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Abstract - In this paper, we discuss the cauchy problem of the viscous micropolar fluid flow model in 2D. This note obtains 

a classical regularity blow up criterion for the two-dimensional micropolar fluid flows. When the inital data is allowed to 

the suitable Sobolev space, for the life span 𝑇𝑚𝑎𝑥, it is worth noting that the result holds ∫ ‖𝛻𝑢(𝑡)‖𝐿∞𝑑𝑡 = 0
𝑇𝑚𝑎𝑥

0
. 

Index Terms - Micropolar fluid flow, blow up criterion, suitable Sobolev space, the life span. 

 

1. Introduction 

In this paper, we deals with the system of equations for motion of micropolar fluid. To describe the motion of the 

incompressible conductive micropolar fluids, Eringen first introduced the micropolar equations in [5]. The 3D 

incompressible micropolar fluid equations can be written as: 

        {
𝜕𝑡𝑢 + 𝑢 ∙ ∇𝑢 = (𝜇 + 𝜒)Δ𝑢 − ∇𝜋 + 2𝜒∇ × 𝜔,            
𝜕𝑡𝜔 + 𝑢 ∙ ∇𝜔 − 𝛼∇∇ ∙ 𝜔 + 4𝜒𝜔 = 𝜅∆𝜔 + 2𝜒∇ × 𝑢,
∇ ∙ 𝑢 = 0,                                                                             

                      (1.1) 

Where 𝑢 = 𝑢(𝑥1,𝑥2, 𝑥3, 𝑡)  denotes the fluid velocity, 𝜔 = 𝜔(𝑥1,𝑥2, 𝑥3, 𝑡)  is the field of microrotation representing the 

angular velocity of the rotation of the particles of the fluid and 𝜋 = 𝜋(𝑥1,𝑥2, 𝑥3, 𝑡) is the scalar pressure, 𝜇 is the kinematic 

viscosity, 𝜒 is the vortex viscosity, 𝜅 and 𝛼 is the micro-rotation viscosity. 𝜇, 𝜒, 𝜅 and 𝛼 are positive constants. Specially, 

when 

𝑢 = (𝑢1(𝑥1,𝑥2, 𝑡), 𝑢2(𝑥1,𝑥2, 𝑡), 0),   𝜔 = (0,0, 𝜔3(𝑥1,𝑥2, 𝑡)),   𝑏 = (𝑏1(𝑥1,𝑥2, 𝑡), 𝑏2(𝑥1,𝑥2, 𝑡), 0). 

Here the following 2D micropolar equations which we will consider in this paper can be deduced by 3D micropolar equations 

{
𝜕𝑡𝑢 + 𝑢 ∙ ∇𝑢 = (𝜇 + 𝜒)Δ𝑢 − ∇𝜋 + 2𝜒∇ × 𝜔,            
𝜕𝑡𝜔 + 𝑢 ∙ ∇𝜔 + 4𝜒𝜔 = 𝜅∆𝜔 + 2𝜒∇ × 𝑢,                   
∇ ∙ 𝑢 = 0,                                                                             

 

Where ∇ × 𝜔 = (𝜕2𝜔, −𝜕1𝜔) with 𝜔 is the concise form of 𝜔3, and ∇ × 𝑢 = 𝜕1𝑢2 − 𝜕2𝑢1. 

This model was first proposed by [5] in 1966. The existences of weak and strong solutions were proved by Galdi and 

Rionero [6] and Yamaguchi [16], respectively. To go directly to the main points of the present paper, in what follows we 

only review some known results which are closely related to our main result. Galdi and Rionero [6], Lukaszewicz [11] 

(and references therein) proved the global existence of weak solutions of micropolar flows (1.1) with the methods of 

Ladyzhenskaya [12]  and Temam [15] . Chen and Price  [4] , Roaas-Medar et al. [2,3,13,14]  investigated the local 

existence and uniqueness of strong solutions to the micropolar flows (or magneto-micropolar flows) by some different 

methods. If further, letting 𝜔 = 0 and 𝜒 = 0, the magneto-micropolar fluids equations reduce to the classical Navier--

Stokes equations [7,10]. 

http://www.internationaljournalssrg.org/
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In this paper, we will investigate the classical blow up criterion above system in ℝ2. Let 𝜇 = 𝜒 =
1

2
 for simplicity, 

substitute it into the equation, we will have the following 2D incompressible micropolar fluid equations: 

                {
𝜕𝑡𝑢 + 𝑢 ∙ ∇𝑢 = Δ𝑢 − ∇𝜋 + ∇ × 𝜔,                       
𝜕𝑡𝜔 + 𝑢 ∙ ∇𝜔 + 2𝜔 = 𝜅∆𝜔 + ∇ × 𝑢,                   
∇ ∙ 𝑢 = 0,                                                                     

                      (1.2) 

Then, we state our main result as follows. 

Theorem1.1 Let  𝑢0 ∈ Η2(ℝ2)  and  𝜔0 ∈ Η2(ℝ2) , (1.2)  has a unique solution (𝑢, 𝜔)  for some 𝑇 > 0 so that 𝑢 ∈

𝐶([0, 𝑇]; Η2(ℝ2)), 𝜔 ∈ 𝐶([0, 𝑇]; Η2(ℝ2)) ,with∇𝑢 ∈ 𝐿2([0, 𝑇]; Η2(ℝ2)) and∇𝜋 ∈ 𝐶([0, 𝑇]; Η1(ℝ2)) .Moreover, if 𝑇𝑚𝑎𝑥   is 

the life span to this solution, and 𝑇𝑚𝑎𝑥 < ∞, one has 

                        ∫ ‖∇𝑢(𝑡)‖𝐿∞𝑑𝑡 = ∞
𝑇𝑚𝑎𝑥

0
                              (1.3)  

The rest of the paper is organized as follows. In Section 2, some known facts and elementary inequalities will be 

given which will be needed in later analysis. In Section 3, it is devoted to deriving the priori estimates of solutions, then the 

result can guarantee the extension of the local strong solution to be a global one, it is easy to see that this contradicts the 

results of Theorems 1.1 in this article i.e., the definition of 𝑇𝑚𝑎𝑥 , and Theorems 1.2 can be obtain.          

Notation. In this paper, ‖∙‖𝐿𝑝and ‖∙‖𝐻𝑠 mean the norm of 𝐿𝑝, 𝐻𝑠, respectively. For simplicity, 𝐼𝑡 ≔ (0, 𝑡), 𝐼𝑡̅ ≔ [0, 𝑡] 

and ∫: = ∫ .
ℝ2  

2. Preliminaries     

In this section, we will recall some known facts and elementary inequalities which will be used frequently later.  

First, we recall the local existence of the strong solutions to (1.1), the proof is similar to [5]. 

Lemma 2.1 Assume that the initial data (𝑢0, 𝜔0) ∈ Η𝑚(ℝ2) × Η𝑚(ℝ2)(𝑚 ≥ 2) such that 𝑑𝑖𝑣 𝑢0 = 0 in ℝ2. Then 

there exists a 𝑇 > 0 such that system (1.1) admits a unique solution (𝑢, 𝜔) on [0, 𝑇] satisfying 

(𝑢, 𝜔) ∈ 𝐶([0, 𝑇]; Η𝑚(ℝ2)). 

Lemma 2.2([14]) Gronwall's inequality (differential form): let 𝜑(∙) be a nonnegative, absolutely continuous function on 

𝐼𝑇̅ , for all 𝑡 ∈ 𝐼𝑇̅ , which satisfies for a.e. 𝑡the differential inequality    

𝑓′(𝑡) ≤  𝑓(𝑡)𝑔(𝑡) + 𝜉(𝑡), 

where 𝑔(𝑡) and 𝜉(𝑡) are nonnegative, summable functions on 𝐼𝑇̅ . Then 

                         𝑓(𝑡) ≤  𝑒∫ 𝑔(𝑠)𝑑𝑠
𝑡

0 [𝑓(0) + ∫ 𝜉(𝑠)
𝑡

0
𝑑𝑠].                    (2.1) 

Lemma 2.3 ([1])Assume Ω is a domain in ℝ2, the integer 𝑘 ≥ 0 and 1 < 𝑞 < ∞, for 𝑣 ∈ 𝑊𝑘+1,𝑞, then there exists a 

positive constant 𝐶 depending only on 𝑞, 𝑘 such that   

‖∇𝑣‖𝐿𝑞 ≤ 𝐶(‖div𝑣‖𝐿𝑞 + ‖curl𝑣‖𝐿𝑞). 

3. The Main Proof 

This section is mainly divided into two parts. The first part provides a prior estimate, and the second part uses the 

method of proof by contradiction and the priori estimate to obtain Theorem 1.1. 

3.1. A Priori Estimates 

Proposition 3.1 Let the (𝑢, 𝜔) be the solution of system of (1.1) satisfies 

(𝑢0, 𝜔0) ∈ Η2(ℝ2) × Η2(ℝ2), 

then there exists the result such that 

1

2

𝑑

𝑑𝑡
(‖𝑢‖

𝐻2
2 + ‖𝜔‖

𝐻2
2 ) +

1

4
‖∇𝑢‖

𝐻2
2 +

2

3
‖𝜔‖

𝐻2
2 + 𝜅‖∇𝜔‖

𝐻2
2 <

~
‖∇𝑢‖𝐿∞(‖𝑢‖

𝐻2
2 + ‖𝜔‖

𝐻2
2 )        (3.1) 

for any 𝑡 ∈ [0, 𝑇]. 
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Proof. The proof of proposition 3.1 is divided into several energy estimates. First, we will have the 𝐿2 energy estimates. 

Step 1. 𝐿2 estimate of  (𝑢, 𝜔). 

Taking the 𝐿2 inner product of (1.2)1 with 𝑢 , due to 

∫(𝑢 ∙ ∇𝑢 + ∇𝜋) ∙ 𝑢𝑑𝑥 = ∫
1

2
𝑢 ∙ ∇|𝑢|2𝑑𝑥 − ∫ 𝑑𝑖𝑣𝑢𝜋𝑑𝑥 

                                  = − ∫ (
1

2
|𝑢|2 + 𝜋) 𝑑𝑖𝑣𝑢𝑑𝑥 

                                  = 0, 

we can obtain 

                      
1

2

𝑑

𝑑𝑡
‖𝑢(𝑡)‖

𝐿2
2 + ‖∇𝑢(𝑡)‖

𝐿2
2 = ∫(∇ × 𝜔) ∙ 𝑢𝑑𝑥.                   (3.2) 

Making the 𝐿2 inner product of (1.2)2 with 𝜔, it gives 

               
1

2

𝑑

𝑑𝑡
‖𝜔(𝑡)‖

𝐿2
2 + 2‖𝜔(𝑡)‖

𝐿2
2 +𝜅‖∇𝜔(𝑡)‖

𝐿2
2 = ∫(∇ × 𝑢)𝜔𝑑𝑥                (3.3) 

where we have used 

∫ 𝑢 ∙ ∇𝜔 ∙ 𝜔𝑑𝑥 = −
1

2
∫ 𝑑𝑖𝑣𝑢𝜔2 𝑑𝑥 = 0 

The integration by parts together with 𝐻𝑜𝑙𝑑𝑒𝑟̈  inequality and Young’s inequality gives that 

∫(∇ × 𝜔) ∙ 𝑢𝑑𝑥+∫(∇ × 𝑢)𝜔𝑑𝑥 

                             = ∫(𝜕2𝜔𝑢1 − 𝜕1𝜔𝑢2)𝑑𝑥 + ∫(∇ × 𝑢)𝜔𝑑𝑥 

                             = 2 ∫(∇ × 𝑢)𝜔𝑑𝑥 

                             ≤
3

4
‖∇𝑢‖

𝐿2
2 +

4

3
‖𝜔‖

𝐿2
2             (3.4) 

Then, for any 𝑡 ∈ [0, 𝑇], by (3.2) − (3.4), we can obtain 

                    
1

2

𝑑

𝑑𝑡
(‖𝑢‖

𝐿2
2 + ‖𝜔‖

𝐿2
2 ) +

1

4
‖∇𝑢‖

𝐿2
2 +

2

3
‖𝜔‖

𝐿2
2 + 𝜅‖∇𝜔‖

𝐿2
2 ≤ 0.        (3.5) 

Step 2. 𝐻1 estimate of (𝑢, 𝜔). 

Taking the 𝐿2 product of equation (1.2)1 with −∆𝑢, then we can obtain 

             
1

2

𝑑

𝑑𝑡
‖∇𝑢‖

𝐿2
2 + ‖∆𝑢‖

𝐿2
2 = − ∫ ∇ × 𝜔 ∙ ∆𝑢𝑑𝑥 + ∫ 𝑢 ∙ ∇𝑢 ∙ ∆𝑢𝑑𝑥.           (3.6) 

Here we use the fact − ∫ 𝑢𝑡 ∙ ∆𝑢𝑑𝑥 =
1

2

𝑑

𝑑𝑡
‖∇𝑢‖

𝐿2
2 , which follows from the integration by parts. 

For 𝜔, taking the 𝐿2 inner product of the  (1.2)2 with −∆𝜔 to obtain 

           
1

2

𝑑

𝑑𝑡
‖∇𝜔‖

𝐿2
2 + 2‖∇𝜔‖

𝐿2
2 + 𝜅‖∆𝜔‖

𝐿2
2 = ∫(𝑢 ∙ ∇𝜔)∆𝜔𝑑𝑥 − ∫(∇ × 𝑢) ∆𝜔𝑑𝑥.         (3.7) 

Since 𝑢 is divergence-free, we have 

∫ 𝑢 ∙ ∇𝑢 ∙ ∆𝑢𝑑𝑥 + ∫(𝑢 ∙ ∇𝜔)∆𝜔𝑑𝑥 = − ∫(𝜕𝑖𝑢 ∙ ∇𝑢 ∙ 𝜕𝑖𝑢 + 𝑢 ∙ ∇𝜕𝑖𝑢 ∙ 𝜕𝑖𝑢)𝑑𝑥 

                                           − ∫(𝜕𝑖𝑢 ∙ ∇𝜔𝜕𝑖𝜔 + 𝑢 ∙ ∇𝜕𝑖𝜔𝜕𝑖𝜔)𝑑𝑥 

                                        ≤ ‖∇𝑢‖𝐿∞(‖∇𝑢‖
𝐿2
2 + ‖∇𝜔‖

𝐿2
2 ),            (3.8) 

where we have used the fact that 

− ∫(𝑢 ∙ ∇𝜕𝑖𝑢 ∙ 𝜕𝑖𝑢 + 𝑢 ∙ ∇𝜕𝑖𝜔𝜕𝑖𝜔)𝑑𝑥 = −
1

2
∫ 𝑢 ∙ ∇ (|∇𝑢|

𝐿2
2 + |∇𝜔|

𝐿2
2 )𝑑𝑥 

                                           =
1

2
∫ 𝑑𝑖𝑣𝑢 (|∇𝑢|

𝐿2
2 + |∇𝜔|

𝐿2
2 )𝑑𝑥 
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                                           = 0. 

Along the same line as (3.4), thus together with (3.6), (3.7) and (3.8), we conclude that 

1

2

𝑑

𝑑𝑡
(‖∇𝑢‖

𝐿2
2 + ‖∇𝜔‖

𝐿2
2 ) +

1

4
‖∆𝑢‖

𝐿2
2 +

2

3
‖∇𝜔‖

𝐿2
2 + 𝜅‖∆𝜔‖

𝐿2
2  

                 
<
~

‖∇𝑢‖𝐿∞(‖∇𝑢‖
𝐿2
2 + ‖∇𝜔‖

𝐿2
2 )                    (3.9) 

Step 3. 𝐻1 estimate of (𝑢, 𝜔). 

To estimate the third-order derivative of u , we can have after applying operator ∇ to  (1.2)1and  (1.2)2, 

          {
𝜕𝑡∇𝑢 + ∇(𝑢 ∙ ∇𝑢) = ∇Δ𝑢 − ∇∇𝜋 + ∇∇ × 𝜔,                       

𝜕𝑡∇𝜔 + ∇(𝑢 ∙ ∇𝜔) + 2∇𝜔 = 𝜅∇∆𝜔 + ∇∇ × 𝑢,                   
∇ ∙ 𝑢 = 0,                                                                                      

              (3.10) 

Due to 

∫ 𝜕𝑡∇𝑢 ∙ ∇Δ𝑢𝑑𝑥 =
1

2

𝑑

𝑑𝑡
‖∇2𝑢‖

𝐿2
2  

And 

∫(∇Δ𝑢 − ∇∇𝜋) ∙ ∇Δ𝑢𝑑𝑥 = ‖∇Δ𝑢‖
𝐿2
2  

then multiplying by −∇Δ𝑢 in (3.10)1 to obtain 

                
1

2

𝑑

𝑑𝑡
‖∇2𝑢‖

𝐿2
2 +‖∇Δ𝑢‖

𝐿2
2 =∫(∇(𝑢 ∙ ∇𝑢) − ∇∇ × 𝜔) ∙ ∇Δ𝑢𝑑𝑥          (3.11) 

In order to estimate the third-order derivative of 𝜔, we take the  𝐿2 inner product of equations (3.10)2 with −∇Δ𝜔, and 

integrate by parts to have 

1

2

𝑑

𝑑𝑡
‖∇2𝜔‖

𝐿2
2 + 2‖∇2𝜔‖

𝐿2
2 + 𝜅‖∇∆𝜔‖

𝐿2
2 = ∫(∇(𝑢 ∙ ∇𝜔) − ∇∇ × 𝑢) ∙ ∇Δ𝜔𝑑𝑥   (3.12) 

A direct computation implies 

∫ ∇(𝑢 ∙ ∇𝑢) ∙ ∇Δ𝑢𝑑𝑥 = − ∫ 𝜕𝑖 ∇(𝑢 ∙ ∇𝑢) ∙ ∇𝜕𝑖𝑢𝑑𝑥 

                                       = − ∫(𝜕𝑖∇𝑗𝑢 ∙ ∇𝑢 ∙ ∇𝑗𝜕𝑖𝑢 + 𝜕𝑖𝑢 ∙ ∇∇𝑗𝑢 ∙ ∇𝜕𝑖𝑢) 𝑑𝑥 

                                         − ∫(∇𝑗𝑢 ∙ ∇𝜕𝑖𝑢 ∙ ∇𝑗𝜕𝑖𝑢 + 𝑢 ∙ ∇∇𝑗𝜕𝑖𝑢 ∙ ∇𝜕𝑖𝑢) 𝑑𝑥 

                                       ≤ ‖∇𝑢‖𝐿∞‖∇2𝑢‖
𝐿2
2 , 

where in the last inequality, we have used 

− ∫ 𝑢 ∙ ∇∇𝑗 ∙ ∇𝜕𝑖𝑢𝑑𝑥 =
1

2
∫ 𝑑𝑖𝑣𝑢|∇2𝑢|2 𝑑𝑥 = 0 

By the same way, it also gives 

∫ ∇(𝑢 ∙ ∇𝜔) ∙ ∇∆𝜔𝑑𝑥 = ∫ 𝜕𝑖∇(𝑢 ∙ ∇𝜔) ∙ ∇𝜕𝑖𝜔𝑑𝑥 

                                        = ∫(𝜕𝑖∇𝑢 ∙ ∇𝜔 ∙ ∇𝜕𝑖𝜔 + ∇𝑢 ∙ ∇𝜕𝑖𝜔 ∙ ∇𝜕𝑖𝜔)𝑑𝑥 

                                             − ∫(𝜕𝑖𝑢 ∙ ∇∇𝜔 ∙ ∇𝜕𝑖𝜔 + 𝑢 ∙ ∇∇𝜕𝑖𝜔 ∙ ∇𝜕𝑖𝜔)𝑑𝑥 

                                        ≤ ‖∇𝑢‖𝐿∞(‖∇2𝑢‖
𝐿2
2 + ‖∇2𝜔‖

𝐿2
2 ). 

Thus together with (3.11) and (3.12), we conclude that 

         

1

2

𝑑

𝑑𝑡
(‖∇2𝑢‖

𝐿2
2 + ‖∇2𝜔‖

𝐿2
2 ) +

1

4
‖∇∆𝑢‖

𝐿2
2 +

2

3
‖∇2𝜔‖

𝐿2
2 + 𝜅‖∇∆𝜔‖

𝐿2
2  

             
<
~

 ‖∇𝑢‖𝐿∞(‖∇2𝑢‖
𝐿2
2 + ‖∇2𝜔‖

𝐿2
2 ).                                  (3.13) 
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3.2. Proof of Theorems 1.1 and 1.2 

The following proof mainly relies on by contradiction. If the conclusion in Theorem 1.1 is false, then there exist some 

constant 𝐶1 > 0  such that 

∫ ‖∇𝑢(𝑡)‖𝐿∞𝑑𝑡 ≤ 𝐶1

𝑇∗

0

 

Due to Lemma 2.2 and (3.1), it implies 

‖𝑢‖
𝐻2
2 + ‖𝜔‖

𝐻2
2 ≤ (‖𝑢0‖

𝐻2
2 + ‖𝜔0‖

𝐻2
2 )𝑒∫ ‖∇𝑢(𝑡)‖𝐿∞𝑑𝑡

𝑇
0  

                                                                       ≤ (‖𝑢0‖
𝐻2
2 + ‖𝜔0‖

𝐻2
2 )𝑒𝐶1                    (3.14) 

By Lemma Lemma 2.1, there exists a 𝑇∗ > 0 such that the problem (1.2) has a unique local strong solution (𝑢, 𝜔) on 

ℝ2 × (0, 𝑇∗]. One will use the a priori estimates (3.14) to extend the classical solution (𝑢, 𝜔)globally in time. 

From (3.14), we can set 

   𝑇∗ = 𝑠𝑢𝑝{𝑇 ∈ 𝐼𝑇𝑚𝑎𝑥|‖𝑢‖
𝐻2
2 + ‖𝜔‖

𝐻2
2 ≤ 𝐶  𝑓𝑜𝑟 𝑎𝑛𝑦  𝑡 ≤ 𝑇}              (3.15) 

it is easy to see that the definition of 𝑇∗ makes sense and 𝑇∗ > 0. 

Next, we claim that   

                              𝑇∗ = ∞                               (3.16)  

Otherwise, 𝑇∗ < ∞. It follows from (3.14) that (𝑢(𝑥, 𝑇∗), 𝜔(𝑥, 𝑇∗)) satisfy the initial data condition. Hence, Lemma 

2.1 shows that there exists some 𝑇∗∗ > 𝑇∗, such that (3.15) holds for 𝑇 = 𝑇∗∗, which contradicts the definition of 𝑇∗[8]. 

Finally, it is easy to see that the above results contradict the definition of 𝑇𝑚𝑎𝑥  in Theorem 1.1, thus (1.3) holds. 

The proof of Theorem 1.1 is finished. 

In view of 

‖∇𝑢‖𝐿∞
<
~

‖∇𝑢‖𝐻2 , 

then the global existence of strong solutions can be established by local solutions and continuity method, due to the 

argument is standard, we ignore the proof. For details, please refer to [9]. 
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