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Abstract - The exploration of graph width parameters, spanning both graph theory and algebraic frameworks, has captured 

substantial attention. Among these, branch width has distinctly emerged as a key metric. The Quasi-Ultrafilter serves as an 

axiomatic tool for scrutinizing incomplete social judgments. In this concise study, we outline a coherent definition of Quasi-

Ultrafilters within the connectivity system and clarify its dual association with branch width. 
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1. Definitions and Notations in this Paper 
This section provides mathematical definitions of each concept. 

  

1.1. Filters on Boolean Algebras 

In the Boolean algebra (X,∪,∩), a filter is defined as outlined below. Filters and Ultrafilters stand as cornerstone concepts 

in mathematics, with a wealth of research and related studies on them available in references [30-40]. Within this algebraic 

structure, the complement of a filter is termed an ideal. 

 

Definition 1: In a Boolean algebra (X,∪,∩), a set family F ⊆ 2X satisfying the following conditions is called a filter on the 

carrier set X. 
(FB1) A, B ∈ F ⇒ A ∩ B ∈ F, 

(FB2) A ∈ F, A ⊆ B ⊆ X ⇒ B ∈ F, 

(FB3) ∅ is not belong to F. 

 

In a Boolean algebras (X,∪,∩), A maximal filter is called an ultrafilter and satisfies the following axiom (FB4): 

(FB4) ∀A ⊆ X, either A ∈ F or X / A ∈ F. 

 
1.2. Quasi-Ultrafilter on Boolean Algebras 
        In reference [1], the notion of a Quasi-Ultrafilter is introduced. This literature also provides an axiomatic examination of 

incomplete social judgments. The quasi-ultrafilter plays a pivotal role in the proofs of reference [1].  

 

This concept is illustrated using a Boolean algebra (X, ∪, ∩). While the properties of a Quasi-Ultrafilter closely resemble 

those of an ultrafilter, they diverge in property (QB1). The significance of the Quasi-Ultrafilter is evident, given its mention in 

various related studies (e.g., [1-8,25]). 

 

Definition 2: In a Boolean algebra (X,∪,∩), a set family Q ⊆ 2X satisfying the following conditions is called a Quasi-filter on 

the carrier set X. 
(QB1) A⊆ X,B⊆ X , A∉  Q , B ∉  Q ⇒ A ∪ B  ∉  Q, 

(QB2) A ∈ Q, A ⊆ B ⊆ X ⇒ B ∈ Q, 

(QB3) ∅ is not belong to Q. 

(QB4) ∀A ⊆ X, either A ∈ Q or X / A ∈ Q. 
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1.3. Symmetric Submodular Function and Connectivity System 

The definition of a symmetric submodular function is given below. The symmetric submodular function is widely utilized 

and discussed in various scholarly publications (e.g., [9-12]). 

 

Definition 3: Let X be a finite set. A function f: X → ℕ is called symmetric submodular if it satisfies the following conditions: 

· ∀A⊆X, f(A) = f(X\A). 

· ∀A, B⊆X, f(A) + f(B) ≥ f(A∩B) + f(A∪B). 

 

In this short paper, a pair (X, f) of a finite set X and a symmetric submodular function f is called a connectivity system.  

It is known that a symmetric submodular function f satisfies the following properties: 

 

Lemma 1[12] : A symmetric submodular function f satisfies: 

1. ∀A⊆X, f(A) ≥ f(∅) = f(X). 

2. ∀A, B⊆X, f(A) + f(B) ≥ f(A\B) + f(B\A). 

 

In this short paper, we use the notation f for a symmetric submodular function, a finite set X, and a natural number k. A set A is 

k-efficient if f(A)≤k. Unless otherwise specified, in this paper, the underlying set X is assumed to be a non-empty finite set. 

 

1.4. Branch-Decomposition of a Connectivity System 

In graph theory, branch width stands as a pivotal graph width parameter. It entails a branch decomposition wherein the 

decomposition's leaves align with the graph's edges. Every edge is paired with a value derived from a symmetric submodular 

function, gauging the connectivity between edges. Branch width notably extends the breadth of symmetric submodular 

functions applied to graphs. 

 

The definition of branch-decomposition is shown below. Due to its significance, branch-decomposition has been the 

subject of various research studies [13-29]. 

Definition 5: Let (X, f) be a connectivity system. The pair (T, μ) is a branch decomposition tree of (X, f) if T is a ternary tree 

such that |L(T)| = |X| and μ is a bijection from L(T) to X, where L(T) denotes the leaves in T. For each e ∈ E(T), we define 

bw(T, μ, e) as f(∪v∈L(T1) μ(v)), where T1 is a tree obtained by removing e from T (taking into account the symmetry property of 

f). The width of (T, μ) is defined as the maximum value among bw(T, μ, e) for all e ∈ E(T). The branch-width of X, denoted 

by bw(X), is defined as the minimum width among all possible branch decomposition trees of X. 

 

2. Quasi-Ultrafilter on Connectivity System 

We introduce the Quasi-Ultrafilter on the Connectivity System (X,f) as an extension of the Quasi-Ultrafilter on Boolean 

Algebras. Subsequently, we elucidate its dual relationship with branch-width. The primary distinction in this definition, 

compared to the one on Boolean Algebras, is the inclusion of the Symmetric Submodular Function condition. 

 

Definition 4: Let X be a finite set and f be a symmetric submodular function. In a connectivity system, the set family Q ⊆2X is 

called a Quasi ultrafilter of order k+1 if the following axioms hold true: 

(Q0) ∀A ∈ Q, f(A) ≤ k 

(Q1) A ⊆ X, B⊆ X , A∉ Q , B ∉ Q ⇒ A ∪ B  ∉  Q 

(Q2) A ∈Q, A ⊆ B ⊆ X, f(B) ≤ k ⇒ B ∈ Q 

(Q3) ∅ is not belong to Q. 

(Q4) ∀A ⊆ X, f(A) ≤ k ⇒ either A ∈ Q or X / A ∈ Q. 

And Quasi-Ultrafilter is non-principal if the Quasi-Ultrafilter satisfies following axiom: 

(Q5) A ∉Q for all A ⊆ X with |A| = 1. 

 

The main theorem of this paper is presented as follows. This proof utilizes techniques from the paper [19]. At first glance, 

the concepts that seem unrelated possess an extremely intriguing duality when specific conditions are applied. Moving forward, 

I plan to continue exploring such interconnected concepts. 
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Theorem 2: Let X be a finite set and f be a symmetric submodular function. Branch-width of the connectivity system (X, f) is 

at most k if and only if no (non-principal) Quasi Ultrafilter of order k+1 exists. 

 

Proof. This proof utilizes techniques from the paper [19].  So the proof will be presented concisely, focusing primarily on the 

key points or highlights.  

 

Let X be a finite set and f be a symmetric submodular function. Assume that the branch-width of the connectivity system 

(X, f) is at most k. Note that A set A ⊆ X is called k-branched if the connectivity system obtained from f by identifying X \ A has 

branch-width at most k.  

 

Consider the set I defined by I = {A | X\ A ∈ Q}. If the branch-width of the connectivity system (X, f) is bounded above by 

k, then the set X is classified as k-branched. It's evident that any k-branched set, provided it consists of at least two elements, 

can be expressed as the union of two distinct, proper subsets that are both k-branched. Given axiom (Q3) and axiom (Q4) in 

definition of non-principal Quasi Ultrafilter, we have X ∈ Q, implying X ∉ I. Although I is expected to encompass all k-

branched sets, the absence of X from I creates a contradiction. Thus, there cannot exist a non-principal Quasi Ultrafilter. 

And if the branch-width of the connectivity system (X, f) is greater than k, then there exists a non-principal Quasi Ultrafilter. 

This proof is completed. 
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