minimized. Here 𝜔 is the penalty parameter, 𝛿1and 𝛿2 are positive constants satisfying the conditions0 ≤ 𝛿2 ≤ 𝛿1with 𝛿1 >
0and 𝛿2 > 2. 

3. Solve the Optimal Problem 
In below, using numerical simulation to solve the optimal problem. First, set the initial values 

𝑆(0) = 10, 𝐼(0) = 5, 𝑈(0) = 70,𝑊(0) = 0, 

and take the terminal time T=150 days. In the cost function, further assume that𝐴 = 100, 𝜌𝑉 = 1.5, 𝜌𝐼 = 1. 

Taking initial equal releasing intervals and releasing rates as follows 

𝜏𝑖0 = 30, 𝜂 = 0.2, 𝛼 = 0.3, 𝑖 = 1,2,3,4,5 

and 𝜎 = 0.1. Upon the above initial values, we obtain the initial cost function 𝐽1
0 = 2.4831𝑒 + 07. With restrictions 

 

the best solutions of optimal problem P1 are given as follows 

𝜏1
∗ = 34.7943, 𝜏2

∗ = 25.4933, 𝜏3
∗ = 32.6026, 𝜏4

∗ = 20.8364, 𝜏5
∗ = 36.2734, 

𝜂∗ = 0.5934, 𝛼∗ = 0.2130 

and 𝜎∗ = 0.008with optimal value𝐽1
∗ = 358.2375. 

Lastly, Figure 1 illustrates the dynamic behaviour of the pest under uncontrolled, initial control, and optimal control 

conditions via red, blue, and green lines, respectively. Apparently, pests are controlled below the economic threshold. 

 
Fig. 1 Simulated trajectory of the whitefly number.
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4. Conclusion  
The historical entanglement between pests and humanity, spanning millennia, underscores a contemporary challenge 

necessitating adept resolution by scholars. This study attempts to address this issue by formulating an impulse dynamics model 

and integrating it with optimal control theory to derive an optimal strategy for pest management. By addressing the optimization 

problem, the optimal pulse duration and intensity are derived, thereby facilitating proficient pest control below the established 

economic threshold through the implementation of the optimal strategy.  
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