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Abstract - The spatial instability of an inviscid, incompressible shear flows with variable density is studied. A criterion for 

instability to spatially growing disturbances is derived.  The range of the instability region is determined, which is found to 

depend on the basic velocity profile and Richardson number.   
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1. Introduction 
The extended Taylor-Goldstein problem obtained more attention in recent years because of its application in mathematics 

and Ocean Engineering. Recently, [1] introduced the study of shear flows with variable cross section. [2] improved the theory 

for such flows. [3], [4] laid out mathematical foundation. [4] proved that Richardson number must be greater than or equal to 

0.25 for stability. [5] derived that (cr, ci) lies inside a semi-ellipse whose diameter depends on basic velocity profile. [6] obtained 

long wave criterion.  

For temporal stability, the wave number k  is real number and the frequency  is sought which is complex. In contrast, for 

spatial mode is that the  is real, wave number r ik k ik= +  is to be determined. 

     In this paper, we consider spatial stability, we derived a criterion for instability to spatially growing disturbances i.e., 
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 must be positive at least one point in the flow domain in [0, D]. Also we proved results on the location 

of the complex eigen values of r ik k ik= + , the eigen value lies outside the given instability region whose range depends on 

the basic velocity profile and Richardson number 0J . 

2. Stratified Equation  

     The stratified equation is given by (cf. [4]) 
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with (0) 0 ( )u u D= = .                       (2) 
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Here 0k   is the wave number, r ic c ic= +  is the phase speed, v  is the basic velocity, 
2 0N  is the stratification parameter 

and ( )b z  is the breadth. 

Now using ( )
1

2u v c h= −  into Eq.(1), we have 
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with  (0) 0 ( )h h D= = .                    (4) 

3. General Analytical Results 

Theorem 1 

     For waves advancing in the positive direction, i.e., ,rk   are positive and with 0ic   , a necessary condition for instability 

to spatially growing disturbances is that  
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Proof: 

Applying method of complex eigen function with  ( )*bu , we have  
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Equating imaginary part and considering the fact that r ik k ik= +  , we get 
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 Considering  k  as complex and the frequency   is real, with definition kc = . 

i.e., 
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Substituting Eq.(6) into Eq.(5) and since 0ic  , we get 
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This implies that  
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We consider waves advancing in the positive direction, i.e., ,rk   are positive, we get 
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Thus, 
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 must be positive minimum one point in the domain in [0, D] 

     For homogeneous case, 
2 0N =  ,  a condition for instability to spatially growing disturbances is that 
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For comprehensively understanding the stability behavior of spatially growing disturbances, the spatial instability of shear flows 

with variable cross section will be studied in the following. 

Theorem 2 

     The complex eigen value r ik k ik= +  given by Eqs.(1) and (2) with 0ic   lie inside a region given by 
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Proof: 

Applying method of complex eigen function with  ( )*bh ,  we get  
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Equating imaginary part and considering the fact that r ik k ik= +  , we get 

( )
( )

( )

( )
2

'

2
2

'

2 2 22 2

2

4

2 0r r i i i r i i

v
N

bh
v c k k b h dz c dz c k k b h dz c b h dz

b v c

 
 −
 
 − − − − + =

−
    . 

Using Eq.(6), we have  
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Dropping the second integration term 
( )

2
'

bh
dz

b  being positive, we get  

( )

( )
2

'

2

2

22 2

2

4
2

0
r r

r i

v
N

v c k k
k k b h dz

v c

  
  −
  

−   + − − 
 −
 
 
 

 . 

Substituting Eq.(7) in the above equation, we get 
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We know that
2 2
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 , substituting this in the above equation, we get 
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Substituting Eq.(8) in the above equation, we get 
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This implies that 
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When 0 0J = , our result reduces to [7]. 

4. Concluding Remarks 
We studied the spatial instability of shear flows in variable cross section. First, we obtained a criterion for instability to 

spatially growing disturbances i.e., 
( )
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 must be positive at least one point in the flow domain in [0, D]. 

Next, we present the region of complex eigen values of r ik k ik= +  i.e., the eigen value lies outside the given instability region 

whose range depends on the basic velocity profile, Richardson number 0J . 
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