Quasi-Ultrafilter on the Connectivity System: Its Relationship to Branch-Decomposition

Takaaki Fujita
${ }^{1}$ Graduate school of Science and Technology, Gunma University, 1-5-1 Tenjin-cho Kiryu Gunma, Japan.
${ }^{1}$ Corresponding Author : t171d603@gunma-u.ac.jp

Published: 30 March 2024

Abstract

The exploration of graph width parameters, spanning both graph theory and algebraic frameworks, has captured substantial attention. Among these, branch width has distinctly emerged as a key metric. The Quasi-Ultrafilter serves as an axiomatic tool for scrutinizing incomplete social judgments. In this concise study, we outline a coherent definition of QuasiUltrafilters within the connectivity system and clarify its dual association with branch width.

Keywords - Filter, Ultrafilter, Quasi-Ultrafilter, Branch-width, Branch-decomposition.

1. Definitions and Notations in this Paper

This section provides mathematical definitions of each concept.

1.1. Filters on Boolean Algebras

In the Boolean algebra (X, \cup, \cap), a filter is defined as outlined below. Filters and Ultrafilters stand as cornerstone concepts in mathematics, with a wealth of research and related studies on them available in references [30-40]. Within this algebraic structure, the complement of a filter is termed an ideal.

Definition 1: In a Boolean algebra (X, \cup, \cap), a set family $F \subseteq 2^{X}$ satisfying the following conditions is called a filter on the carrier set X.
(FB1) $A, B \in F \Rightarrow A \cap B \in F$,
(FB2) $A \in F, A \subseteq B \subseteq X \Rightarrow B \in F$,
(FB3) \varnothing is not belong to F.
In a Boolean algebras (X, \cup, \cap), A maximal filter is called an ultrafilter and satisfies the following axiom (FB4):
(FB4) $\forall A \subseteq X$, either $A \in F$ or $X / A \in F$.

1.2. Quasi-Ultrafilter on Boolean Algebras

In reference [1], the notion of a Quasi-Ultrafilter is introduced. This literature also provides an axiomatic examination of incomplete social judgments. The quasi-ultrafilter plays a pivotal role in the proofs of reference [1].

This concept is illustrated using a Boolean algebra (X, \cup, \cap). While the properties of a Quasi-Ultrafilter closely resemble those of an ultrafilter, they diverge in property (QB1). The significance of the Quasi-Ultrafilter is evident, given its mention in various related studies (e.g., [1-8,25]).

Definition 2: In a Boolean algebra (X, \cup, \cap), a set family $Q \subseteq 2^{X}$ satisfying the following conditions is called a Quasi-filter on the carrier set X.
$(\mathrm{QB} 1) \mathrm{A} \subseteq X, \mathrm{~B} \subseteq X, A \notin Q, B \notin Q \Rightarrow A \cup B \notin Q$,
(QB2) $A \in Q, A \subseteq B \subseteq X \Rightarrow B \in Q$,
(QB3) \varnothing is not belong to Q.
(QB4) $\forall A \subseteq X$, either $A \in Q$ or $X / A \in Q$.

1.3. Symmetric Submodular Function and Connectivity System

The definition of a symmetric submodular function is given below. The symmetric submodular function is widely utilized and discussed in various scholarly publications (e.g., [9-12]).

Definition 3: Let X be a finite set. A function $f: X \rightarrow \mathbb{N}$ is called symmetric submodular if it satisfies the following conditions: - $\forall A \subseteq X, f(A)=f(X \backslash A)$.

- $\forall A, B \subseteq X, f(A)+f(B) \geq f(A \cap B)+f(A \cup B)$.

In this short paper, a pair (X, f) of a finite set X and a symmetric submodular function f is called a connectivity system. It is known that a symmetric submodular function f satisfies the following properties:

Lemma 1[12]: A symmetric submodular function f satisfies:

1. $\forall A \subseteq X, f(A) \geq f(\varnothing)=f(X)$.
2. $\forall A, B \subseteq X, f(A)+f(B) \geq f(A \backslash B)+f(B \backslash A)$.

In this short paper, we use the notation f for a symmetric submodular function, a finite set X, and a natural number k. A set A is k-efficient if $f(A) \leq k$. Unless otherwise specified, in this paper, the underlying set X is assumed to be a non-empty finite set.

1.4. Branch-Decomposition of a Connectivity System

In graph theory, branch width stands as a pivotal graph width parameter. It entails a branch decomposition wherein the decomposition's leaves align with the graph's edges. Every edge is paired with a value derived from a symmetric submodular function, gauging the connectivity between edges. Branch width notably extends the breadth of symmetric submodular functions applied to graphs.

The definition of branch-decomposition is shown below. Due to its significance, branch-decomposition has been the subject of various research studies [13-29].

Definition 5: Let (X, f) be a connectivity system. The pair (T, μ) is a branch decomposition tree of (X, f) if T is a ternary tree such that $|L(T)|=|X|$ and μ is a bijection from $L(T)$ to X, where $L(T)$ denotes the leaves in T. For each $e \in E(T)$, we define $b w(T, \mu, e)$ as $f\left(U_{v \in L(T l)} \mu(v)\right)$, where T_{l} is a tree obtained by removing e from T (taking into account the symmetry property of f). The width of (T, μ) is defined as the maximum value among $b w(T, \mu, e)$ for all $e \in E(T)$. The branch-width of X, denoted by $b w(X)$, is defined as the minimum width among all possible branch decomposition trees of X.

2. Quasi-Ultrafilter on Connectivity System

We introduce the Quasi-Ultrafilter on the Connectivity System (X, f) as an extension of the Quasi-Ultrafilter on Boolean Algebras. Subsequently, we elucidate its dual relationship with branch-width. The primary distinction in this definition, compared to the one on Boolean Algebras, is the inclusion of the Symmetric Submodular Function condition.

Definition 4: Let X be a finite set and f be a symmetric submodular function. In a connectivity system, the set family $Q \subseteq 2^{X}$ is called a Quasi ultrafilter of order $k+l$ if the following axioms hold true:
(Q0) $\forall A \in Q, f(A) \leq k$
L 1) $A \subseteq X, B \subseteq X, A \notin Q, B \notin Q \Rightarrow A \cup B \notin Q$
(Q2) $A \in Q, A \subseteq B \subseteq X, \mathrm{f}(\mathrm{B}) \leq \mathrm{k} \Rightarrow B \in Q$
(Q3) \varnothing is not belong to Q.
(Q4) $\forall A \subseteq X, f(A) \leq \mathrm{k} \Rightarrow$ either $A \in Q$ or $X / A \in Q$.
And Quasi-Ultrafilter is non-principal if the Quasi-Ultrafilter satisfies following axiom:
(Q5) $A \notin Q$ for all $A \subseteq X$ with $|A|=1$.
The main theorem of this paper is presented as follows. This proof utilizes techniques from the paper [19]. At first glance, the concepts that seem unrelated possess an extremely intriguing duality when specific conditions are applied. Moving forward, I plan to continue exploring such interconnected concepts.

Theorem 2: Let X be a finite set and f be a symmetric submodular function. Branch-width of the connectivity system (X, f) is at most k if and only if no (non-principal) Quasi Ultrafilter of order $k+1$ exists.

Proof. This proof utilizes techniques from the paper [19]. So the proof will be presented concisely, focusing primarily on the key points or highlights.

Let X be a finite set and f be a symmetric submodular function. Assume that the branch-width of the connectivity system (X, f) is at most k. Note that A set $A \subseteq X$ is called k-branched if the connectivity system obtained from f by identifying $X \backslash A$ has branch-width at most k.

Consider the set I defined by $I=\{A \mid X \backslash A \in Q\}$. If the branch-width of the connectivity system (X, f) is bounded above by k, then the set X is classified as k-branched. It's evident that any k-branched set, provided it consists of at least two elements, can be expressed as the union of two distinct, proper subsets that are both k-branched. Given axiom (Q3) and axiom (Q4) in definition of non-principal Quasi Ultrafilter, we have $X \in Q$, implying $X \notin I$. Although I is expected to encompass all k branched sets, the absence of X from I creates a contradiction. Thus, there cannot exist a non-principal Quasi Ultrafilter. And if the branch-width of the connectivity system (X, f) is greater than k, then there exists a non-principal Quasi Ultrafilter. This proof is completed.

Acknowledgments

I humbly express my sincere gratitude to all those who have extended their invaluable support, enabling me to successfully accomplish this paper.

References

[1] Susumu Cato, "Quasi-Decisiveness, Quasi-Ultrafilter, and Social Quasi-Orderings," Social Choice and Welfare, vol. 41, pp. 169-202, 2013. [CrossRef] [Google Scholar] [Publisher Link]
[2] Susumu Cato, "Quasi-Stationary Social Welfare Functions," Theory and Decision, vol. 89, no. 1, pp. 85-106, 2020. [CrossRef] [Google Scholar] [Publisher Link]
[3] Susumu Cato, "The Possibility of Paretian Anonymous Decision-Making with an Infinite Population," Social Choice and Welfare, vol. 53, no. 4, pp. 587-601, 2019. [CrossRef] [Google Scholar] [Publisher Link]
[4] Susumu Cato, "Social Choice, the Strong Pareto Principle, and Conditional Decisiveness," Theory and Decision, vol. 75, pp. 563-579, 2013. [CrossRef] [Google Scholar] [Publisher Link]
[5] Walter Bossert, and Susumu Cato, "Superset-Robust Collective Choice Rules," Mathematical Social Sciences, vol. 109, pp. 126-136, 2021. [CrossRef] [Google Scholar] [Publisher Link]
[6] Shino Takayama, and Akira Yokotani, "Social Choice Correspondences with Infinitely Many Agents: Serial Dictatorship," Social Choice and Welfare, vol. 48, pp. 573-598, 2017. [CrossRef] [Google Scholar] [Publisher Link]
[7] Susumu Cato, "Alternative Proofs of Arrow's General Possibility Theorem," Economic Theory Bulletin, vol. 1, pp. 131-137, 2013. [CrossRef] [Google Scholar] [Publisher Link]
[8] Susumu Cato, "Weak Independence and Social Semi-Orders," The Japanese Economic Review, vol. 66, pp. 311-321, 2015. [CrossRef] [Google Scholar] [Publisher Link]
[9] Maurice Queyranne, "Minimizing Symmetric Submodular Functions," Mathematical Programming, vol. 82, pp. 3-12, 1998. [CrossRef] [Google Scholar] [Publisher Link]
[10] Maurice Queyrannet, "A Combinatorial Algorithm for Minimizing Symmetric Submodular Functions," Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 98-101, 1995. [Google Scholar] [Publisher Link]
[11] Fedor V. Fomin, and Dimitrios M. Thilikos, "On the Monotonicity of Games Generated by Symmetric Submodular Functions," Discrete Applied Mathematics, vol. 131, no. 2, pp. 323-335, 2003. [CrossRef] [Google Scholar] [Publisher Link]
[12] Moran Feldman, "Maximizing Symmetric Submodular Functions," ACM Transactions on Algorithms, vol. 13, no. 3, pp. 1-36, 2017. [CrossRef] [Google Scholar] [Publisher Link]
[13] Édouard Bonnet, and Nidhi Purohit, "Metric Dimension Parameterized by Treewidth," Algorithmica, vol. 83, no. 8, pp. 2606-2633, 2021. [CrossRef] [Google Scholar] [Publisher Link]
[14] Edouard Bonnet et al., "Twin-Width VI: The Lens of Contraction Sequences," Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1036-1056, 2022. [CrossRef] [Google Scholar] [Publisher Link]
[15] Josse van Dobben de Bruyn, and Dion Gijswijt, "Treewidth is a Lower Bound on Graph Gonality," Algebraic Combinatorics, vol. 3, no. 4, pp. 941-953, 2020. [CrossRef] [Google Scholar] [Publisher Link]
[16] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos, "A Complexity Dichotomy for Hitting Connected Minors on Bounded Treewidth Graphs: The Chair and the Banner Draw the Boundary," Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 951-970, 2020. [CrossRef] [Google Scholar] [Publisher Link]
[17] Łukasz Bożyk et al., "On Objects Dual to Tree-Cut Decompositions," Journal of Combinatorial Theory, Series B, vol. 157, pp. 401428, 2022. [CrossRef] [Google Scholar] [Publisher Link]
[18] Sang-il Oum, and Paul Seymour, "Testing Branch-Width," Journal of Combinatorial Theory, Series B, vol. 97, no. 3, pp. 385-393, 2007. [CrossRef] [Google Scholar] [Publisher Link]
[19] S.-il Oum and P. Seymour, "Approximating Clique-Width and Branch-Width," Journal of Combinatorial Theory, Series B, vol. 96, no. 4, pp. 514-528, 2006. [CrossRef] [Google Scholar] [Publisher Link]
[20] James F. Geelen, A.M.H. Gerards, and Geoff Whittle, "Branch-Width and Well-Quasi-Ordering in Matroids and Graphs," Journal of Combinatorial Theory, Series B, vol. 84, no. 2, pp. 270-290, 2002. [CrossRef] [Google Scholar] [Publisher Link]
[21] Fedor V. Fomin, and Dimitrios M. Thilikos, "Dominating Sets in Planar Graphs: Branch-Width and Exponential Speed-Up," SIAM Journal on Computing, vol. 36, no. 2, pp. 281-309, 2006. [CrossRef] [Google Scholar] [Publisher Link]
[22] Susan Jowett, Jasmine Lulani Kaulamatoa, and Geoff Whittle, "Bounding Branch-Width," The Electronic Journal of Combinatorics, pp. 1-23, 2023. [CrossRef] [Google Scholar] [Publisher Link]
[23] Benjamin Merlin Bumpus, Kitty Meeks, and William Pettersson, "Directed Branch-Width: A Directed Analogue of Tree-Width," arXiv preprint arXiv:2009.08903, 2020. [CrossRef] [Google Scholar] [Publisher Link]
[24] Elena Di Lavore, and Paweł Sobociński, "Monoidal Width: Unifying Tree Width, Path Width and Branch Width," arXiv preprint arXiv:2202.07582, 2022. [CrossRef] [Google Scholar] [Publisher Link]
[25] Susumu Cato, "Weak Independent Decisiveness and the Existence of a Unique Vetoer," Economics Letters, vol. 131, pp. 59-61, 2015. [CrossRef] [Google Scholar] [Publisher Link]
[26] Lorenzo Najt, "Sampling the Vertices of a Polytope is Still Hard Even When the Branch-Width is Bounded," 2021. [Google Scholar] [Publisher Link]
[27] J.F. Geelen et al., "On the Excluded Minors for the Matroids of Branch-Width K," Journal of Combinatorial Theory, Series B, vol. 88, no. 2, pp. 261-265, 2003. [CrossRef] [Google Scholar] [Publisher Link]
[28] David Booth, "Ultrafilters on a Countable Set," Annals of Mathematical Logic, vol. 2, no. 1, pp. 1-24, 1970. [Google Scholar] [Publisher Link]
[29] W.W. Comfort, and S. Negrepontis, The Theory of Ultrafilters, Springer Science \& Business Media, 2012. [Google Scholar] [Publisher Link]
[30] Thomas Jech, Set Theory, Journal of Symbolic Logic, pp. 876-877, 1981.
[31] Yevhen G. Zelenyuk, Ultrafilters and Topologies on Groups, Walter de Gruyter, 2010. [Google Scholar] [Publisher Link]
[32] Karel Hrbacek, and Thomas Jech, Introduction to Set Theory, Revised and Expanded, CRC Press, 1999. [CrossRef] [Google Scholar] [Publisher Link]
[33] John L. Bell, Set Theory: Boolean-Valued Models and Independence Proofs, OUP Oxford, vol. 47, 2011. [Google Scholar] [Publisher Link]
[34] Pierre Samuel, "Ultrafilters and Compactification of Uniform Spaces," Transactions of the American Mathematical Society, vol. 64, no. 1, pp. 100-132, 1948. [Google Scholar] [Publisher Link]
[35] Kenneth Kunen, "Some Applications of Iterated Ultrapowers in Set Theory," Annals of Mathematical Logic, vol. 1, no. 2, pp. 179-227, 1970. [CrossRef] [Google Scholar] [Publisher Link]
[36] Simon Kochen, "Ultraproducts in the Theory of Models," Annals of Mathematics, vol. 74, no. 2, pp. 221-261, 1961. [CrossRef] [Google Scholar] [Publisher Link]
[37] James Cummings, "Iterated Forcing and Elementary Embeddings," Handbook of Set Theory, pp. 775-883, 2010. [CrossRef] [Google Scholar] [Publisher Link]
[38] Stefan Heinrich, "Ultraproducts in Banach Space Theory," Journal for Pure and Applied Mathematics, pp. 72-104, 1980. [CrossRef] [Google Scholar] [Publisher Link]
[39] Walter Bossert, and Kotaro Suzumura, "Quasi-Transitive and Suzumura Consistent Relations," Social Choice and Welfare, vol. 39, pp. 323-334, 2012. [CrossRef] [Google Scholar] [Publisher Link]
[40] Walter Bossert, and Kotaro Suzumura, "Decisive Coalitions and Coherence Properties," Research Notebook, 2009. [Google Scholar] [Publisher Link]

