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Abstract - The study explores a specific class of Second Derivative Two-step mono-implicit Runge-Kutta (SDTSMIRKs) 

methods within a fixed step-size environment. This method is implemented as one step method in high dimension, addressing 

the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The p and q denote 

the order of the input and output methods respectively. Numerical results from linear and non-linear stiff systems 

demonstrate that the newly proposed methods surpass certain existing methods in the literature. 
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1. Introduction 
Consider a first order ordinary differential equations (ODE) of the form 

 

w' = f(𝓍, w),  𝓍 ∈ [𝑥0, 𝑋], 𝑤(𝑥0) = 𝑤0                      (1) 

 

Where f : Rs → Rs and g : Rs → Rs. Over the years much interest has been on the study of the Implicit Runge-Kutta (IRK) 

methods, (see [8]) and its subclasses, (see [4], [14] and [26]). Cash and Singhal [14] introduced a promising class of Mono 

Implicit Runge-Kutta (MIRK) method which is a subclass of method in [8] for the numerical solution of ordinary differential 

equations. These methods in [14] were further investigated by Muir and Owren [24], Burrage et al [7], De Meyer et al [17], 

Muir and Adams [23] and Dow [18] among others. A major advantage of MIRK methods over other IRK method is that it is 

very cheap to implement in term of the number of non-linear equations to be solved. while the pessimistic nature of MIRK 

method is the order reduction which gives rooms for the generalization of MIRK method as documented in Dow [18]. The 

general form of the method considered in [14] is given as 

𝑊𝑖 = (1 − 𝑣𝑖)𝑤𝑛 + 𝑣𝑖𝑤𝑛+1 + ℎ∑𝑋𝑖𝑗

𝑖−1

𝑗=1

𝑓(𝑥𝑛 + 𝑐𝑗ℎ,𝑊𝑗), 𝑖 = 1,2, . . . , 𝑠;

𝑤𝑛+1 = 𝑤𝑛 + ℎ∑𝑏𝑖

𝑠

𝑖=1

𝑓(𝑥𝑛 + 𝑐𝑖ℎ,𝑊𝑖).

 

 (2) 

. 

Where ci = (c1,...,cs)T ,vi = (v1,...,vs)T ,bi = (b1,...,bs)T , X is the s by s matrix. The abscissa 

 

𝑐𝑖 = ∑ 𝑥𝑖𝑗 +
𝑖−1
𝑗=1 𝑣𝑟 ,    (i. e, 𝑐 = 𝑋𝑒 + 𝑣) . However, the method in (2) requires starter during implementation on stiff problem. 

To obtain higher order scheme with good accuracy, authors including Chan and Tsai [16], Okuonghae [35], Turaci and Ozis 

[36], Aiguobasimwin and Okuonghae [1] and Okuonghae and Aiguobasimwin [31], Enright [20], Butcher and Hojjati in 

[11], Okuonghae and Ikhile in [32], Okuonghae and Ikhile [33], Olatunji and Ikhile in [28], Ogunfeyitimi and Ikhile in [30] 

incorporates the second derivative term for non-stiff and stiff problems. Moreso, to avoid introducing starting values during 

implementation, self-starting methods were considered, see Fatunla (1990, 1992), Brugnano and Trigiante,Ikhile (1994) 

(2000), Jator (2010) and Ikhile and Muka (2015). Our aim is to modify the method in (2) by incorporating second derivative 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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function w00 = fx + fwf = g(x,w) which are self-starting during implementation on stiff problem. The methods are of higher 

order compared to the conventional Runge-Kutta method, especially when implemented as one step method in higher 

dimensions. The proposed scheme is of the form: 

    𝑊𝑚 = (1 − 𝑣𝑚)𝑤𝑛 + 𝑣𝑚𝑤𝑛+1 + ℎ∑ 𝑋𝑚𝑗
𝑚−1
𝑗=1 𝑓(𝑥𝑛 + 𝑐𝑗ℎ,𝑊𝑗) 

                   +ℎ2 ∑ 𝑋𝑚𝑗
𝑚−1
𝑗=1 𝑔(𝑥𝑛 +  𝑐𝑗ℎ,𝑊𝑗), 𝑐𝑚 ∈ (0,1),𝑚 = 1,2. . . , 𝑠; (3) 

and 

𝑤𝑛+1 = 𝑤𝑛 + ℎ∑ 𝑏𝑚
𝑠−1
𝑚=1 (1)𝑓(𝑥𝑛 + 𝑐𝑚ℎ,𝑊𝑚) + ℎ

2∑ 𝑏𝑚
𝑠
𝑚=1 (1)𝑔(𝑥𝑛 + 𝑐𝑚ℎ,𝑊𝑚), 𝜃 = 1. (4) 

 

 

The g(x,w) is the second derivative form of ODEs in (1), cm = (c1,...,cs)T , is the abscissa value and Wm = w(xn + cmh), the 

coefficients, {𝑣𝑚}𝑚=1
𝑠  , {𝑥𝑚𝑗}𝑗=1,𝑚=1

𝑚−1,𝑠  , {x̅
𝑚𝑗
}𝑗=1,𝑚=1
𝑚−1,𝑠  , defined the stages, {𝑏𝑚(𝜃)}𝑚=1

𝑠  and 

{𝑏𝑚(𝜃)}𝑚=1
𝑠  , are the weight polynomials. We shall require 𝑐𝑚 = ∑ 𝑥𝑚𝑗 +

𝑚−1
𝑗=1 ∑ 𝑥𝑚𝑗 + 𝑣𝑚

𝑚−1
𝑗=1  and θ = 1, i.e bm(1) = bm and 

¯bm(1) = ¯bm. In equation (4) the derivative side on the left-hand side has s−1 stage, this algorithm is designed in such a way 

that stage order q equal the output order p. 

The paper is organized as follows. In section 2 and 3, the order condition and stability analysis of the SDTSMIRK 

method are stated. Section 4 is devoted to the derivation of the SDTSMIRK method and section 5, numerical results are 

presented. The Butcher’s tableaux of the method in (3) and (4) is 

 
Where c = (c1,...,cs)T , v = (v1,...,vs)T , b = (b1,...,bs)T , ¯b = (¯b1,...,¯bs)T , X and X¯ are the s matrix whose (m,j)th components 

are xmj and x¯mj respectively. 

 

2. The Order Condition of the SDTSMIRK Methods 
The order condition of the method in (3) and (4) are obtained by Taylor’s series expansion approach about xn and equating 

the power of h to zero gives stage order q 

𝑐 = 𝑋𝑒 + 𝑣;  𝜏 = 1,  𝑒 = (1,1, . . . ,1);

𝑐𝜏

𝜏!
=

𝑋𝑐𝜏−1

(𝜏 − 1)!
+

𝑋𝑐𝜏−2

(𝜏 − 2)!
+
𝑣

𝜏!
;  𝜏 = 2(1)𝑞,                                             (6)

 

and the method of order p 

𝑏𝑇𝑒 = 𝑒;

1

𝜏!
=
𝑏𝑇𝑐𝜏−1

(𝜏 − 1)!
+
𝑏𝑇𝑐𝜏−2

(𝜏 − 2)!
;  𝜏 = 2(1)𝑝.                                         (7)

 

 

3. Stability Analysis 
In this section, our interest is on the analysis of the stability of the method in (3) and (4). In what follows is the derivation 

of the stability function of the method in (3) and (4). 

 
Theorem 3.1. Let R(z) denote the stability function for a SDTSMIRK method. Then for a linear differential equation 

 , the methods in (3) and (4) has the stability function 

 

𝑅(𝑧) =
det[ 𝐼−𝑧x−𝑧2x̅ + ze𝑏𝑇+ 𝑧2�̄�𝑇−𝑧𝑣𝑏𝑇−𝑧2𝑣�̄�𝑇]

det [𝐼−𝑧x−𝑧2x̅ −𝑧𝑣𝑏𝑇−𝑧2𝑣�̄�𝑇]
,        𝑧 = 𝜆ℎ                                (8) 

c v X ¯ X 

b T ¯ b T 
= 

c 1 v 1 x 11 ...x 1 s ¯ x 11 ... ¯ x 1 s  
. . . 

. . . 
. . . 

. . .  

c s v s x s 1 ...x ss ¯ x 1 s ... ¯ x ss  

b 1 ...b s ¯ b 1 ... ̄  b s  

(5)  
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Proof: For the special problem defined by , the stage derivatives f and w00 = g is related to the stage values W by 

f = λw and g = λ2w . For convenience, we take e = (1,...,1)T and v = (v1,...,vs)T , Hence, (3) reduces to the form 

 

and 

(I − zX − z2X¯)W − vwn+1 = (e − v)wn ,z = λh      (9)  

 
(−zbT − z2¯bT )W + wn+1 = wn      (10) 

 

From (9) we have, 

W = ((e − v)wn + vwn+1)(I − zX − z2X¯)−1 (11) 

Inserting (11) into (10) gives 

(−𝑧𝑏𝑇 − 𝑧2�̄�𝑇)((𝑒 − 𝑣)𝑤𝑛 + 𝑣𝑤𝑛+1)(𝐼 − 𝑧x − 𝑧
2x̅))−1 + 𝑤𝑛+1 = 𝑤𝑛           (12) 

Simplifying (12) and collecting like terms yields 

[v(−zbT − z2¯bT ) + (I − zX − z2X¯)]wn+1 = [(I − zX − z2X¯)(e − v)(−zbT − z2¯bT )]wn. 

(13) 

From (14) we obtain wn+1 = R(z)wn. Thus, the stability function is 

 

𝑅(𝑧) =
det[ 𝐼−𝑧x−𝑧2x̅ + ze𝑏𝑇+ 𝑧2𝑒�̄�𝑇−𝑧𝑣𝑏𝑇−𝑧2𝑣�̄�𝑇]

det [𝐼−𝑧x−𝑧2x̅ −𝑧𝑣𝑏𝑇−𝑧2𝑣�̄�𝑇]
              (14) 

 

Definition 3.1. A numerical method in (4) is said to be A-stable if | R(z) |6 1 ∀ Re(z) 6 0 

Definition 3.2. A numerical method in (4) is said to be A(α)−stable for some   𝛼 ∈ [0,
𝜋

2
]if the wedge Sα =: |Arg(−z)|≤ α, z ≠ 

0 is contained in its region of absolute stability. 

4. Construction of the SDTSMIRK Method 
In this section, we will derive method (3) and (4) that has order p and stage order q=p. We consider such methods because 

there are some strong theoretical and numerical evidences that methods with p=q has the greatest potential for practical use, 

(see [9], [10], [33], [34]). Thus, we will restrict our discussion and investigation to such schemes. The approach adopted here 

in the derivation of the method in (3) and (4) is similar to that used in [33], and [34]. 

 

4.1. SDTSMIRK method of order p = 1, s = 1 

For example, fixing m = 1, and v1 = 0 in (3) gives 

            W1 = wn                                     (15) 

Similarly, we obtain the output method of order p = 1 in (4) for s = 1 . That is 

             wn+1 = wn + hf(xn,W1)                        (16) 

The tableau for (16) is 

  (17) 

 

The method in (15) and (16) is an explicit Euler’s method, which is not of interest in this paper but such schemes are 

suitable for non-stiff ODEs. The Euler’s scheme has an interval of absolute stability of [-2,0]. 

 

4.2. SDTSMIRK method of order p = 3, s = 2 

Taking r = 2 in (3) and fix v1 = 1 gives 

W1 = wn; W2 = wn+1 

(18) 

𝑤𝑛+1 = 𝑤𝑛 + 𝑓(𝑥𝑛 ,𝑊1) +
ℎ2

3
𝑔(𝑥𝑛 ,𝑊1) +

ℎ2

6
𝑔(𝑥𝑛+1,𝑊2) 

The tableau of the scheme in (18) is given as 

c v X ¯ X 

b T ¯ b T 
= 

0 0 0 0  

0 1  
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  (19) 

 

The algorithm in (18) is of order p = 3, the interval of absolute stability of the method is [-2,0] and such scheme is good 

for the numerical solution of non-stiff ODEs (1). Our interest in this study is implicit Runge-Kutta method. Therefore, we 

give below some suitable methods emanating from (3) and (4) for stiff problems (1). 

 

4.3. SDTSMIRK method of order p = q = 5, s = 3 

Fixing s = 3, p=q=5 in (6) and (7) and solving the resulting system of linear equations in terms of  such that c1 

6= c2 6= c3. The resulting tableau of the method of order p = 5 is 

 
 

The stability function of the method in (20) 𝑅(𝑧) =
388800+77760𝑧−15120𝑧2−6480𝑧3−720𝑧4

388800−311040𝑧+101520𝑧2−17280𝑧3+1440𝑧4
 is and plotting the stability 

function of (20) in boundaries locus sense shows that the scheme in (20) is A-stable. The SDTSMIRK method of order p = 

q = 5, s = 3 is represnted by SDTSMIRK5. 

4.4. SDTSMIRK method of order p = q = 7, s = 4 

Similarly, setting p = q = 7, s = 4 in (6) and (7) and solving the resulting system of linear equations in terms of {cm}4
m=1 

such that c1 6= c2 6= c3 =6 c4. The resulting tableau of the method of order p = 7 is; 

 
 

The stability function of the method in (21) 𝑅(𝑧) =
272160+155520𝑧+39780𝑧2+5940𝑧3+561𝑧4+33𝑧5+𝑧6

272160−116640𝑧+20340𝑧2−1440𝑧3−69𝑧4+24𝑧5−2𝑧6
 is and the method in 

(21) is A-stable as shown in the stability plot in Figure 1. Again, the SDTSMIRK method of order p = q = 7, s = 4 will be 

reference as SDTSMIRK7. 

4.5. SDTSMIRK method of order p = q = 9, s = 5 

Setting 𝑠 = 5, 𝑐 = (0,1,
1

2
,
2

3
,
3

4
)𝑇 in (6) and (7) yield the SDTSMIRK methods of order 9 

with the modified Butcher tableaux of the resulting coefficients given below. 

 

              (22) 

 

 

 

c v X ¯  X 

b T ¯ b T  = 

0 0 0 0 0  0 

1 1 0 0 0 0 

1 0 1 
3 

1 
6  

c v X ¯ X 

b T ¯ b T 
= 

0 0 0 0 0 0 0 0  

1 1 0 0 0 0  0 0 

2 
3 

192 
243 

18 
243 

− 48 
243 0 2 

243 
4 

243 0  

24 
120 

96 
120 0  1 

120 
− 10 
120 

− 27  
120  

(20)  

c v X ¯  X 

b T ¯ b T 

= 

0 0 0 0 0 0 0  0 0 0 

1 1 0 0 0 0 0 0 0 0  

1 
2 

96 
192 

18 
192 

− 18 
192 0 0 1 

192 
1 

192 
− 8 
192  0 

2 
3 

1214 
2187 

178 
2187 

− 224 
2187 

256 
2187 0 10 

2187 
12 

2187 
− 64  
2187  0  

160 
840 

40 
840 

640 
840 0  9 

840 
2 

840 
− 32 
840 

81  
840  

(21)  

c v X ¯  X 

b T ¯ b T 
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Where, 

𝑣 = (0,1,
11184

12288
,
17952

19683
,
959472

1048576
)𝑇, 

 

𝑋 =

(

 
 
 
 

0 0 0 0 0
0 0 0 0 0
165

12288

−1248

12288

−6144

12288

2185

12288
0

259

19683

−2000

19683

−8192

19683

5103

19683
0

13341

1048576

−106272

1048576

−414720

1048576

334611

1048576
0)

 
 
 
 

, 

 

𝑋 =

(

 
 
 
 

0 0 0 0 0
0 0 0 0 0
7

12288

40

12288

−512

12288

−729

12288
0

11

19683

64

19683

−768

19683

−1215

19683
0

567

1048576

3344

1048576

−39168

1048576

−59049

1048576
0)

 
 
 
 

, 

 

𝑏(1)𝑇 = (
3735

25200
,
−4320

25200
,
−138240

25200
,
164025

25200
, 0)𝑇 ,                    

 

𝑏(1)𝑇 = (
157

25200
,
312

25200
,
−12288

25200
,
−19683

25200
,
8192

25200
)𝑇. 

 

 

The stability function is 

N(z) = (2090188800 + 979292160z + 212365440z2 + 929694720z3 

+2531640z4 + 161088z5 + 7224z6 + 212z7 + 3z8) 

(23) 

D(z) = (2090188800 − 1110896640z + 278167680z2 − 42936480z3 

+4442520z4 − 305352z5 + 11508z6 + 108z7 − 36z8). 

 

The stability plot for the method of order p = 9 in Figure 1 is A(α) − stable, similarly the method of order p = q = 9, s = 

5 implies SDTSMIRK9. 

 
Fig. 1 Stability plot for SDTSMIRK5, SDTSMIRK7 and SDTSMIRK9 
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The Fig.1 shows the stability plot for second derivative two-step mono-implicit Runge-Kutta methods for p=5, 7 and 9, 

the exterior of the closed curve is the stability region. It is shown from Table 1 that the SDTSMIRK method has relatively 

small error constant and by Definition 3.1 the method in (3) and (4) are A-stable for order 5,7 and 9. Figure 2. shows that the 

SDTSMIRK scheme in (4) has small error constant compare to the methods in Cash [13], Ogunfeyitimi and Ikhile [29], Okor 

and Nwachukwu [37] for the same order p=5, 7 and A(α)−stable for 9. This confirm theoretically the possibility of having 

more accurate solution on stiff problem in (1). 

 
 

Table 1. Properties of SDTSMIRK 

S Error Constant Order Zero Stability Stability Properties of SDTSMIRK Method 

3 1

21600
 

5 Zero Stable A-stable 

4 −1

15240960
 

7 Zero Stable A-stable 

5 −43

219469824000
 

9 Zero Stable A(𝛼)-stable 

 

 
Fig. 2 Graph of the absolute values of the error constants against order P = 5,7 and 9 of the SDTSMIRK, HEBVMs [37], GSDLMME [29] and 

E2BD [13] 

5. Implementation Procedures 
This section presents an illustration for the implementation of SDTSMIRK method for s = 3, 4 and 5 with order p = 5, 

p = 7 and 9 respectively, as one step method in higher dimension by following the procedure in Jator [22], Akinfenwa [2] 

and Okor and Nwachukwu [37]. The 5th, 7th and 9th order are denoted by SDTSMIRK5, SDTSMIRK7 and SDTSMIRK9 

respectively. 

The 5th order of SDTSMIRK 

𝑤𝑛+2 3⁄
=
51

243
𝑤𝑛 +

192

243
𝑤𝑛+1 +

18

243
ℎ𝑓𝑛 −

48

243
ℎ𝑓𝑛+1 +

2

243
ℎ2𝑔𝑛 +

4

243
ℎ2𝑔𝑛+1 

𝑤𝑛+1 = 𝑤𝑛 +
24

120
ℎ𝑓𝑛 +

96

120
ℎ𝑓𝑛+1 +

1

120
ℎ2𝑔𝑛 −

10

120
ℎ2𝑔𝑛+1 −

27

120
ℎ2𝑔

𝑛+
2

3

, 

The 7th order of SDTSMIRK 

𝑤𝑛+1 2⁄
=
96

192
𝑤𝑛 +

96

192
𝑤𝑛+1 +

18

192
ℎ𝑓𝑛 −

18

192
ℎ𝑓𝑛+1 +

1

192
ℎ2𝑔𝑛 +

1

192
ℎ2𝑔𝑛+1 −

8

192
ℎ2𝑔

𝑛+
1
2

 

𝑤
𝑛+

2
3
=
939

2187
𝑤𝑛 +

1248

2187
𝑤𝑛+1 +

178

2187
ℎ𝑓𝑛 −

224

2187
ℎ𝑓𝑛+1 +

256

2187
ℎ𝑓

𝑛+
1
2
+

10

2187
ℎ2𝑔𝑛 +

12

2187
ℎ2𝑔𝑛+1 −

64

2187
ℎ2𝑔

𝑛+
1
2
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𝑤𝑛+1 = 𝑤𝑛 +
160

840
ℎ𝑓𝑛 +

40

840
ℎ𝑓𝑛+1 +

640

840
ℎ𝑓

𝑛+
1
2
+

9

840
ℎ2𝑔𝑛 +

2

840
ℎ2𝑔𝑛+1 −

32

840
ℎ2𝑔

𝑛+
1
2
+
81

840
ℎ2𝑔

𝑛+
2
3

 

and the 9th order of SDTSMIRK 

 

𝑤
𝑛+

1
2
=
1104

192
𝑤𝑛 +

11184

12288
𝑤𝑛+1 +

165

12288
ℎ𝑓𝑛 −

1248

12288
ℎ𝑓𝑛+1 −

6144

12288
ℎ𝑓

𝑛+
1
2
+
2187

12288
ℎ𝑓

𝑛+
2
3
+

7

12288
ℎ2𝑔𝑛

+
40

12288
ℎ2𝑔𝑛+1 −

512

12288
ℎ2𝑔

𝑛+
1
2
−

729

12288
ℎ2𝑔

𝑛+
2
3
   

𝑤
𝑛+

2
3
=
1731

2187
𝑤𝑛 +

17952

19683
𝑤𝑛+1 +

259

19683
ℎ𝑓𝑛 −

2000

19683
ℎ𝑓𝑛+1 −

8192

19683
ℎ𝑓

𝑛+
1
2
+
5103

19683
ℎ𝑓

𝑛+
2
3
+

11

19683
ℎ2𝑔𝑛

+
64

19683
ℎ2𝑔𝑛+1 −

768

19683
ℎ2𝑔

𝑛+
1
2
−
1215

19683
ℎ2𝑔

𝑛+
2
3

 

𝑤
𝑛+

3
4
=

89104

1048576
𝑤𝑛 +

959472

1048576
𝑤𝑛+1 +

13341

1048576
ℎ𝑓𝑛 −

106272

1048576
ℎ𝑓𝑛+1 −

414720

1048576
ℎ𝑓

𝑛+
1
2
+
334611

1048576
ℎ𝑓

𝑛+
2
3

+
567

1048576
ℎ2𝑔𝑛 +

3384

1048576
ℎ2𝑔𝑛+1 −

39168

1048576
ℎ2𝑔

𝑛+
1
2
−

59049

1048576
 

𝑤𝑛+1 = 𝑤𝑛 +
3735

25200
ℎ𝑓𝑛 −

4320

25200
ℎ𝑓𝑛+1 −

138240

25200
ℎ𝑓

𝑛+
1
2
+
164025

25200
ℎ𝑓

𝑛+
2
3
+

157

25200
ℎ2𝑔𝑛 +

312

25200
ℎ2𝑔𝑛+1

−
12288

25200
ℎ2𝑔

𝑛+
1
2
−
19683

25200
ℎ2𝑔

𝑛+
2
3
+
8192

25200
ℎ2𝑔

𝑛+
3
4

 

The main output obtained from (4) and input method derive from (3) give a block form of the same order, by this the 

main output and input method are combined as a one-step method in higher dimension given as 

 

        A1Wφ+1 + A0Wφ = h(B0Fφ + B1Fφ+1) + h2(C0Gφ + C1Gφ+1).   (24) 

Where 𝑝𝑖 =
𝑖

𝑠
,   𝑖 = 1,2, . . . , 𝑠 

 𝑊𝜙+1 = [𝑤𝑛+𝑝1 , 𝑤𝑛+𝑝2 , . . . , 𝑤𝑛+𝑝2−1 , 𝑤𝑛+𝑝𝑠]
𝑇 

𝑊𝜙 = [𝑤𝑛−𝑝𝑠−1 , 𝑤𝑛−𝑝𝑠−2 , . . . , 𝑤𝑛−𝑝1 , 𝑤𝑛]
𝑇 

𝐹𝜙+1 = [𝑓𝑛+𝑝1 , 𝑓𝑛+𝑝2 , . . . , 𝑓𝑛+𝑝2−1 , 𝑓𝑛+𝑝𝑠]
𝑇 

𝐹𝜙 = [𝑓𝑛−𝑝𝑠−1 , 𝑓𝑛−𝑝𝑠−2 , . . . , 𝑓𝑛−𝑝1 , 𝑓𝑛]
𝑇 

𝐺𝜙+1 = [𝑔𝑛+𝑝1 , 𝑔𝑛+𝑝2 , . . . , 𝑔𝑛+𝑝2−1 , 𝑔𝑛+𝑝𝑠]
𝑇 

𝐺𝜙 = [𝑔𝑛−𝑝𝑠−1 , 𝑔𝑛−𝑝𝑠−2 , . . . , 𝑔𝑛−𝑝1 , 𝑔𝑛]
𝑇 

𝐴1 = (

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) , 𝐴0 = (

0 0 ⋯ 𝑎10
0 0 ⋯ 𝑎20
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑎𝑠0

) ,𝐵0 = (

0 0 ⋯ 𝑏10
0 0 ⋯ 𝑏20
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑏𝑠0

) ,𝐵1 = (

𝑏11 𝑏12 ⋯ 𝑏1𝑠
𝑏21 𝑏22 ⋯ 𝑏2𝑠
⋮ ⋮ ⋱ ⋮
𝑏𝑠1 𝑏𝑠2 ⋯ 𝑏𝑠𝑠

)

, 𝐶0 = (

0 0 ⋯ 𝑐10
0 0 ⋯ 𝑐20
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑐𝑠0

) , 𝐶1 = (

𝑐11 𝑐12 ⋯ 𝑐1𝑠
𝑐21 𝑐22 ⋯ 𝑐2𝑠
⋮ ⋮ ⋱ ⋮
𝑐𝑠1 𝑐𝑠2 ⋯ 𝑐𝑠𝑠

)

           (25) 

 

Which simultaneously generate block solution values. The summary of the implementation procedure for order 7, 𝑠 =
4 is as follows: 

 

let the partition ΠN : a = x0 < x1 < ... < xn < xn+1 = b,h = xn+1 − xn,n = 0(1)N − 1 
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Step1: input value of N, for 𝑠 = 4, ℎ =
𝑏−𝑎

𝑁
, the number of block  𝑙 =

𝑁

3
. using (25) n = 0, φ = 0, the solution value of  

(𝑤1

2

, 𝑤2

3

, 𝑤1)
𝑇 are generated simultaneously over the 

sub-interval [x0,x1], where w0 is provided by the problem (1). 

Step2: n = 1, φ = 1, the solution (𝑤3

2

, 𝑤5

3

, 𝑤5)
𝑇 are obtained over the sub-interval [x1,x2] , 

since w1 is generated from the previous block. 

Step3: the iteration is continued for n = 2,...N − 2 and φ = 2,...,τ to generate solution of 

(1) on sub-intervals [x2,x3]...[xN−1,xN]. 

By this, the accumulation error is in significant in the numerical solution, since the solution are generated concurrently, see 

([19], [27]). In the case of non-linear problems, a modified Newton-Raphson method such as 

𝑊∅+1
[𝑖+1] =  𝑊∅+1

[𝑖] − 
𝜕𝑀(𝑊∅+1

[1]
)

𝜕𝑊𝑛+1
)−1   𝑀(𝑊∅+1

[1] ); 𝑖 = 0(1)𝑞      𝑞 ≥ 1, 

where 

𝜕𝐹(𝑊∅+1)

𝜕𝑊∅+1
=

𝜕𝑓𝑛+1,…..,𝑓𝑛+𝑠

𝜕𝑤𝑛+1,…..,𝑤𝑛+𝑠
==

(

 
 
 

𝜕𝑓𝑛+1

𝜕𝑤𝑛+1

𝜕𝑓𝑛+1

𝜕𝑤𝑛+2
⋯

𝜕𝑓𝑛+1

𝜕𝑤𝑛+𝑠
𝜕𝑓𝑛+2

𝜕𝑤𝑛+1

𝜕𝑓𝑛+2

𝜕𝑤𝑛+2
⋯

𝜕𝑓𝑛+2

𝜕𝑤𝑛+𝑠

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛+𝑠

𝜕𝑤𝑛+1

𝜕𝑓𝑛+𝑠

𝜕𝑤𝑛+2
⋯

𝜕𝑓𝑛+𝑠

𝜕𝑤𝑛+𝑠)

 
 
 

, 

and 
𝜕𝐹(𝑊∅+1)

𝜕𝑊∅+1

=
𝜕𝑔𝑛+1, … . . , 𝑔𝑛+𝑠
𝜕𝑤𝑛+1, … . . , 𝑤𝑛+𝑠

 

 

M(Wφ+1) = A1Wφ+1 + A0Wφ − hB0Fφ − hB1Fφ+1 − h2C0Gφ − h2C1Gφ+1 = 0. 

 

6. Numerical Experiment 
We present numerical results showing the implementation and accuracy of the constructed SDTSMIRK5, SDTSMIRK7 

and SDTSMIRK9 in (20), (21) and (22) respectively. The order of SDTSMIRK5, SDTSMIRK7 and SDTSMIRK9 are p = 

5, p = 7 and p = 9 respectively, 

see Section 5 of this article. The implementation is done in fixed step size mode for accuracy purpose. Our interest here is 

to compare the results of our methods with the results obtained from some existing methods. Computational experiments 

are done by applying the 

SDTSMIRK5, SDTSMIRK7 and SDTSMIRK9 methods to the problems below: 

Problem 1: Consider the system of differential equations [29], 

{
  
 

  
 𝑤1

′(𝑥) = −21𝑤1 + 19𝑤2 − 20𝑤3,    𝑤1(𝑥) =
1

2
(𝑒−2𝑥 + 𝑒−40𝑥(cos(40𝑥) + sin(40𝑥)))   

𝑤2
′(𝑥) = −19𝑤1 − 21𝑤2 − 20𝑤3,     𝑤2(𝑥) =

1

2
(𝑒−2𝑥 + 𝑒−40𝑥(cos(40𝑥) + sin(40𝑥)))

𝑤3
′(𝑥) = 40𝑤1 − 40𝑤2 − 40𝑤3,    𝑤2(𝑥) = (−𝑒

−40𝑥(cos(40𝑥) + sin(40𝑥)))

𝑥 ∈ [0,1], 𝑤(0) = [1,0 − 1]𝑇

 

See Table 2 for computed result of problem 1 

Table 2 show that the new methods SDTSMIRK5 performs better in terms of accuracy 

than the existing schemes in [29], [30], [5] and they are suitable for integrating stiff system in ordinary differential equations 

( ODEs ). 

Problem 2: Non-linear stiff system [29], 

{
 

 
𝑤1
′ = −(∈−1+ 2)𝑤1 +∈

−1 𝑤2
2,    𝑤1(0) = 1

𝑤2
′ = 𝑤1 − 𝑤2(1 + 𝑤2),    𝑤2(0) = 1

𝑇ℎ𝑒 𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝑤1(𝑥) = 𝑤2

2, 𝑤2(𝑥) = 𝑒−𝑥 
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Table 2. Numerical results for Problem 1 

h 
SDTSMIRK5 

(Rate) p=5 

GSDLMM3[29] 

(Rate) p=5 

IMEXSDLMM[30] 

(Rate) p=6 

AMODIO6[5] 

(Rate) p=6 

0.05 1.86e - 003 

(-) 

3.0e - 002 

(-) 

6.20e - 002 

(-) 

5.70e - 002 

(-) 

0.025 
1.23e - 004 

(3.95) 

3.55e - 003 

(3.07) 

9.20e - 002 

(2.75) 

8.70e - 003 

(2.70) 

0.0125 
4.33e - 006 

(5.28) 

2.26e - 004 

(3.97) 

5.61e - 004 

(4.03) 

4.9e - 004 

(4.20) 

0.00625 
8.87e - 008 

(5.77) 

5.86e - 006 

(5.27) 

1.09e - 005 

(5.68) 

1.20e - 005 

(5.80) 

 
Table 3. Comparison of results at t = 1 and maximum absolute Error, for Problem 2 

Methods Order N h 

𝒘𝟏 

𝑴𝒂𝒙 ∥  𝒘𝒊 − (𝒘 (𝒙𝒊) ∥ 
 

𝒘𝟐 

𝑴𝒂𝒙 ∥  𝒘𝒊 − (𝒘 (𝒙𝒊) ∥ 
 

SDTSMIRK5 

 
5 125 0.008 2.48e - 016 1.11e - 016 

GSDLMM3[29] 

 
5 125 0.008 6.88e - 015 3.33e - 015 

SDGBDF5[27] 5 125 0.008 1.80e - 015 6.11 - 016 

Ehigieetal(BV M3)[19] 5 125 0.008 3.88e - 014 3.10e - 014 

 
Table 4. Comparison of results for Problem 2, Erroryi=(| wi − w(xi) |), i=1,2 

Methods x h N Error𝒘𝟏 Error𝒚2 

SDTSMIRK7 

P=7 
1 0.05 20 2.8441e - 016 4.5775e - 016 

HEBV M3[37] 

P=7 
1 0.05 20 1.1675e - 013 1.9218e - 013s 

BBDFs [3] 

P=8 
1 0.05 20 4.5602e - 013 6.263e - 013 

 
From Table 3, it can be seen that our method SDTSMIRK5 of order 5 performs better than the methods of [29], [27] and 

[19]. In like manner, Table 4 show that the new method SDTSMIRK7 of order 7 outperformed the methods of [37] and [3] 

 
Problem 3: Let consider another stiff system which has also been solved by Cash [13], 

{
 

 
𝑤1′ =  −𝛼𝑤1  −  𝛽𝑤2 + (𝛼 +  𝛽 −  1)𝑒

−𝑥, 𝑤1(0) = 1,

𝑤2′ = 𝛽𝑤1  −  𝛼𝑤2 + (𝛼 −  𝛽 −  1)𝑒
−𝑥, 𝑤2(0) = 1,

𝑇ℎ𝑒 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 1: 200 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠

𝑤1(𝑥) =  𝑒
−𝑥 ,   𝑤2(𝑥) = 𝑒−𝑥

 

 

The problem 3 is integrated with h = 0.01, h = 0.09, h = 0.2 and h = 0.25 for the purpose of comparison. Thus, the results 

for h = 0.01, h = 0.09, h = 0.2 and h = 0.25 are tabulated at different values of x to show the performance of the method. 

Table 5, 6 and 7, reveals that the newly derived schemes in (20), (21) and (22) are better in terms of accuracy than the 

ECBBDF5 [2], E2BD [13] and HEBV M5 [37] 

 
Table 5. Numerical results for Problem 3, α = 1, β = 30, h = 0.01. error wi =| wi − w(xi) |), i = 1,2. 

x wi 

Error in 

SDTSMIRK5 

p=5 

Error in 

ECBBDF[2] 

p=5 

1.0  w1 

w2 

2.00e - 016 

7.85e - 017 

1.28e - 015 

1.17e - 014 

10.0 w1 

w2 

3.45e - 020 

1.48e - 019 

1.08e - 019 

1.62e - 018 

20.0    w1 

w2 

7.31e - 024 

1.16e - 024 

7.25e - 023 

5.29e - 023 
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Table 6. Absolute Error for Problem 3, h = 0.09 

x wi 
SDTSMIRK7 

p=7 

SDTSMIRK9 

p=9 

E2BD Class 2 [13] 

p=8 

HEBV M5[37] 

p=9 

4.5      w1 

w2 

0.2e - 18 

0.1e - 18 

0.2e - 18 

0.3e - 18 

0.1e - 010 

0.1e - 010 

0.4e - 016 

0.4e - 016 

9.0  w1 

w2 

0.4e - 20 

0.2e - 20 

0.2e - 19 

0.4e - 20 

0.1e - 012 

0.1e - 012 

0.7e - 018 

0.5e - 018 

13.5  w1 

w2 

0.9e - 21 

0.8e - 21 

0.3e - 021 

0.2e - 021 

0.8e - 011 

0.6e - 011 

0.9e - 020 

0.6e - 020 

18  w1 

w2 

0.8e - 23 

0.1e - 22 

0.6e - 023 

0.1e - 023 

0.1e - 011 

0.1e - 011 

0.1e - 021 

0.1e - 021 

 
Table 7. Maximum Absolute Error max|wi − w(xi)|, i = 1,2 for for Problem 3 

N 𝜶 𝜷 𝒉 
SDTSMIRK7 

p=7 

SDTSMIRK9 

p=9 

 

HEBV 

M5[35] 

P=9 

50 1 30 0.2 0.6e - 18 5.6e - 018 1.4e - 015 

80 1 30 0.25 0.1e - 21 9.1e - 021 6.9e - 019 

50 1 104 0.2 0.00 0.00 5.e - 018 

80 1 104 0.25 0.2e - 20 4.1e - 025 2.2e -021 

50 1 105 0.2 0.3e - 021 6.7e - 021 5.6e - 019 

80 1 105 0.25 0.8e - 21 4.1e - 025 2.2e - 022 

 

7. Conclusion 
We have proposed a family of Second Derivative Two-step Mono-Implicit Runge-Kutta method for the numerical 

solution of stiff IVPs in ODEs. The stability analysis is documented in Section 4. Figure 2 contain Error constant of 

SDTSMIRK method, GSDLMME [29], E2BD [13] and HEBVM5 [37], where the SDTSMIRK method possess smaller error 

constant than the compared method in [29], [13] and [37] to stiff system theoretically. The algorithms are self-starting and 

deliver high accuracy. The numerical example employing the suggested methods demonstrated the method’s accuracy, as 

evident in Table 2-7 above. 
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