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Abstract - Symmetry properties are of vital importance for graphs. Meanwhile, graphs with the vertex transitivity are a class 

of highly symmetrical graphs. A graph 𝛷  is said to be a tri-Cayley graph over a group 𝐻  if it has a semi-regular 

automorphism group which acts on the vertex set with three orbits of equal length and is isomorphic to 𝐻. In this paper, the 

vertex transitivity, edge transitivity and arc transitivity of the 4-degree 0-type and 2-type tri-Cayley graphs over a group ℤ𝑝𝑞 

are discussed and give the automorphism group of the corresponding vertex transitive graph. 
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1. Introduction  
A graph is said to be a tri-Cayley graph if it admits a semiregular subgroup of automorphisms having three orbits of 

equal length. Let 𝐿0, 𝐿1, 𝐿2, 𝑆0, 𝑆1and𝑆2be subsets of a group𝐻with identity element𝑒such that 1

0 0 ,L L−= 𝐿1 = 𝐿1
−1, 𝐿2 =

𝐿2
−1and 𝑒 ∉ 𝐿0 ∪ 𝐿1 ∪ 𝐿2. Then we let 𝛷 = TCay(𝐻; 𝐿0, 𝐿1, 𝐿2; 𝑆0, 𝑆1, 𝑆2) be the graph with vertex set ℤ3 × 𝐻, and edge 

set the union of {{(0, ℎ), (0, 𝑙0ℎ)} ∣ 𝑙0 ∈ 𝐿0}, {{(0, ℎ), (1, 𝑠0ℎ)} ∣ 𝑠0 ∈ 𝑆0}, {{(1, ℎ), (1, 𝑙1ℎ)} ∣ 𝑙1 ∈ 𝐿1}, {{(1, ℎ), (2, 𝑠1ℎ)} ∣
𝑠1 ∈ 𝑆1}, {{(2, ℎ), (2, 𝑙2ℎ)} ∣ 𝑙2 ∈ 𝐿2} and {{(2, ℎ), (0, 𝑠2ℎ)} ∣ 𝑠2 ∈ 𝑆2} . For the case when |𝑆0| = |𝑆1| = |𝑆2| = 1 , 

TCay (𝐻; 𝐿0, 𝐿1, 𝐿2; 𝑆0, 𝑆1, 𝑆2)  is also called one-matching tri-Cayley graph. Also, if |𝐿0| = |𝐿1| = |𝐿2| = 𝑡 , then 

TCay(𝐻; 𝐿0, 𝐿1, 𝐿2; 𝑆0, 𝑆1, 𝑆2) is said to be 𝑡 -type tri-Cayley graph. 

 

The concept of the Cayley graph was proposed by Cayley [1] in 1878, and we can use it to construct graphs with special 

symmetry due to its simple construction and high symmetry. In [2], it investigated the normality of Cayley graphs of order𝑝𝑞, 

where 𝑝, 𝑞 are distinct primes and 𝑝 > 𝑞 ≥ 3, and determined all non-normal Cayley graphs of order 𝑝𝑞. In [3], it showed 

that every abelian Cayley graph is edge-hamiltonian and every Cayley graph of order 𝑝𝑞 is also edge-hamiltonian, where 

𝑝, 𝑞 are primes. 

 

The 𝑛 -Cayley graph is a natural generalization of the Cayley graph. There are many research results on the edge 

connectivity, characteristic polynomial, normality and other properties of 𝑛 -Cayley graph. For example, in [4], bounds for 

the edge connectivity of 𝑛 -Cayley graphs were found, and also several structural conditions were given for a connected 𝑘 

-regular bi-abelian graph to have edge connectivity strictly less than 𝑘. In 2013, Arezoomand et al. [5] represented the 

adjacency matrix of 𝑛 -Cayley graph as a diagonal block matrix in terms of irreducible representations of 𝐺and determined 

its characteristic polynomial. In [6], it determined the characteristic polynomial of quasi-abelian 𝑛 -Cayley graphs and 

exactly determined the eigenvalues. In [7], it proved that every finite group admits a vertex-transitive normal 𝑛 -Cayley 

graph for every 𝑛 ≥ 2. In [8], it investigated properties of symmetric 𝑛 -Cayley graphs in the special case of valency 3, 

and used these properties to develop a computational method for classifying connected cubic core-free symmetric 𝑛 -Cayley 

graphs. Especially, the tri-Cayley graph has also been a hot topic. For example, in 2009, Kutnar et al. [9] studied the structure 

of strongly regular tri-Cayley graphs and a structural description of strongly regular tri-Cayley graphs of cyclic groups was 

given; it gave that the complete bipartite graph 𝐾3,3, the Pappus graph, Tutte’s 8-cage and the unique cubic symmetric graph 

of order 54 are the only connected cubic symmetric tricirculants in [10]; all finite connected cubic vertex-transitive 

tricirculants were classified in [11]. 

 

Moreover, it is well known that the symmetric graph is an important graph not only in algebraic graph theory, but also 

has a wide range of applications in real life. For example, more efficient algorithms can be realized by using the symmetry 

of the graph in the field of the Internet models. Therefore, it is necessary for us to study the vertex transitive graphs. In this 

paper, the vertex transitivity, edge transitivity and arc transitivity of the 4-degree 0-type and 2-type tri-Cayley graphs over a 

group ℤ𝑝𝑞 are discussed and give the automorphism group of the corresponding vertex transitive graph.  

http://www.internationaljournalssrg.org/
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2. Definition and Preliminaries 
In this paper, we define that all graphs are finite, connected, simple, regular, undirected and all groups are finite. For 

the group-theoretic and graph-theoretic terminology not defined here we refer the reader to [12,13]. 

 

For any𝑥, 𝑦 ∈ 𝑉(𝛷) , if there exists a walk connects 𝑥 to𝑦 , then 𝛷 is said to be connected. A graph 𝛷 is connected, 

finite, undirected and simple, then we use 𝑉(𝛷), 𝐸(𝛷), 𝐴(𝛷),Aut(Φ) to denote its vertex set, edge set, arc set and full 

automorphism group, respectively. A graph 𝛷 is vertex transitive,  edge transitive and arc transitive (or  symmetric) if 

Aut(Φ) acts transitively on 𝑉(𝛷), 𝐸(𝛷) and 𝐴(𝛷)  , respectively. The set of neighbours of a vertex 𝑥  in a graph 𝛷 is 

denoted by𝑁(𝑥) . Meanwhile, we denote that 𝑁𝑦(𝑥) is the set of vertices at a distance of 𝑦 from the vertex 𝑥, called the𝑦 

-step neighborhood of the vertex 𝑥, where 𝑦 is a positive integer. The degree of a vertex 𝑥 in a graph 𝛷, denoted by 𝑑𝛷(𝑥) 
, is the number of edges of 𝛷 incident with 𝑥. A graph 𝛷 is said to be 𝑡 -regular if 𝑑(𝑥) = 𝑡 for any 𝑥 ∈ 𝑉(𝛷) . Let 𝐺 

be a permutation group on a set 𝛺 and 𝛽 ∈ 𝛺 , the vertex-stabilizer of 𝛽  in 𝐺 is denoted by𝐺𝛽 = {𝑔 ∈ 𝐺 ∣ 𝛽𝑔 = 𝛽}, that 

is to say, the subgroup of 𝐺 fixing the vertex𝛽. 

 

In this section, we always assume that 𝛷 = TCay(𝐻; 𝐿0, 𝐿1, 𝐿2; 𝑆0, 𝑆1, 𝑆2) is a connected tri-Cayley graph over a 

group𝐻. 

 

Definition 2.1 Take any 𝑗 ∈ ℤ3 = {0,1,2} and𝑥, 𝑦 ∈ 𝐻, we define 𝑅(𝑦): ℤ3 × 𝐻 ↦ ℤ3 × 𝐻 by 

𝑅(𝑦): (𝑗, 𝑥) ↦ (𝑗, 𝑥𝑦). 
Clearly,𝑅(𝑦)𝑅(𝑦′) = 𝑅(𝑦𝑦′). Set𝑅(𝐻) = {𝑅(𝑦) ∣ 𝑦 ∈ 𝐻}. Then 𝑅(𝐻) is a semiregular subgroup of Aut(Φ) isomorphic 

to 𝐻. 

 

Lemma 2.2 ([14]) For a finite group𝐻, if it acts on the finite set 𝛺 and𝛽 ∈ 𝛺, then we have 

|𝛽𝐻| = |𝐻:𝐻𝛽|. 

 

Lemma 2.3 Assume that 𝛷 = TCay(𝐻; 𝐿0, 𝐿1, 𝐿2; 𝑆0, 𝑆1, 𝑆2) is a connected tri-Cayley graph over a group𝐻, meanwhile, 

𝛷is also regular, then |𝑆0| = |𝑆1| = |𝑆2|. Furthermore, 𝑆𝑗 ≠ ∅, where𝑗 = 0,1,2. 

 

Lemma 2.4 The following hold. 

(1) Up to graph isomorphism, 𝑆𝑗 can be chosen to contain the identity element of𝐻, where 𝑗 = 0,1,2. 

(2)𝐻is generated by 𝐿0 ∪ 𝐿1 ∪ 𝐿2 ∪ 𝑆0 ∪ 𝑆1 ∪ 𝑆2. 

  

 Assume that 𝛷 = TCay(𝐻; 𝐿0, 𝐿1, 𝐿2; 𝑆0, 𝑆1, 𝑆2)  is a connected tri-Cayley graph over a group𝐻 = ℤ𝑝𝑞 , where𝑝, 𝑞 

are distinct primes and𝑝 > 𝑞. According to the definition of tri-Cayley graph and Lemma 2.4, we can construct 4-degree tri-

Cayley graphs over group𝐻 = ℤ15 = ⟨𝑐⟩. As shown below: 

(1) 𝛷1 = TCay(𝐻; ∅, ∅, ∅; {1, 𝑐}, {1, 𝑐}, {1, 𝑐}); 
(2) 𝛷2 = TCay(𝐻; ∅, ∅, ∅; {1, 𝑐}, {1, 𝑐−1}, {1, 𝑐−1}); 
(3) 𝛷3 = TCay(𝐻; {𝑐, 𝑐−1}, {𝑐, 𝑐−1}, {𝑐, 𝑐−1}; {1}, {1}, {1}). 
 

3. 4-Degree 0-Type Tri-Cayley Graph 
Theorem 3.1 Let 𝛷1 = TCay(𝐻; ∅, ∅, ∅; {1, 𝑐}, {1, 𝑐}, {1, 𝑐}) be a connected 4-degree 0-type tri-Cayley graph over a 

group𝐻. Then 𝛷1 is vertex-transitive. 

 

Proof: Take any𝑐𝑡 ∈ 𝐻, we define a mapping 𝜆 from 𝑉(𝛷1) to 𝑉(𝛷1) as follows: 

 

 𝜆: (0, 𝑐𝑡) ↦ (1, 𝑐𝑡), (1, 𝑐𝑡) ↦ (2, 𝑐𝑡), (2, 𝑐𝑡) ↦ (0, 𝑐𝑡), 
 

where 𝑡 = 0,1,⋯ ,14 . Firstly, we will prove that 𝜆  is a bijection. Take any (1, 𝑐𝑡) , (2, 𝑐𝑡) , (0, 𝑐𝑡) ∈ 𝑉(𝛷1) , there 

exist(0, 𝑐𝑡), (1, 𝑐𝑡), (2, 𝑐𝑡) ∈ 𝑉(𝛷1) such that 

 

(0, 𝑐𝑡)𝜆 = (1, 𝑐𝑡), (1, 𝑐𝑡)𝜆 = (2, 𝑐𝑡) and (2, 𝑐𝑡)𝜆 = (0, 𝑐𝑡). 
 

Therefore, 𝜆 is a surjection. Take any(0, 𝑐𝑡), (0, 𝑐𝑡
′
), (1, 𝑐𝑡), (1, 𝑐𝑡

′
),(2, 𝑐𝑡) and (2, 𝑐𝑡

′
) ∈ 𝑉(𝛷1), then 

 (0, 𝑐𝑡) = (0, 𝑐𝑡
′
) ⇔ 𝜆((0, 𝑐𝑡)) = 𝜆((0, 𝑐𝑡

′
)) ⇔ (1, 𝑐𝑡) = (1, 𝑐𝑡

′
), 

(1, 𝑐𝑡) = (1, 𝑐𝑡
′
) ⇔ 𝜆((1, 𝑐𝑡)) = 𝜆((1, 𝑐𝑡

′
)) ⇔ (2, 𝑐𝑡) = (2, 𝑐𝑡

′
), 

   (2, 𝑐𝑡) = (2, 𝑐𝑡
′
) ⇔ 𝜆((2, 𝑐𝑡)) = 𝜆((2, 𝑐𝑡

′
)) ⇔ (0, 𝑐𝑡) = (0, 𝑐𝑡

′
).  

 

Thus, 𝜆 is a bijection. Next, we claim that𝜆 ∈ Aut(Φ1). Since 
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𝑁((0, 𝑐𝑡))𝜆 = {(1, 𝑐𝑡), (1, 𝑐𝑡+1), (2, 𝑐𝑡), (2, 𝑐𝑡−1)}𝜆 = {(2, 𝑐𝑡), (2, 𝑐𝑡+1), (0, 𝑐𝑡), (0, 𝑐𝑡−1)} = 𝑁((1, 𝑐𝑡)), 
𝑁((1, 𝑐𝑡))𝜆 = {(2, 𝑐𝑡), (2, 𝑐𝑡+1), (0, 𝑐𝑡), (0, 𝑐𝑡−1)}𝜆 = {(0, 𝑐𝑡), (0, 𝑐𝑡+1), (1, 𝑐𝑡), (1, 𝑐𝑡−1)} = 𝑁((2, 𝑐𝑡)), 
𝑁((2, 𝑐𝑡))𝜆 = {(0, 𝑐𝑡), (0, 𝑐𝑡+1), (1, 𝑐𝑡), (1, 𝑐𝑡−1)}𝜆 = {(1, 𝑐𝑡), (1, 𝑐𝑡+1), (2, 𝑐𝑡), (2, 𝑐𝑡−1)} = 𝑁((0, 𝑐𝑡)). 

 

Then 𝜆 ∈ Aut(Φ1). Furthermore, ⟨𝑅(𝐻), 𝜆⟩ acts transitively on 𝑉(𝛷1). Hence, 𝛷1 is vertex-transitive. 

 

 
 

Fig. 1 Induced subgraph of 𝜱𝟏 = TCay(𝑯;∅, ∅, ∅; {𝟏, 𝒄}, {𝟏, 𝒄}, {𝟏, 𝒄}) 

 

Theorem 3.2 Let 𝛷1 = TCay(𝐻; ∅, ∅, ∅; {1, 𝑐}, {1, 𝑐}, {1, 𝑐}) be a connected 4-degree 0-type tri-Cayley graph over a 

group𝐻. ThenAut(Φ1) = ⟨𝑅(𝐻), 𝜆⟩ℤ2 × ℤ2, where 𝜆 is defined in Theorem 3.1. 

 

Proof: We can get that |𝐴| = |𝐴(0,1)||(0,1)
𝐴|by Lemma 2.2, where𝐴 = Aut(Φ1). By Theorem 3.1, one has|(0,1)𝐴| = 45. 

(1) The action of 𝐴(0,1) on set 𝑁((0,1)) is faithful. 

 

Let 𝐾 be the kernel of the action of 𝐴(0,1) on set 𝑁((0,1)) , then 𝐾 fixes (0,1), (1,1), (1, 𝑐), (2,1) and (2, 𝑐−1). 

From Fig 1, we can find that [(0,1), (1,1), (0, 𝑐−1), (2, 𝑐−1)] is the unique 4-cycle passing through (0,1), (1,1) and(2, 𝑐−1), 
then 𝐾 fixes (0, 𝑐−1); we can find that [(0,1), (2,1), (1, 𝑐−1), (2, 𝑐−1)] is the unique 4-cycle passing through (0,1), (2,1) 
and(2, 𝑐−1) , then 𝐾 fixes (1, 𝑐−1); we can find that [(0,1), (1, 𝑐), (0, 𝑐), (2,1)]  is the unique 4-cycle passing through 

(0,1), (1, 𝑐) and(2,1), then 𝐾fixes (0, 𝑐); we can find that [(0,1), (1,1), (2, 𝑐), (1, 𝑐)] is the unique 4-cycle passing through 

(0,1), (1,1) and(1, 𝑐), then 𝐾fixes (2, 𝑐). Meanwhile, it is easy to find that there are two 4-cycles passing through (1, 𝑐) 
and (0, 𝑐), namely [(1, 𝑐), (0, 𝑐), (1, 𝑐2), (2, 𝑐2)] and[(1, 𝑐), (0, 𝑐), (2,1), (0,1)], and that there are two 4-cycles passing 

through (2, 𝑐−1)  and (1, 𝑐−1) , namely [(2, 𝑐−1), (1, 𝑐−1), (0, 𝑐−2), (1, 𝑐−2)]  and [(2, 𝑐−1), (1, 𝑐−1), (0,1), (2,1)] . Since 

(0,1) and (2,1) are fixed, it follows that (2, 𝑐2) and (1, 𝑐−2) are also fixed. Thus, 𝐾fixes𝑁2(10). Note that the graph 𝛷1 

is connected and vertex-transitive, then 𝐾 fixes all the vertices in it. Hence, 𝐾 = 1.  

 

(2) The action of 𝐴(0,1) on set 𝑁((0,1)) is not transitive and𝐴(0,1) ≅ ℤ2. 

Assume that the action of 𝐴(0,1)  on set 𝑁((0,1)) is transitive. Then there exists 𝜋1 ∈ 𝐴(0,1)  such that(1, 𝑐)𝜋1 =

(1,1), (1, 𝑐)𝜋1 = (2,1), (2,1)𝜋1 = (2, 𝑐−1), where𝑜(𝜋1) = 4. From Fig 1, we can get that 

|𝑁((1, 𝑐)) ∩ 𝑁2((0,1))| = 3 ≠ |𝑁((1,1)) ∩ 𝑁2((0,1))| = 2, 
 

a contradiction. Thus, the action of 𝐴(0,1) on set 𝑁((0,1)) is not transitive. 

 

Next, we will prove that𝐴(0,1) ≅ ℤ2. Take any𝑐𝑡 ∈ 𝐻, we define a mapping 𝜋2 from 𝑉(𝛷1) to 𝑉(𝛷1) as follows: 

𝜋2: (0, 𝑐
𝑡) ↦ (0, 𝑐−𝑡), (1, 𝑐𝑡) ↦ (2, 𝑐−𝑡), (2, 𝑐𝑡) ↦ (1, 𝑐−𝑡), 

where𝑡 = 0,1,⋯ ,14. It is easy to see that 𝜋2 is a bijection. Next, we claim that𝜋2 ∈ Aut(Φ1). Since 

𝑁((0, 𝑐𝑡))𝜋2 = {(1, 𝑐𝑡), (1, 𝑐𝑡+1), (2, 𝑐𝑡), (2, 𝑐𝑡−1)}𝜋2 = {(2, 𝑐−𝑡), (2, 𝑐−𝑡−1), (1, 𝑐−𝑡), (1, 𝑐−𝑡+1)} = 𝑁((0, 𝑐−𝑡)), 
𝑁((1, 𝑐𝑡))𝜋2 = {(2, 𝑐𝑡), (2, 𝑐𝑡+1), (0, 𝑐𝑡), (0, 𝑐𝑡−1)}𝜋2 = {(1, 𝑐−𝑡), (1, 𝑐−𝑡−1), (0, 𝑐−𝑡), (0, 𝑐−𝑡+1)} = 𝑁((2, 𝑐−𝑡)), 
𝑁((2, 𝑐𝑡))𝜋2 = {(0, 𝑐𝑡), (0, 𝑐𝑡+1), (1, 𝑐𝑡), (1, 𝑐𝑡−1)}𝜋2 = {(0, 𝑐−𝑡), (0, 𝑐−𝑡−1), (2, 𝑐−𝑡), (2, 𝑐−𝑡+1)} = 𝑁((1, 𝑐−𝑡)), 

then 𝜋2 ∈ Aut(Φ1). Since (0,1)𝜋2 = (0,1), then𝜋2 ∈ 𝐴(0,1). And 𝑜(𝜋2) = 2, so 𝐴(0,1) ≅ ⟨𝜋2⟩ ≅ ℤ2. 

Consequently, Aut(Φ1) = ⟨𝑅(𝐻), 𝜆⟩ℤ2 × ℤ2, where 𝜆 is defined in Theorem 3.1. 

 

Theorem 3.3 Let 𝛷1 = TCay(𝐻; ∅, ∅, ∅; {1, 𝑐}, {1, 𝑐}, {1, 𝑐}) be a connected 4-degree 0-type tri-Cayley graph over a 

group𝐻. Then 𝛷1 is not edge-transitive. Furthermore, 𝛷1 is not arc-transitive. 
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Proof: We can find from Fig 1 that there exists a 3-cycle [(0,1), (2,1), (1,1)] passing through the edge{(2,1), (1,1)}. But 

for the edge{(1, 𝑐), (0,1)}, there is no a 3-cycle passing through it. Thus, 𝛷1 is not edge-transitive. Furthermore, 𝛷1is not 

arc-transitive. 

 

Theorem 3.4 Let 𝛷2 = TCay(𝐻; ∅, ∅, ∅; {1, 𝑐}, {1, 𝑐−1}, {1, 𝑐−1}) be a connected 4-degree 0-type tri-Cayley graph over a 

group𝐻. Then 𝛷2 is vertex-transitive. 

 

Proof: Take any𝑐𝑡 ∈ 𝐻, we define a mapping 𝜔from 𝑉(𝛷2) to 𝑉(𝛷2) as follows: 

𝜔: (0, 𝑐𝑡) ↦ (2, 𝑐𝑡), (2, 𝑐𝑡) ↦ (1, 𝑐𝑡), (1, 𝑐𝑡) ↦ (0, 𝑐𝑡−1), 
where𝑡 = 0,1,⋯ ,14. Firstly, we will prove that 𝜔 is a bijection. Take any(2, 𝑐𝑡), (1, 𝑐𝑡), (0, 𝑐𝑡) ∈ 𝑉(𝛷2), there exist 

(0, 𝑐𝑡), (2, 𝑐𝑡), (1, 𝑐𝑡+1) ∈ 𝑉(𝛷2) such that 

 

(0, 𝑐𝑡)𝜔 = (2, 𝑐𝑡), (2, 𝑐𝑡)𝜔 = (1, 𝑐𝑡) and (1, 𝑐𝑡+1)𝜔 = (0, 𝑐𝑡). 
 

Therefore, 𝜔 is a surjection. Take any (0, 𝑐𝑡), (0, 𝑐𝑡
′
), (1, 𝑐𝑡), (1, 𝑐𝑡

′
), (2, 𝑐𝑡) and (2, 𝑐𝑡

′
) ∈ 𝑉(𝛷2), then 

(0, 𝑐𝑡) = (0, 𝑐𝑡
′
) ⇔ 𝜔((0, 𝑐𝑡)) = 𝜔((0, 𝑐𝑡

′
)) ⇔ (2, 𝑐𝑡) = (2, 𝑐𝑡

′
), 

(1, 𝑐𝑡) = (1, 𝑐𝑡
′
) ⇔ 𝜔((1, 𝑐𝑡)) = 𝜔((1, 𝑐𝑡

′
)) ⇔ (0, 𝑐𝑡−1) = (0, 𝑐𝑡

′−1), 

(2, 𝑐𝑡) = (2, 𝑐𝑡
′
) ⇔ 𝜔((2, 𝑐𝑡)) = 𝜔((2, 𝑐𝑡

′
)) ⇔ (1, 𝑐𝑡) = (1, 𝑐𝑡

′
). 

 

Thus, 𝜔is a bijection. Next, we claim that𝜔 ∈ Aut(Φ2). Since 

𝑁((0, 𝑐𝑡))𝜔 = {(1, 𝑐𝑡), (1, 𝑐𝑡+1), (2, 𝑐𝑡), (2, 𝑐𝑡+1)}𝜔 = {(0, 𝑐𝑡−1), (0, 𝑐𝑡), (1, 𝑐𝑡), (1, 𝑐𝑡+1)} = 𝑁((2, 𝑐𝑡)), 
𝑁((1, 𝑐𝑡))𝜔 = {(2, 𝑐𝑡), (2, 𝑐𝑡−1), (0, 𝑐𝑡), (0, 𝑐𝑡−1)}𝜔 = {(1, 𝑐𝑡), (1, 𝑐𝑡−1), (2, 𝑐𝑡), (2, 𝑐𝑡−1)} = 𝑁((0, 𝑐𝑡−1)), 
𝑁((2, 𝑐𝑡))𝜔 = {(0, 𝑐𝑡), (0, 𝑐𝑡−1), (1, 𝑐𝑡), (1, 𝑐𝑡+1)}𝜔 = {(2, 𝑐𝑡), (2, 𝑐𝑡−1), (0, 𝑐𝑡−1), (0, 𝑐𝑡)} = 𝑁((1, 𝑐𝑡)), 

then 𝜔 ∈ Aut(Φ2). Furthermore, ⟨𝑅(𝐻), 𝜔⟩ acts transitively on 𝑉(𝛷2). Hence, 𝛷2 is vertex-transitive. 

 

Theorem 3.5 Let 𝛷2 = TCay(𝐻; ∅, ∅, ∅; {1, 𝑐}, {1, 𝑐−1}, {1, 𝑐−1}) be a connected 4-degree 0-type tri-Cayley graph over a 

group𝐻. Then 𝛷2 is not edge-transitive. Furthermore, 𝛷2 is not arc-transitive. 

 

Proof: By calculation, we can find from that there exist two 3-cycles passing through the edge{(0,1), (1, 𝑐)}, namely 

[(0,1), (1, 𝑐), (2,1)] and [(0,1), (1, 𝑐), (2, 𝑐)] . But for the edge{(0,1), (1,1)}, there exists the unique 3-cycle [(0,1), (1,1), 
(2,1)] passing through it. Thus, 𝛷2is not edge-transitive. Furthermore, 𝛷2 is not arc-transitive. 

 

4. 4-Degree 2-Type Tri-Cayley Graph 
Theorem 4.1 Let 𝛷3 = TCay(𝐻; {𝑐, 𝑐−1}, {𝑐, 𝑐−1}, {𝑐, 𝑐−1}; {1}, {1}, {1}) be a connected 4-degree 2-type tri-Cayley graph 

over a group𝐻. Then 𝛷3 is vertex-transitive. 

 

Proof: Take any𝑐𝑡 ∈ 𝐻, we define a mapping 𝜑 from 𝑉(𝛷3) to 𝑉(𝛷3) as follows: 

𝜑: (0, 𝑐𝑡) ↦ (1, 𝑐−𝑡), (1, 𝑐𝑡) ↦ (2, 𝑐−𝑡), (2, 𝑐𝑡) ↦ (0, 𝑐−𝑡), 
 

where𝑡 = 0,1,⋯ ,14. Firstly, we will prove that 𝜑 is a bijection. Take any (1, 𝑐𝑡), (2, 𝑐𝑡), (0, 𝑐𝑡) ∈ 𝑉(𝛷3), there exist 

(0, 𝑐−𝑡), (1, 𝑐−𝑡), (2, 𝑐−𝑡) ∈ 𝑉(𝛷3) such that 

 

(0, 𝑐−𝑡)𝜑 = (1, 𝑐𝑡), (1, 𝑐−𝑡)𝜑 = (2, 𝑐𝑡) and (2, 𝑐−𝑡)𝜑 = (0, 𝑐𝑡). 
 

Therefore, 𝜑 is a surjection. Take any (0, 𝑐𝑡), (0, 𝑐𝑡
′
), (1, 𝑐𝑡), (1, 𝑐𝑡

′
), (2, 𝑐𝑡) and(2, 𝑐𝑡

′
) ∈ 𝑉(𝛷3), then 

(0, 𝑐𝑡) = (0, 𝑐𝑡
′
) ⇔ 𝜑((0, 𝑐𝑡)) = 𝜑((0, 𝑐𝑡

′
)) ⇔ (1, 𝑐−𝑡) = (1, 𝑐−𝑡

′
), 

(1, 𝑐𝑡) = (1, 𝑐𝑡
′
) ⇔ 𝜑((1, 𝑐𝑡)) = 𝜑((1, 𝑐𝑡

′
)) ⇔ (2, 𝑐−𝑡) = (2, 𝑐−𝑡

′
), 

(2, 𝑐𝑡) = (2, 𝑐𝑡
′
) ⇔ 𝜑((2, 𝑐𝑡)) = 𝜑((2, 𝑐𝑡

′
)) ⇔ (0, 𝑐−𝑡) = (0, 𝑐−𝑡

′
). 

 

Thus, 𝜑 is a bijection. Next, we claim that𝜑 ∈ Aut(Φ3). Since 

𝑁((0, 𝑐𝑡))𝜑 = {(0, 𝑐𝑡+1), (0, 𝑐𝑡−1), (1, 𝑐𝑡), (2, 𝑐𝑡)}𝜑 = {(1, 𝑐−𝑡−1), (1, 𝑐−𝑡+1), (2, 𝑐−𝑡), (0, 𝑐−𝑡)} = 𝑁((1, 𝑐−𝑡)), 
𝑁((1, 𝑐𝑡))𝜑 = {(1, 𝑐𝑡+1), (1, 𝑐𝑡−1), (2, 𝑐𝑡), (0, 𝑐𝑡)}𝜑 = {(2, 𝑐−𝑡−1), (2, 𝑐−𝑡+1), (0, 𝑐−𝑡), (1, 𝑐−𝑡)} = 𝑁((2, 𝑐−𝑡)), 
𝑁((2, 𝑐𝑡))𝜑 = {(2, 𝑐𝑡+1), (2, 𝑐𝑡−1), (0, 𝑐𝑡), (1, 𝑐𝑡)}𝜑 = {(0, 𝑐−𝑡−1), (0, 𝑐−𝑡+1), (1, 𝑐−𝑡), (2, 𝑐−𝑡)} = 𝑁((0, 𝑐−𝑡)), 

 

then𝜑 ∈ Aut(Φ3). Furthermore, ⟨𝑅(𝐻), 𝜑⟩ acts transitively on 𝑉(𝛷3). Hence, 𝛷3 is vertex-transitive. 
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Fig. 2 The induced subgraph of 𝜱𝟑 = TCay(𝑯; {𝒄, 𝒄−𝟏}, {𝒄, 𝒄−𝟏}, {𝒄, 𝒄−𝟏}; {𝟏}, {𝟏}, {𝟏}). 

 

Theorem 4.2 Let 𝛷3 = TCay(𝐻; {𝑐, 𝑐−1}, {𝑐, 𝑐−1}, {𝑐, 𝑐−1}; {1}, {1}, {1})be a connected 4-degree 2-type tri-Cayley graph 

over a group𝐻. Then Aut(Φ3) = ⟨𝑅(𝐻), 𝜑⟩ℤ2, where 𝜑 is defined in Theorem 4.1. 

 

Proof: We can get from Lemma 2.2 that 

|𝐴| = |𝐴(0,1)||(0,1)
𝐴| = |𝐴(0,1)(1,1)(2,1)||(2,1)

𝐴(0,1)(1,1)||(1,1)𝐴(0,1)||(0,1)𝐴|, 

where𝐴 = Aut(Φ3). It is clear to see that 𝛷3 is vertex-transitive by Theorem 4.1, so|(0,1)𝐴| = 45. Next, we will get |𝐴| 
in three steps. 

(1)|𝐴(0,1)(1,1)(2,1)| = 2.  

Take any𝑐𝑡 ∈ 𝐻, we define a mapping 𝛿1 from 𝑉(𝛷3) to 𝑉(𝛷3) as follows: 

 

𝛿1: (0, 𝑐
𝑡) ↦ (0, 𝑐−𝑡), (1, 𝑐𝑡) ↦ (1, 𝑐−𝑡), (2, 𝑐𝑡) ↦ (2, 𝑐−𝑡), 

 

where𝑡 = 0,1,⋯ ,14. Clearly, 𝛿1 is a bijection. Next, we claim that 𝛿1 ∈ Aut(Φ3). We have 

𝑁((0, 𝑐𝑡))𝛿1 = {(0, 𝑐𝑡+1), (0, 𝑐𝑡−1), (1, 𝑐𝑡), (2, 𝑐𝑡)}𝛿1 = {(0, 𝑐−𝑡−1), (0, 𝑐−𝑡+1), (1, 𝑐−𝑡), (2, 𝑐−𝑡)} = 𝑁((0, 𝑐−𝑡)), 
𝑁((1, 𝑐𝑡))𝛿1 = {(1, 𝑐𝑡+1), (1, 𝑐𝑡−1), (2, 𝑐𝑡), (0, 𝑐𝑡)}𝛿1 = {((1, 𝑐−𝑡−1), (1, 𝑐−𝑡+1),2, 𝑐−𝑡), (0, 𝑐−𝑡)} = 𝑁((1, 𝑐−𝑡)), 
𝑁((2, 𝑐𝑡))𝛿1 = {(2, 𝑐𝑡+1), (2, 𝑐𝑡−1), (0, 𝑐𝑡), (1, 𝑐𝑡)}𝛿1 = {(2, 𝑐−𝑡−1), (2, 𝑐−𝑡+1), (0, 𝑐−𝑡), (1, 𝑐−𝑡)} = 𝑁((2, 𝑐−𝑡)). 

Thus, 𝛿1 ∈ Aut(Φ3) . Furthermore, (0,1)𝛿1 = (0,1), (1,1)𝛿1 = (1,1)  and (2,1)𝛿1 = (2,1) . Then, 𝛿1 ∈
𝐴(0,1)(1,1)(2,1)and(0, 𝑐)𝛿1 = (0, 𝑐−1). Meanwhile, 𝑜(𝛿1) = 2, so 𝐴(0,1)(1,1)(2,1) ≅ ⟨𝛿1⟩ ≅ ℤ2. Hence, |𝐴(0,1)(1,1)(2,1)| = 2. 

(2)|(2,1)𝐴(0,1)(1,1)| = 1. 

 

Clearly, the vertices (0,1), (1,1) are fixed and 𝑁((0,1))\{(1,1)} = {(0, 𝑐), (2,1), (0, 𝑐−1)}. We can find from Fig 2 

that [(0,1), (2,1), (1,1)]  is the unique 3-cycle passing through (0,1) and (1,1). That is to say, there is no a graph 

automorphism which causes (2,1) to become (0, 𝑐) or (0, 𝑐−1) and fixes (0,1) and(1,1). Thus, |(2,1)𝐴(0,1)(1,1)| = 1. 

(3)|(1,1)𝐴(0,1)| = 2. 

 

The vertex (0,1)  is fixed, meanwhile,𝑁((0,1)) = {(1,1), (0, 𝑐), (2,1), (0, 𝑐−1)} . We can find from Fig 2 that 

[(0,1), (2,1), (1,1)] is the unique 3-cycle passing through (0,1). That is to say, there is no a graph automorphism which 

causes (1,1) to become (0, 𝑐) or (0, 𝑐−1) and fixes(0,1). Take any 𝑐𝑡 ∈ 𝐻, we define a mapping 𝛿2  from 𝑉(𝛷3) to 

𝑉(𝛷3) as follows: 

𝛿2: (0, 𝑐
𝑡) ↦ (0, 𝑐−𝑡), (1, 𝑐𝑡) ↦ (2, 𝑐−𝑡), (2, 𝑐𝑡) ↦ (1, 𝑐−𝑡), 

 

where𝑡 = 0,1,⋯ ,14. It is easy to see that 𝛿2 is a bijection. Next, we claim that𝛿2 ∈ Aut(Φ3). We have 

𝑁((0, 𝑐𝑡))𝛿2 = {(0, 𝑐𝑡+1), (0, 𝑐𝑡−1), (1, 𝑐𝑡), (2, 𝑐𝑡)}𝛿2 = {(0, 𝑐−𝑡−1), (0, 𝑐−𝑡+1), (2, 𝑐−𝑡), (1, 𝑐−𝑡)} = 𝑁((0, 𝑐−𝑡)), 
𝑁((1, 𝑐𝑡))𝛿2 = {(1, 𝑐𝑡+1), (1, 𝑐𝑡−1), (2, 𝑐𝑡), (0, 𝑐𝑡)}𝛿2 = {(2, 𝑐−𝑡−1), (2, 𝑐−𝑡+1), (1, 𝑐−𝑡), (0, 𝑐−𝑡)} = 𝑁((2, 𝑐−𝑡)), 
𝑁((2, 𝑐𝑡))𝛿2 = {(2, 𝑐𝑡+1), (2, 𝑐𝑡−1), (0, 𝑐𝑡), (1, 𝑐𝑡)}𝛿2 = {(1, 𝑐−𝑡−1), (1, 𝑐−𝑡+1), (0, 𝑐−𝑡), (2, 𝑐−𝑡)} = 𝑁((1, 𝑐−𝑡)). 

 

Thus,𝛿2 ∈ Aut(Φ3). Furthermore,(0,1)𝛿2 = (0,1). Then, 𝛿2 ∈ (1,1)𝐴(0,1)and𝑜(𝛿2) = 2. Hence, (1,1)𝐴(0,1) ≅ ⟨𝛿2⟩ ≅ ℤ2 

and so|(1,1)𝐴(0,1)| = 2. 
 

Consequently, Aut(Φ3) = ⟨𝑅(𝐻), 𝜑⟩𝑍2, where 𝜑 is defined in Theorem 4.1. 
 

Theorem 4.3 Let 𝛷3 = TCay(𝐻; {𝑐, 𝑐−1}, {𝑐, 𝑐−1}, {𝑐, 𝑐−1}; {1}, {1}, {1}) be a connected 4-degree 2-type tri-Cayley graph 

over a group𝐻.  Then 𝛷3 is not edge-transitive. Furthermore, 𝛷3 is not arc-transitive. 

Proof: We can find from Fig 2 that there exists a 3-cycle [(0,1), (2,1), (1,1)] passing through the edge{(2,1), (0,1)}. But 

for the edge{(0, 𝑐−1), (0,1)}, there is no a 3-cycle passing through it. Thus, 𝛷3is not edge-transitive. Furthermore, 𝛷3 is 

not arc-transitive. 



Xiaohan Ye / IJMTT, 70(3), 17-22, 2024 

22 

References 
[1] A. Cayley, “Desiderata and Suggestions: No.2. The Theory Of Group: Graphical Representation,” American Journal of Mathematics, 

vol. 1, no. 2, pp. 174-176, 1878. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Zai-Ping Lu, and Ming-Yao Xu, “On the Normality of Cayley Graphs of Order pq,” Australasian Journal of Combinatorics, vol. 27, 

pp. 81-93, 2003. [Google Scholar] [Publisher Link] 

[3] C.C. Chen, and N. Quimpo, “Hamiltonian Cayley Graphs of Order PQ,” Combinatorial Mathematics X, pp. 1-5, 1983. [CrossRef] 

[Google Scholar] [Publisher Link] 

[4] Alexander Araluze et al., “Edge Connectivity in Difference Graphs and Some New Constructions of Partial Sum Families,” European 

Journal of Combinatorics, vol. 32, no. 3, pp. 352-360, 2011. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Majid Arezoomand, and Bijan Taeri, “On the Characteristic Polynomial of n-Cayley Digraphs,” The Electronic Journal of 

Combinatorics, vol. 20, no. 3, pp. 1-14, 2013. [CrossRef] [Google Scholar] [Publisher Link] 

[6] M. Arezoomand, “A Note on the Eigenvalues of n-Cayley Graphs,” Matematički Vesnik, vol. 72, no. 4, pp. 351-357, 2020. [Google 

Scholar] [Publisher Link] 

[7] Ademir Hujdurović, Klavdija Kutnar, and Dragan Marušič, “On Normality of n-Cayley Graphs,” Applied Mathematics and 

Computation, vol. 332, pp. 469-476, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Jia-Li Du, Marston Conder, and Yan-Quan Feng, “Cubic Core-Free Symmetric m-Cayley Graphs,” Journal of Algebraic 

Combinatorics, vol. 50, no. 2, pp. 143-163, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Klavdija Kutnar et al., “Strongly Regular tri-Cayley Graphs,” European Journal of Combinatorics, vol. 30, no. 4, pp. 822-832, 2009. 

[CrossRef] [Google Scholar] [Publisher Link] 

[10] Istvan Kovacs et al., “Classification of Cubic Symmetric Tricirculants,” The Electronic Journal of Combinatorics, vol. 19, no. 2, pp. 

1-14, 2012. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Primož Potočnik, and Micael Toledo, “Classification of Cubic Vertex-Transitive Tricirculants,” Ars Mathematica Contemporanea, 

vol. 18, no. 1, pp. 1-31, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[12] John Adrian Bondy, and U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Company, pp. 1-264, 1976. 

[Google Scholar] [Publisher Link] 

[13] Helmut Wielandt, Henry Booker, and D. Allan Bromley, Finite Permutation Groups, Elsevier Science, pp. 1-124, 1964. [Google 

Scholar] [Publisher Link] 

[14] M.Y. Xu, “Finite Group Preliminary,” Science Press, 2014. [Google Scholar] 

 

https://doi.org/10.2307/2369306
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Desiderata+and+suggestions%3A+No.2.+The+theory+of+group%3A+graphical+representation&btnG=
https://www.jstor.org/stable/2369306
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+normality+of+Cayley+graphs+of+order+pq&btnG=
https://ajc.maths.uq.edu.au/pdf/27/ajc_v27_p081.pdf
https://doi.org/10.1007/BFb0071505
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hamiltonian+Cayley+graphs+of+order+pq&btnG=
https://link.springer.com/chapter/10.1007/BFb0071505
https://doi.org/10.1016/j.ejc.2010.10.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edge+connectivity+in+difference+graphs+and+some+new+constructions+of+partial+sum+families&btnG=
https://www.sciencedirect.com/science/article/pii/S0195669810001514
https://doi.org/10.37236/3105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Characteristic+Polynomial+of+n-Cayley+Digraphs&btnG=
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p57
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+note+on+the+eigenvalues+of+n-Cayley+graphs&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+note+on+the+eigenvalues+of+n-Cayley+graphs&btnG=
http://www.vesnik.math.rs/landing.php?p=mv204.cap&name=mv20407
https://doi.org/10.1016/j.amc.2018.03.054
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+normality+of+n-Cayley+graphs&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0096300318302273
https://doi.org/10.1007/s10801-018-0847-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cubic+core-free+symmetric+m-Cayley+graphs&btnG=
https://link.springer.com/article/10.1007/s10801-018-0847-x
https://doi.org/10.1016/j.ejc.2008.09.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Strongly+regular+tri-Cayley+graphs&btnG=
https://www.sciencedirect.com/science/article/pii/S0195669808001935
https://doi.org/10.37236/2371
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+cubic+symmetric+tricirculants&btnG=
https://www.combinatorics.org/ojs/index.php/eljc/article/view/2371
https://doi.org/10.26493/1855-3974.1815.b52
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+cubic+vertex-transitive+tricirculants&btnG=
https://amc-journal.eu/index.php/amc/article/view/1815
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+Theory+with+Applications&btnG=
https://www.google.co.in/books/edition/Graph_Theory_with_Applications/4bwrAAAAYAAJ?hl=en&gbpv=0&bsq=Graph%20Theory%20with%20Applications
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Finite+Permutation+Groups&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Finite+Permutation+Groups&btnG=
https://www.google.co.in/books/edition/Finite_Permutation_Groups/npviBQAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M.+Y.+Xu%2C+Finite+group+preliminary%2C+Science+Press&btnG=

