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Abstract - The drug Ivermectin is considered the medicine of choice in combating onchocerciasis. However, treatment needs to 

be repeated once annually or biannually within a period of 10-15 years which covers the worm’s adult life cycle. Therefore, a 

model was designed to evaluate the impact of failure to complete treatment on the dynamics of onchocerciasis within the whole 

number of human inhabitants domiciled in an environment. The backward bifurcation phenomenon, via the model, was induced 

by human deaths caused by Onchocerciasis and the bifurcation range was also shown to be affected by the proportion of the 

infected population who complete their treatment. Numerical study of the model reveals that the proportion of affected human 

individuals who complete their treatment as well as the relative infectiousness of humans who failed to complete their treatment 

have significant influence on the movement of onchocerciasis in the whole number of human inhabitants domiciled in an 

environment. In particular, it was seen that an increase in the percentage of individuals who did not complete their structured 

medical care has significant impact on the backward bifurcation range. It was also shown that while increasing the treatment 

rate of infectious humans is important, control strategies that would encourage people to stay through the treatment period 

should also be implemented alongside failure to do this will undermine the gains of improved treatment rates. 

 

Keywords - Neglected Tropical Diseases, Onchocerciasis, Failed Treatment, Bifurcation, Quantifying, Transmission dynamics. 

 

1 Introduction 
Neglected diseases of tropical origin (NTDs) of the which Human-Blackfly Onchocerciasis is one are a medically dissimilar 

collection of chronic disabling tropical ailments which are mostly abundant in extremely poverty-stricken populations in 

emergent countries of certain regions of the Americas, Asia and the African continent, exert influence on more than one billion 

people the world over [1]. These diseases are precipitated by a diversity of pathogens such as viruses, bacteria, protozoa and 

helminths and various organizations have classified the set of ailments differently [1 - 3]. 

 

These NTDs affected approximately 1 billion persons globally with an estimated 𝟗𝟎% of the gross ailment burden domiciled 

in sub-Saharan Africa and these ailments are juxtaposed with the great three ailments (HIV/AIDS, Malaria and Tuberculosis), 

which usually receive substantial treatment and scientific study support [1 - 4]. However, these NTDs can aggravate HIV/AIDS 

and Tuberculosis and make them deadlier [5 – 6]]. 

 

Seventeen NTDs have been identified and prioritized by World Health Organization (WHO) and these diseases are common 

in about one hundred and forty-nine developing poor countries of the world, affecting over one billion people (with about half 

of these being children) and costing emerging economies billions of dollars yearly [2, 7]. These diseases resulted in about one 

hundred and forty-two thousand deaths in 2013, down from two hundred and four thousand deaths in 1990 [7 – 8]. 

 

About thirteen out of the seventeen NTDs identified and prioritized by the WHO are recurrent in region below the Sahara in 

Africa, Asia with certain neighbourhoods of the Americas. These recurrent ailments comprise of African Trypanosomiasis of 

Humans, Soil Transmitted Helminthes, Guinea worm disease, Granular conjunctivitis, Lymphatic Flariasis, Onchocerciasis, 

Buruli Ulcer, Leprosy, Schistosomiasis with Dengue Fever [3, 9, 10]. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:oghenewaire.olowu@uniben.edu
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A lot of works has been done in providing clinical solutions to arresting the trend but combating these diseases seems 

insurmountable. Various Mathematical models have been formulated and analyzed to answer specific questions in order to 

understand the dynamics of these diseases terrorizing poor tropical nations of the world [4, 8, 11 – 22]. 

 

This paper however focuses on Onchocerciasis or river blindness, which is a dangerous nonlethal parasitic disease that leads 

to blindness, human hardship, and austere socioeconomic mishaps [23]. It is a major precipitate of clinical and epidemiological 

concern of skin irritation and disease in Africa [24 – 28]. Onchocerciasis is precipitated by a filarial worm (Onchocerca volvulus); 

it is passed on to humans via the bite of tainted black flies Simulium damnosum (an adult female black fly) as seen in Figure 1(a) 

[24 - 28].  

 

  
(a) An adult female blackfly                                                    (b) World demography of Onchocerciasis 

Fig. 1 Picture of Simulium damnosum: an adult female black fly and the world map showing the demography of Onchocerciasis. Source: Climate 

Policy Watcher, 2016 

 

Black-flies reproduce in fast moving water bodies and this is due to the aquatic nature of the pre-adult phases of Simulium 

damnosum, which of course is responsible for the popular name of the disease, "River Blindness" [24 − 28]. The disease results 

in a number of skin infections and serious visual disabilities, which includes lifelong blindness, and a possible reduction of life 

expectancy by as much as 15 years [24, 27]. Onchocerciasis is a world-wide public health problem [24]. About forty million 

humans are tainted with Onchocerciasis worldwide and with nearly two million cases of blindness [24,26, 28]. About eighty-six 

million people in thirty-five countries live in areas of high endemicity [22 − 28]. Figure 1 (b) shows the world demography of 

Onchocerciasis disease where the highly endemic countries are in red ink. The infection is endemic in about thirty countries in 

Africa, six countries in the Americas, and in Yemen [22]. Currently, about seven to ten million Nigerians are tainted with 

Onchocerca volvulus, and over 120,000 cases of blindness as a result of Onchocerciasis have been so reported in Nigeria [3] and 

thousands of humans suffering incapacitating impediments of Onchocerciasis [5]. In the world, the disease is the second known 

cause of severe visual impairment and blindness [22]. 

 

The World Health Organisation (WHO) recommends treating onchocerciasis with ivermectin at least once yearly for 10 to 

15 years [3]. Ivermectin (Mectizan) is administered orally on a maximum dose of 12mg every 6 to 12 months till the symptoms 

of the infection completely dies out [24]. The drug has been shown to reduce the severity of skin symptoms as well as the number 

of visual impairments [24]. The drug destroys the microfilariae (larvae), but it is inactive against the adult worms [24]. The 

group-directed medication using ivermectin (CDTI), espoused by the WHO via the African Program for Onchocerciasis Control 

(APOC), for mass treatments against onchocerciasis has made some significant im- 

pact in fulfilling the WHO objective of eradication [60]. But, given the duration of the therapy, certain people or groups might 

consistently disobey over time, continuing to serve as a focal point for the spread of the disease.  

 

For this reason, in order to help sustain annual treatment, the Consultative Technical Committee of APOC ordered research 

to determine which variables can be linked to alignment over a period of time. From there, relevant enlightenment and treatment 

might be devised [29]. The study in [29] showed that when compliance for an eight-year period was checked only 42.9% took 

ivermectin amounting to 6 − 8 times annually. Moreover, the study revealed that more than 25% of the age-qualified individuals 

in the group were minimal compliers, acting as a receptacle for the ongoing spread of onchocerciasis [29]. Therefore, in order to 

boost compliance, it was advised that CDTI program administrators target population segments with health education [29]. 

 



Owin Olowu et al / IJMTT, 70(3), 1-18, 2024 
 

3 

Some researchers have made an effort to examine the mathematical dynamics of onchocerciasis. Omondi et al. (2018) 

constructed a model that mathematically examined both established and non-established mass drug management with the drug 

Ivermectin. Their results revealed that: (i) disease eradication cannot be achieved without reducing the transmission levels to the 

barest minimum or engaging in serious and effective vector control, (ii) the disease can be controlled but not completely 

eradicated with treatment at established intervals and (iii) treatment at non established patterns may result in disease outbreak 

[17]. Omade et al. (2015) modeled the dynamics of Onchocerciasis using an SIR disease modelling pattern with demography in 

Mubi settlement of Gombe state, Nigeria [30]. Results from their work suggest that within a period of 14 days, 52% of the Mubi 

residence were at risk of the the disease and about 50% tainted rate was recorded amongst the residents. Recovery rate was 

reported to be about 37% and that the disease constituted a serious risk to the community.  

 

Oguoma and Mbah (2014) formulated a treatment model for Onchocerciasis for tropical countries. Their simulation results 

confirmed that the drugs such as Ivermectin and Mectizan should be used continually to prevent reinfections [30]. Poolman and 

Galvani (2006) modeled the impact of concerted Ivermectin intervention for controlling river blindness. They found that the 

uniform population treated with ivermectin experienced geography-dependent percentage reductions in the average worm load. 

[22]. Basanez and Ricardez-Esquinca (1999) formulated a mathematical model to investigate the various interventions combining 

the removal of adult worms and their microfilaricidal and the sterilizing effect of Ivermectin on human Onchocerciasis [31]. 

They defined a threshold condition based on the fundamental reproduction number and the rate of vector biting for disease 

control. They calculated that each person would receive 7665 bites from Simulium Onchraceum s.l. yearly. [31]. They showed 

disease elimination in Central America is possible whenever the reproduction is less than one (i.e. ℛ0 < 1) and In West Africa, 

the annual threshold biting frequency for endemic onchocerciasis varies from 288 to 720 bites per person. [4]. 

 

These models have conveyed a great deal of understanding about the infection dynamics of Onchocerciasis but they have 

not had much of an influence on examining the effects of a possible failed treatment on the transmission of Onchocerciasis. 

Hence, we suggest a mathematical model for Onchocerciasis which will be deployed in the investigation of the effect of failed 

treatments on the infection transitions of Human Onchocerciasis since the adult worm's life cycle is between 10 to 15 years, 

repeated Ivermectin treatments must be given over a period of 10 to 15 years. [32]. Considering the long time involved in the 

treatment of Onchocerciasis, it therefore becomes necessary to investigate the impact of a possible failure to complete treatment 

on the infection dynamics of the malady as the study in [8] defines compliance as not just the degree to which a patient conforms 

with dose of and dosing regimen of ivermectin but also the degree to which a patient follows the recommended interval or 

duration of treatment. 

 

2. Model Formulation 
We make the following assumptions for developing this model: the population is uniform, well-mixed, and both individuals 

and black flies carry the same risk of infection, and it is thought that the frequency of interactions between susceptible humans 

and black flies will determine the number of effective contacts that lead to an infection [33, 34]. The total population of the 

Human-Blackfly Onchocerciasis model is partitioned into two subpopulations; humans (host) and black flies (vector) which 

comprises of eight non-overlapping compartments (five compartments for the human subpopulation and three compartments for 

the black flies subpopulation).  

 

The compartments of the models are: susceptible humans not infected with Onchocerciasis (𝑆𝐻); latently infected humans 

exposed to Onchocerciasis through bite from black flies but not infectious (𝐸𝐻); infected humans (𝐼𝐻); humans who failed to 

complete treatment with Ivermectin due to the time involved in completing treatment (𝑇𝐹); humans who completed treatment 

with Ivermectin (𝑇𝐶); susceptible black flies which are not infected with Onchocerciasis (black flies that have not yet acquired 

microfilariae but could do so if they feed on the blood of an infected person) ( 𝑆𝑉 ); black flies that are latently infected which 

have acquired microfilariae after a blood meal from infected humans but not infectious (𝐸𝑉) and infected black flies that are 

infectious and are capable of transmitting Onchocerciasis (𝐼𝑉). Hence the total population for humans and black flies for all time 

𝑡, are expressed thus 

 
𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑇𝐹(𝑡) + 𝑇𝐶(𝑡)  and 

𝑁𝑉(𝑡) = 𝑆𝑉(𝑡) + 𝐸𝑉(𝑡) + 𝐼𝑉(𝑡),
                                            (1) 

respectively. 

 

Thus, the following deterministic system of nonlinear ODEs describe the model.: 
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�̇�𝐻 = Λ𝐻 −
𝛽𝐻𝐼𝑉
𝑁𝐻

𝑆𝐻 + 𝜎𝑇𝐶 − 𝜇𝐻𝑆𝐻 ,

�̇�𝐻 =
𝛽𝐻𝐼𝑉
𝑁𝐻

𝑆𝐻 − (𝛼𝐻 + 𝜇𝐻)𝐸𝐻 ,

𝐼𝐻  = 𝛼𝐻𝐸𝐻 + 𝛾𝑇𝐹 − (𝜏 + 𝛿 + 𝜇𝐻)𝐼𝐻 ,

�̇�𝐹  = (1 − 𝑝)𝜏𝐼𝐻 − (𝛾 + 𝜇𝐻)𝑇𝐹 ,

�̇�𝐶  = 𝑝𝜏𝐼𝐻 − (𝜎 + 𝜇𝐻)𝑇𝐶,

�̇�𝑉  = Λ𝑉 −
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁𝐻
𝑆𝑉 − 𝜇𝑉𝑆𝑉 ,

�̇�𝑉  =
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁𝐻
𝑆𝑉 − (𝛼𝑉 + 𝜇𝑉)𝐸𝑉 ,

𝐼𝑉  = 𝛼𝑉𝐸𝑉 − 𝜇𝑉𝐼𝑉 ,

                                            (2) 

Figure 2 shows the schematics, that is, a visual depiction of how human individuals circulate between the various system 

classes. Table 1 and Table 2 present the state variables cum the parameters applied in the mathematical formulation, respectively. 
 

Table 1. The meaning of the model's state variables 

Variable Description 

SH Population of susceptible individuals 

ЕH Exposed (latent) individuals 

IH Infectious individuals 

TF Individuals with failed (incomplete) treatment 

TC Individuals who completed treatment 

SV Susceptible vectors 

EV Exposed (infected) vectors 

IV Infectious vectors 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Schematics of the infection dynamics of the Human Onchocerciasis model 
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Table 2. Description of parameters of model 

Parameter Description 

Λ𝐻  Human recruitment rate. 

𝜏 treatment rate. 

𝜇𝐻 Natural death rate for humans. 

𝛼𝐻 Progression rate from 𝐸𝐻 to 𝐼𝐻  

𝛿 Disease induced death. 

𝜇𝑉 Natural death rate for vectors. 

𝛼𝑉 Progression rate from 𝐸𝑉 to 𝐼𝑉. 

𝜂 Modification parameter that calibrates the proportionate capacity of persons in 

 group 𝑇𝐹  to engineer fresh infections proportionate to the ones in 𝐼𝐻(0 ≤ 𝜂 ≤ 1). 
𝛾 Proportion of treated individuals who completed treatment. 

𝜎 Rate at which individuals who failed treatment become re-infected. 

Λ𝑣  Recovery rate. 

𝛽𝐻 Vector recruitment rate 

𝛽𝑉 Human infectious rate. 

 

3. Analysis of the Model 
The model's qualitative characteristics will be examined in this section. 

 
3.1. Basic Properties 

First, the boundedness of the equations in system (2) will be examined. Then the state variables will be shown to be positively 

bounded for every given time, 𝑡, since the equation in system (2) describes human and Blackfly populations. 

 

Theorem 3.1:  Let the first information of the Human-Blackfly Onchocerciasis model in system (2) be shown as 𝐴(0) ≥ 0, 
where 𝐴(𝑡) = (𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑇𝐹 , 𝑇𝐶 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉). Then the trajectories 𝐴(𝑡) of the Human-Blackfly Onchocerciasis model (2) with 

positive first information remains non-negative for every given time 𝑡 ≥ 0. Furthermore, 

 

lim
𝑡→∞

 sup𝑁𝐻(𝑡) =
Λ𝐻
𝜇𝐻
  and  lim

𝑡→∞
 sup𝑁𝑉(𝑡) =

Λ𝑉
𝜇𝑉
                                            (3) 

where: 

𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑇𝐹(𝑡) + 𝑇𝐶(𝑡)                                            (4) 
 

And 

 

𝑁𝑉(𝑡) = 𝑆𝑉(𝑡) + 𝐸𝑉(𝑡) + 𝐼𝑉(𝑡).                                                                           (5) 
 

Proof: 

Let 𝑡1 = sup{𝑡 > 0: 𝐴(𝑡) > 0 ∈ [0, 𝑡]}. Thus for 𝑡 > 0, it follows from the first equation of the system (2) that 

�̇�𝐻 = Λ𝐻 −
𝛽𝐻𝐼𝑉
𝑁

𝑆𝐻 + 𝜎𝑇𝐶 − 𝜇𝐻𝑆𝐻        (6) 

which can be rewritten as 

[
𝑑

𝑑𝑡
+ (

𝛽𝐻𝐼𝑉
𝑁

+ 𝜇𝐻)] 𝑆𝐻(𝑡) ≥ Λ𝐻               (7) 

Which follows that 
𝑑

𝑑𝑡
[𝑆𝐻(𝑡)exp (∫0

𝑡1
 
𝛽𝐻𝐼𝑉(𝜑)

𝑁(𝜑)
𝑑𝜑 + 𝜇𝐻𝑡)] ≥ Λ𝐻exp (∫0

𝑡1
 
𝛽𝐻𝐼𝑉(𝜑)

𝑁(𝜑)
𝑑𝜑 + 𝜇𝐻𝑡). 

Thus, 

𝑆𝐻(𝑡1)exp (∫0
𝑡1
 
𝛽𝐻𝐼𝑉(𝜑)

𝑁(𝜑)
𝑑𝜑 + 𝜇𝐻𝑡) − 𝑆𝐻(0) ≥ Λ𝐻∫0

𝑡1
 exp (∫

0

𝑝
 
𝛽𝐻𝐼𝑉(𝜑)

𝑁(𝜑)
𝑑𝜑 

                                                              +𝜇𝐻𝑡)𝑑𝑝                                
So that, 
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𝑆𝐻(𝑡1) ≥ 𝑆𝐻(0)exp [−(∫  
𝑡1

0

 
𝛽𝐻𝐼𝑉(𝜑)

𝑁(𝜑)
𝑑𝜑 + 𝜇𝐻𝑡)]

+exp[−(∫  
𝑡1

0

 
𝛽𝐻𝐼𝑉(𝜑)

𝑁(𝜑)
𝑑𝜑 + 𝜇𝐻𝑡)]

× ∫  
𝑡1

0

 Λ𝐻exp (∫  
𝑝

0

 
𝛽𝐻𝐼𝑉(𝜑)

𝑁(𝜑)
𝑑𝜑 + 𝜇𝐻𝑝) 𝑑𝑝           (8)

 

Hence 𝑆𝐻(𝑡) ≥ 0, ∀𝑡 ≥ 0 since 𝑆𝐻(𝑡) is the sum of positive terms. 

Looking at the second equation in system (2) 
𝑑𝐸𝐻
𝑑𝑡

=
𝛽𝐻𝐼𝐻
𝑁

𝑆𝐻 − (𝛼𝐻 + 𝜇𝐻)𝐸𝐻                     (9) 

It follows from (9) that 
𝑑𝐸𝐻
𝑑𝑡

≥ −(𝛼𝐻 + 𝜇𝐻)𝐸𝐻                                         (10) 

Integrating (10) as a function of 𝑡 in [0, 𝑡1], yields 

𝐸𝐻(𝑡1) ≥ 𝐸𝐻(0)exp {−(𝛼𝐻 + 𝜇𝐻)𝑡1} > 0         (11) 
Therefore 𝐸𝐻(𝑡) > 0 for every 𝑡 > 0. 

Looking at the third equation of system (2),  
𝐼𝐻
𝑑𝑡
= 𝛼𝐻𝐸𝐻 + 𝛾𝑇𝐹 − (𝜏 + 𝛿 + 𝜇𝐻)𝐼𝐻 ,               (12) 

It follows from (12) that 
𝐼𝐻
𝑑𝑡
≥ −(𝜏 + 𝛿 + 𝜇𝐻)𝐼𝐻                                            (13) 

Integrating (13) as a function of 𝑡 in [0, 𝑡1], yields 

𝐼𝐻(𝑡1) ≥ 𝐼𝐻(0)exp {−(𝜏 + 𝛿 + 𝜇𝐻)𝑡1} > 0        (14) 
It follows that 𝐼𝐻(𝑡) > 0 for all 𝑡 > 0. 

Looking at the fourth equation of system (2),  
𝑇𝐹
𝑑𝑡
= (1 − 𝑝)𝜏𝐼𝐻 − (𝛾 + 𝜇𝐻)𝑇𝐹                      (15)  

It follows from (15) that 
𝑇𝐹
𝑑𝑡
≥ −(𝛾 + 𝜇𝐻)𝑇𝐹                                              (16) 

Integrating (16) as a function of 𝑡 in [0, 𝑡1], gives 

𝑇𝐹(𝑡1) ≥ 𝑇𝐹(0)exp {−(𝛾 + 𝜇𝐻)𝑡1} > 0         (17) 
Therefore 𝑇𝐹(𝑡) > 0 for all 𝑡 > 0. 

Looking at the fifth equation of system (2),  
𝑇𝐶
𝑑𝑡
= 𝑝𝜏𝐼𝐻 − (𝜎 + 𝜇𝐻)𝑇𝐶                                      (18) 

It follows from (18) that 
𝑇𝐶
𝑑𝑡
≥ −(𝜎 + 𝜇𝐻)𝑇𝐶                                                 (19) 

Integrating (19) as function of 𝑡 in [0, 𝑡1], yields 

𝑇𝐶(𝑡1) ≥ 𝑇𝐶(0)exp {−(𝜎 + 𝜇𝐻)𝑡1} > 0           (20) 
Therefore 𝑇𝐶(𝑡) > 0 for all 𝑡 > 0. 

And again, looking at the sixth equation of system (2) 

�̇�𝑉 = Λ𝑉 −
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁
𝑆𝑉 − 𝜇𝑉𝑆𝑉 ,                  (21)  

where  𝜆𝑉 =
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁
                                                                                                                                                                                        

which can be written as 

[
𝑑

𝑑𝑡
+ 𝛽𝑉

(𝐼𝑉 + 𝜂𝑇𝐹
𝑁𝑉

+ 𝜇𝑉] 𝑆𝑉(𝑡) = Λ𝑉             (22) 

Which follows that 

𝑑

𝑑𝑡
[𝑆𝑉(𝑡)exp (∫  

𝑡1

0

 𝜆𝑉(𝜙)𝑑𝜙 + 𝜇𝑉𝑡)] = Λ𝑉exp (∫  
𝑡1

0

  𝜆𝑉(𝜙) + 𝜇𝑉𝑡) .                (23) 
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Thus, 

𝑆𝑉(𝑡1)exp (∫0
𝑡1
 𝜆𝑉(𝜙)𝑑𝜙 + 𝜇𝑉𝑡) − 𝑆𝑉(0) = Λ𝑉∫0

𝑡1
 exp (∫

0

𝑝
 𝜆𝑉(𝜙)𝑑𝜙 + 𝜇𝑉𝑡)𝑑𝑝,                                      (24) 

So that, 

𝑆𝑉(𝑡1) = 𝑆𝑉(0)exp [−(∫  
𝑡1

0

 𝜆𝑉(𝜙)𝑑𝜙 + 𝜇𝑉𝑡)] + exp [−(∫  
𝑡1

0

 𝜆𝑉(𝜙)𝑑𝜙 + 𝜇𝑉𝑡)]

 × ∫  
𝑡1

0

 Λ𝑉exp (∫  
𝑝

0

  𝜆𝑉(𝜙)𝑑𝜙 + 𝜇𝑉𝑝) 𝑑𝑝                                                            (25)

 

Therefore 𝑆𝑉(𝑡1) ≥ 0, for every 𝑡 ≥ 0. 

Looking at the seventh equation of system (2),  
𝐸𝑉
𝑑𝑡
=
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁
𝑆𝑉 − (𝛼𝑉 + 𝜇𝑉)𝐸𝑉            (26) 

It follows from (26) that 
𝐸𝑉
𝑑𝑡
≥ −(𝛼𝑉 + 𝜇𝑉)𝐸𝑉                                            (27) 

Integrating (27) as function of 𝑡 in [0, 𝑡1], yields 

𝐸𝑉(𝑡1) ≥ 𝐸𝑉(0)exp {−(𝛼𝑉 + 𝜇𝑉)𝑡1} > 0          (28) 

Hence 𝐸𝑉(𝑡) > 0 for all 𝑡 > 0. 

Lastly, looking at the eighth equation of system (2),  
𝐼𝑉
𝑑𝑡
= 𝛼𝑉𝐸𝑉 − 𝜇𝑉𝐼𝑉                                                     (29) 

It follows from (29) that 
𝐼𝑉
𝑑𝑡
≥ −𝜇𝑉𝐼𝑉                                                                  (30) 

Integrating (30) as function of 𝑡 in [0, 𝑡1], yields 

𝐼𝑉(𝑡1) ≥ 𝐼𝑉(0)exp {−𝜇𝑉𝑡1} > 0                               (31) 

Therefore 𝐼𝑉(𝑡) > 0 for all 𝑡 > 0. 

 

From the above, we have shown that for the Human-Blackfly Onchocerciasis model, 𝐴(𝑡) ≥ 0, where: 

𝐴(𝑡) = (𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑇𝐹 , 𝑇𝐶 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉). Hence the orbits A(t) engendered by the Human-Blackfly Onchocerciasis model in (2) 

with positive first starting points will forever remain nonnegative for every time 𝑡 > 0. 

 

Subsequently, we have to show that every human and black-fly subpopulation is bounded (since we cannot combine all 

subpopulations into a single invariant set). We must also establish the bound for each subpopulation. Lastly, we must demonstrate 

that all the sets of these subclasses are unchanging positively and attract every positive orbit (there is a distinct orbit to the first 

value problem that subsists for every time) of system (2).  

 

Theorem 3.2: Allow (𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑇𝐹 , 𝑇𝐶 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉) be the orbits system (2) with initial conditions given in Theorem 3.1 as well 

as the biologically viable area defined in the set  𝒟 = 𝒟𝐻 × 𝒟𝑉 ⊂ ℝ+
5 × ℝ+

3 ⊂ ℝ+
8  where: 

 

𝒟𝐻 = {(𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑇𝐹 , 𝑇𝐶) ∈ ℝ+
5 : 𝑁𝐻 ≤

Λ𝐻
𝜇𝐻
}

𝒟𝑉 = {(𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉) ∈ ℝ+
3 : 𝑁𝑉 ≤

Λ𝑉
𝜇𝑉
}

                           (32) 

is positively invariant and draws all the model's positive orbit. 

 

Proof: The bound for the human subpopulation is determined by calculating the rate at which the entire human population 

changes as defined by the system, which is the sum of vector field’s right-hand side of the total human community in system (2) 

represented by: 
𝑑𝑁𝐻(𝑡)

𝑑𝑡
= Λ𝐻 − 𝜇𝐻𝑁𝐻(𝑡) − 𝛿𝐼𝐻(𝑡)                                               (33) 

From (33), it follows that 
𝑑𝑁𝐻(𝑡)

𝑑𝑡
≤ Λ𝐻 − 𝜇𝐻𝑁𝐻(𝑡)                                                                  (34) 

From equation (34), therefore, we have 
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𝑑𝑁𝐻
𝑑𝑡

𝑒𝜇𝐻𝑡 + 𝜇𝐻𝑁𝐻𝑒
𝜇𝐻𝑡 ≤ Λ𝐻𝑒

𝜇𝐻𝑡                                                       (35) 

Equation (35) can be rewritten as 

∫  
𝑡

0

𝑑𝑁𝐻
𝑑𝜏

𝑒𝜇𝐻𝜏𝑑𝜏 ≤ Λ𝐻 ∫  
𝑡

0

𝑒𝜇𝐻𝜏𝑑𝜏                                                           (36) 

Integrating (36) with the initial condition 𝑁𝐻(𝑡) = 𝑁𝐻(0), we have 

𝑁𝐻(𝑡)𝑒
𝜇𝐻𝑡 − 𝑁𝐻(0) ≤

Λ𝐻
𝜇𝐻
(𝑒𝜇𝐻𝑡 − 1).                                                    (37) 

Solving for 𝑁𝐻(𝑡) from (37), gives 

𝑁𝐻(𝑡) ≤ 𝑁𝐻(0)𝑒
−𝜇𝐻𝑡 +

Λ𝐻
𝜇𝐻
(1 − 𝑒−𝜇𝐻𝑡)                                                  (38) 

It implies that 𝑁ℎ(𝑡) ≤
Λ𝐻

𝜇𝐻
 if 𝑁𝐻(0) ≤

Λ𝐻

𝜇𝐻
. Thus under the orbits of the system, the domain 𝒟𝐻 is unchanging positively. 

Furthermore, if 𝑁𝐻(0) >
Λ𝐻

𝜇𝐻
, then 𝑁𝐻(𝑡) asymptotically approaches 

Λ𝐻

𝜇𝐻
 as 𝑡 → ∞ or the trajectories go into the set 𝒟𝐻 in finite 

time. As a result, every trajectory is drawn to the domain 𝒟𝐻, and no trajectory leaves any 𝒟𝐻 border in ℝ+
5 . It follows that 

𝑁𝐻(𝑡) ≤
Λ𝐻

𝜇𝐻
 if 𝑁𝐻(0) ≤

Λ𝐻

𝜇𝐻
.Thus, under the system's orbits, the domain 𝒟𝐻 is unchanging positively. Furthermore, if 𝑁𝐻(0) > 

Λ𝐻

𝜇𝐻
., then either 𝑁𝐻(𝑡)  asymptotically approaches 

Λ𝐻

𝜇𝐻
  as t→∞ or the orbits enter the domain 𝒟𝐻in finite time. As a result, every 

trajectory is drawn to the domain 𝒟𝐻, and no trajectory ever leaves its boundaries. 

The Blackfly population bound can be obtained by summing the vector field’s right-hand side of the Blackfly community in 

system (2). Which becomes 
𝑑𝑁𝑉(𝑡)

𝑑𝑡
≤ Λ𝑉 − 𝜇𝑉𝑁𝑉(𝑡)                                                       (39) 

From equation (39), thus, we have 
𝑑𝑁𝑉
𝑑𝑡

𝑒𝜇𝑉𝑡 + 𝜇𝑉𝑁𝑉𝑒
𝜇𝑉𝑡 ≤ Λ𝑉𝑒

𝜇𝑉𝑡                                                   (40) 

Equation (40) can be rewritten as 

∫  
𝑡

0

𝑑𝑁𝑉
𝑑𝜏

𝑒𝜇𝑉𝜏𝑑𝜏 ≤ Λ𝑉 ∫  
𝑡

0

𝑒𝜇𝑉𝜏𝑑𝜏                                                    (41) 

Integrating (41) while employing the initial starting point 𝑁𝑉(𝑡) = 𝑁𝑉(0), we have 

𝑁𝑉(𝑡)𝑒
𝜇𝑉𝑡 − 𝑁𝑉(0) ≤

Λ𝑉
𝜇𝑉
(𝑒𝜇𝑉𝑡 − 1)                                            (42) 

Solving for 𝑁𝑉(𝑡) from (42), gives 

𝑁𝑉(𝑡) ≤ 𝑁𝑉(0)𝑒
−𝜇𝑉𝑡 +

Λ𝑉
𝜇𝑉
(1 − 𝑒−𝜇𝑉𝑡)                                       (43) 

 

It follows that 𝑁𝑉(𝑡) ≤
Λ𝑉

𝜇𝑉
  if 𝑁𝑉(0) ≤

Λ𝑉

𝜇𝑉
. Therefore, under the system's flow, the domain 𝒟𝑉is positively invariant. 

Furthermore, given the condition that 𝑁𝑉(0) >
Λ𝑉

𝜇𝑉
, then either 𝑁𝑉(𝑡) asymptotically approaches 

Λ𝑉

𝜇𝑉
 as 𝑡 → ∞, or the orbits enter 

the domain 𝒟𝑉in finite time. As a result, every trajectory is drawn to the domain 𝒟𝑉, and no trajectory leaves any 𝒟𝑉boundary 

in ℝ+
3 . 

 

Since 𝒟 = 𝒟𝐻 × 𝒟𝑉,, it follows that set 𝒟 is also positively-unchanging and an attractor, meaning that none of the orbits 

exits through any boundary of 𝒟. Our demonstration that 𝒟𝐻 and 𝒟𝑉  are invariantly positive is complete. 

𝒟 =

{
 

 (𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑇𝐹 , 𝑇𝐶) ∈ ℝ+
5 : 𝑁𝐻 ≤

Λ𝐻
𝜇𝐻

(𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉) ∈ ℝ+
3 : 𝑁𝑉 ≤

Λ𝑉
𝜇𝑉

                               (44) 

 

The right-hand side of system (2) must consequently be smooth in order for the initial data problem to have a distinct solution 

that lasts forever. Thus, when viewed from an epidemiological and mathematical perspective, the system is well stated, and it is 

enough to examine the movement of the trajectories that the system in 𝒟 generates. 
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3.2. Local Asymptotic Stability of Disease-Free Equilibrium 

By setting the diseased classes (that is, state variables of the individuals with infections) and the right-hand side of the 

system's equations to zero and solving the resulting system, the Disease-Free Equilibrium (DFE) of the system can be determined. 

The model's DFE is given by 

ℰ0 = (𝑆𝐻
0 , 𝐸𝐻

0 , 𝐼𝐻
0 , 𝑇𝐹

0, 𝑇𝐶
0, 𝑆𝑉

0, 𝐸𝑉
0, 𝐼𝑉

0) = (
Λ𝐻
𝜇𝐻
, 0,0,0,0,

Λ𝑉
𝜇𝑉
, 0,0)              (45) 

 

The next generation matrix operator approach is used to evaluate the Local Asymptotic Stability (LAS) of the DFE [34]. 

The matrices F and V representing the new infection terms and the existing transfer terms, respectively, are provided by using 

notations similar to those in [34] 

𝐹 =

(

 
 
 

0 0 0 0 𝛽𝐻
0 0 0 0 0
0 0 0 0 0

0
𝛽𝑉Λ𝑉𝜇𝑉
Λ𝐻𝜇𝐻

𝜂𝛽𝑉Λ𝑉𝜇𝑉
Λ𝐻𝜇𝐻

0 0

0 0 0 0 0 )

 
 
 
                              

and 

𝑉 =

(

 
 

𝑝1 0 0 0 0
−𝛼𝐻 𝑝2 −𝛾 0 0
0 −(1 − 𝑝)𝜏 𝑝3 0 0
0 0 0 𝑝4 0
0 0 0 −𝛼𝑉 𝜇𝑉)

 
 
                             

The reproduction number ℛ0 = 𝜌(𝐹𝑉−1), with 𝜌 being the spectral radius of 𝐹𝑉−1 is given by 

ℛ0 = √
𝛽𝐻𝛼𝐻𝜇𝐻((1 − 𝑝)𝜂𝜏 + 𝑝3)

𝑝1(𝑝2𝑝3 − (1 − 𝑝)𝛾𝜏)Λ𝐻
⋅
𝛽𝑉𝛼𝑉Λ𝑉

𝑝5𝜇𝑉
2 = √ℛ0𝐻 ⋅ ℛ0𝑉                       (46) 

where 

ℛ0𝐻 =
𝛽𝐻𝛼𝐻𝜇𝐻((1 − 𝑝)𝜂𝜏 + 𝑝3)

𝑝1(𝑝2𝑝3 − (1 − 𝑝)𝛾𝜏)Λ𝐻
,  ℛ0𝑉 =

𝛽𝑉𝛼𝑉Λ𝑉

𝑝5𝜇𝑉
2                                           (47)

𝑝1 = 𝛼𝐻 + 𝜇𝐻 ,  𝑝2 = 𝜏 + 𝛿 + 𝜇𝐻 ,  𝑝3 = 𝛾 + 𝜇𝐻 ,  𝑝4 = 𝜎 + 𝜇𝐻 ,
𝑝5 = 𝛼𝑉 + 𝜇𝑉

 

Using Theorem 2 in [35] we claim the following result: 

 

Lemma 3.1: The DFE of system (2) is LAS in 𝒟 if ℛ0 < 1, and unstable if ℛ0 > 1. 

Epidemiologically, Lemma 3.1 implies Onchocerciasis eradication from the population when ℛ0 < 1, if the first magnitudes of 

the subclasses of the population of system (2) dwell in the basin of attraction of the DFE. Also, the implication of this is that 

given the condition that a minute number of infectious cases come into such population, their presence will not result in a large 

epidemic outbreak in the population even though a fraction of infected individual fails treatment. 

 
3.2.1. Analysis of the Reproduction Number 

The sensitiveness of threshold quantity, ℛ0 to specific key parameters that describes the impact of failure to complete the 

treatment regimen by infected humans is analyzed. The parameter values used for creating this plot are derived from Table 3. 

Figure 3 shows that for onchocerciasis to be controlled, over 67% of the infected persons will need to complete their treatment 

even if the infected persons who failed to complete their treatment is 50% as infectious as the infected persons who were 

nevertreated. 

 

Table 3 shows the impact of all parameters of system (2) on the effective reproduction number ℛ0 by calculating the elasticity 

indices of ℛ0 to the model parameters with values given in Table 3. The effective reproduction number ℛ0 shows the highest 

sensitivity to the natural vector mortality. In addition, the basic reproduction number is highly sensitive to the proportion of 

humans who complete their treatment. We see that an increase of 1% in the proportion of humans who complete their treatment 

will lead to about 0.9% reduction in the reproduction number. It is also important to state that the relative infectiousness of 

humans who do not complete their treatment has significant impact on the basic reproduction number. These results show that 

failure to complete treatment by infected humans has significant impact on the control and possible eradication of onchocerciasis 

in a population. 
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Fig. 3 Contour plot of 𝓡𝟎 as a function of the relative infectiousness of humans who failed to complete their treatment (𝜼) and the proportion of 

humans who completed treatment (𝒑) 

 
Table 3. Elasticity indices of parameter in the basic reproduction number 𝓡𝟎. 

Parameter Elasticity index 

𝜇𝑉 -1.23288 

𝑝 -0.92578 

𝜂 0.5 

Λ𝐻  -0.5 

Λ𝑉 0.5 

𝛽𝐻 0.5 

𝛽𝑉 0.5 

𝛾 -0.393655 

𝜇𝐻 0.331853 

𝛼𝑉 0.2332877 

𝜏 0.0424375 

𝛼𝐻 0.0193634 

 

3.3. Presence of Endemic Equilibrium Point (EEP) for model (2) 

The EEP is the critical point for which the malady persists in the community. Let 

 

ℰ1 = (𝑆𝐻
∗∗, 𝐸𝐻

∗∗, 𝐼𝐻
∗∗, 𝑇𝐹

∗∗, 𝑇𝐶
∗∗, 𝑆𝑉

∗∗, 𝐸𝑉
∗∗, 𝐼𝑉

∗∗)                                               (48) 
 

be the EEP for system (2), gotten by resolving the right-flank of the equations in system (2) as a function of the forces of infection 

at the EEP where 𝜆𝐻
∗∗ =

𝛽𝐻𝐼𝑉
∗∗

𝑁𝐻
∗∗ , and 𝜆𝑉

∗∗ =
𝛽𝑉(𝐼𝐻

∗∗+𝜂𝑇𝐹
∗∗)

𝑁𝑉
∗∗ . 
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𝑆𝐻
∗∗ =

𝑝1𝑝4𝐺1Λ𝐻
𝜆𝐻
∗∗𝐺2 + 𝑝1𝑝4𝜇𝐻𝐺1

,  𝐸𝐻
∗∗ =

𝑝4𝐺1𝜆𝐻
∗∗Λ𝐻

∗∗

𝐺2𝜆𝐻
∗∗ + 𝑝1𝑝4𝜇𝐻𝐺1

𝐼𝐻
∗∗ =

𝛼𝐻𝑝3𝑝4𝜆𝐻
∗∗Λ𝐻

∗∗

𝐺2𝜆𝐻
∗∗ + 𝑝1𝑝4𝜇𝐻𝐺1

,  𝑇𝐹
∗∗ =

(1 − 𝑝)𝜏𝛼𝐻𝑝4𝜆𝐻
∗∗Λ𝐻

∗∗

𝐺2𝜆𝐻
∗∗ + 𝑝1𝑝4𝜇𝐻𝐺1

,                        (49)

𝑇𝐶
∗∗ =

𝑝𝜏𝛼𝐻𝑝3𝜆𝐻
∗∗Λ𝐻

∗∗

𝐺2𝜆𝐻
∗∗ + 𝑝1𝑝4𝜇𝐻𝐺1

,  𝑆𝑉
∗∗ =

Λ𝑉
𝜆𝑉
∗∗ + 𝜇𝑉

𝐸𝑉
∗∗ =

𝜆𝑉
∗∗Λ𝑉

𝑝5(𝜆𝑉
∗∗ + 𝜇𝑉)

,  𝐼𝑉
∗∗ =

𝛼𝑉𝜆𝑉
∗∗Λ𝑉

𝑝5𝜇𝑉(𝜆𝑉
∗∗ + 𝜇𝑉)

 

where 𝐺1 = 𝑝2𝑝3 − 𝛾𝜏(1 − 𝑝) > 0,  𝐺2 = 𝑝1𝑝4𝐺1 − 𝜎𝑝𝜏𝛼𝐻𝑝3 > 0. 

 

After performing numerous algebraic modifications, it becomes obvious that the EEP of system (2) satisfies the given 

polynomial at the equilibrium point when the equations for the EEP in (49) are substituted into the force of infection.: 

 

𝐴2𝜆𝐻
∗∗2 + 𝐴1𝜆𝐻

∗∗ + 𝐴0 = 0                                           (50) 
where 

 

𝐴2 =𝑝5Λ𝐻𝜇𝑉(𝐺1𝑝4𝜇𝑉 + 𝑝4(1 − 𝑞)𝛼𝐻(𝛽𝑉𝜂 + 𝜇𝑉)𝜏 + 𝑝3𝛼𝐻(𝑝4(𝛽𝑉 + 𝜇𝑉) + 𝑝𝜇𝑉𝜏))

(𝐺1𝑝4 + 𝛼𝐻(𝑝4(1 − 𝑝)𝜏 + 𝑝3(𝑝4 + 𝑝𝜏)))

𝐴1 =2𝐺1𝑝1𝑝4𝑝5Λ𝐻𝜇𝑉
2 (𝐺1𝑝4 + 𝛼𝐻(𝑝4(1 − 𝑝)𝜏 + 𝑝3(𝑝4 + 𝑝𝜏)))

 +𝐺1𝑝1𝑝4
2𝑝5𝛽𝑉Λ𝐻𝜇𝑉𝛼𝐻(𝑝3 + (1 − 𝑝)𝜂𝜏) − 𝐺2𝑝4𝛼𝐻𝛼𝑉𝛽𝐻𝛽𝑉Λ𝑉(𝑝3 + (1 − 𝑝)𝜂𝜏),

𝐴0 =Λ𝐻𝜇𝑉
2𝑝1

2𝑝4
2𝑝5𝐺1

2(1 − ℛ0
2).

               (51) 

 

The components of the EEP are then obtained by solving for 𝜆𝐻  
∗∗ from the polynomial (50), and substituting the positive 

values of 𝜆𝐻 
∗∗ into the expressions in (49). 

 

Moreover, the number of positive roots of the polynomial (50) depends on the sign change between the coefficients 𝐴1 and 

𝐴0. 

 

The above results can be summed in the theorem below. 

 
Theorem 3.3: The model (2) has 

1. two endemic equilibria if 𝐴1 < 0 and ℛ0 < 1, 

2. unique endemic equilibria if 𝐴1 > 0 and ℛ0 > 1, 

3. no endemic equilibrium otherwise, when ℛ0 < 1. 

It is significant to note that the first item in Theorem 3.3 suggests the possible presence of a backward bifurcation in the system 

(2). The backward bifurcation phenomenon is marked by the parallel-existence of a disease-free state cum an endemic 

equilibrium that are both stable whenever the corresponding effective reproduction number is below unity. The implication of 

this is that the standard requirement for disease control (i.e., ℛ0 < 1 ) is no longer sufficient for effective disease control in a 

population, although it is a necessary requirement. In this case, fruitful strategies for disease regulation will be consequent on the 

first conditions of divers classes of the system under examination [36]. In a population (where individuals failed to complete the 

treatment regimen because of the long time required), the fundamental requirement of having the effective reproduction number 

below unity, being necessary, is no longer sufficient for effective Onchocerciasis regulation. 

 
3.4. Backward Bifurcation Analysis 

The existence of backward bifurcation in the model (2) is examined via the Center Manifold Theory [37 - 39]. We claim the 

following results. 

 

Theorem 3.4: The model (2) exhibits backward bifurcation at ℛ0 = 1 given that a bifurcation coefficient, described by a > 0. 

Proof: Let 

ℰ𝑎 = (𝑆𝐻
∗∗, 𝐸𝐻

∗∗, 𝐼𝐻
∗∗, 𝑇𝐹

∗∗, 𝑇𝐶
∗∗, 𝑆𝑉

∗∗, 𝐸𝑉
∗∗, 𝐼𝑉

∗∗, 𝑇∗∗)                              (52) 
 

represent an arbitrary EEP of the model (2). It is easy to carry out the ensuing switch of variables. 
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Let 𝑆𝐻 = 𝑥1, 𝐸𝐻 = 𝑥2, 𝐼𝐻 = 𝑥3, 𝑇𝐹 = 𝑥4, 𝑇𝐶 = 𝑥5, 𝑆𝑉 = 𝑥6, 𝐸𝑉 = 𝑥7, and 𝐼𝑉 = 𝑥8. It follows, that system (2) can be re-written as 

�̇�1 ≡ 𝑓1 = Λ𝐻 − 𝜆𝐻𝑥1 + 𝜎𝑥5 − 𝜇𝐻𝑥1,

�̇�2 ≡ 𝑓2 = 𝜆𝐻𝑥1 − (𝛼𝐻 + 𝜇𝐻)𝑥2,

�̇�3 ≡ 𝑓3 = 𝛼𝐻𝑥2 + 𝛾𝑥4 − (𝜏 + 𝛿 + 𝜇𝐻)𝑥3,

�̇�4 ≡ 𝑓4 = (1 − 𝑝)𝜏𝑥3 − (𝛾 + 𝜇𝐻)𝑥4,

�̇�5 ≡ 𝑓5 = 𝑝𝜏𝑥3 − (𝜎 + 𝜇𝐻)𝑥5,

�̇�6 ≡ 𝑓6 = Λ𝑉 − 𝜆𝑉𝑥6 − 𝜇𝑉𝑥6,

�̇�7 ≡ 𝑓7 = 𝜆𝑉𝑥6 − (𝛼𝑉 + 𝜇𝑉)𝑥7,

�̇�8 ≡ 𝑓8 = 𝛼𝑉𝑥7 − 𝜇𝑉𝑥8,

                   (53) 

where 

𝜆𝐻 =
𝛽𝐻𝑥8

∑  5
𝑖=1  𝑥𝑖

  and  𝜆𝑉 =
𝛽𝑉(𝑥3 + 𝜂𝑥4)

∑  5
𝑖=1  𝑥𝑖

                               (54) 

 

are the forces of infection corresponding to human and blackfly populations respectively. Suppose 𝛽𝐻 = 𝛽𝐻
∗  is chosen as a 

bifurcation parameter for the system (53). Solving for 𝛽𝐻 = 𝛽𝐻
∗  from ℛ0 = 1 yields 

 

𝛽𝐻 = 𝛽𝐻
∗ =

𝑝1𝑝5Λ𝐻𝜇𝑉
2𝐺1

𝛼𝐻𝛼𝑉Λ𝑉𝜇𝐻𝛽𝑉(𝑝3 + (1 − 𝑝)𝜂𝜏)
                               (55) 

 

where 𝐺1 = 𝑝2𝑝3 − (1 − 𝑝)𝛾𝜏. The Jacobian of the transformed system (53) at the DFE with 𝛽𝐻 = 𝛽𝐻
∗ , is given by: 

𝐽𝛽𝐻
∗ = 𝐽(ℰ0)|𝛽𝐻=𝛽𝐻

∗ =

(

 
 
 
 
 
 
 

−𝜇𝐻 0 0 0 𝜎 0 0 −𝛽𝐻
∗

0 −𝑝1 0 0 0 0 0 𝛽𝐻
∗

0 𝛼𝐻 −𝑝2 𝛾 0 0 0 0
0 0 (1 − 𝑝)𝜏 −𝑝3 0 0 0 0
0 0 𝑝𝜏 0 −𝑝4 0 0 0

0 0 −
𝛽𝑉𝑥6

∗

𝑥1
∗ −

𝛽𝑉𝑥6
∗𝜂

𝑥1
∗ 0 0 −𝑝5 0

0 0
𝛽𝑉𝑥6

∗

𝑥1
∗

𝛽𝑉𝑥1
∗𝜂

𝑥1
∗ 0 0 −𝑝5 0

0 0 0 0 0 0 𝛼𝑉 𝜇𝑉 )

 
 
 
 
 
 
 

                               (56). 

 

The matrix 𝐽𝛽𝐻
∗  has a simple zero eigenvalue (i.e., a center) and all other eigenvalues possess negative real parts. 

Consequently, the Center Manifold Theorem can be applied. For the case ℛ0 = 1, it can be shown that the Jacobian (𝐽𝛽𝐻) of the 

system (53) at 𝛽𝐻 = 𝛽𝐻
∗  possesses a right eigenvector given by w = [𝑤1, 𝑤2, … , 𝑤8]

𝑇, where 

 

𝑤1 =
(𝜎𝑝𝜏𝑝3𝛼𝐻 − 𝑝1𝑝4𝐺1)

𝑝3𝑝4𝜇𝐻𝛼𝐻
𝑤3,  𝑤2 =

𝐺1
𝑝3𝛼𝐻

𝑤3,  𝑤3 = 𝑤3 > 0,

𝑤4 =
(1 − 𝑝)𝜏

𝑝3
𝑤3,  𝑤5 =

𝑝𝜏

𝑝4
𝑤3,  𝑤6 = −

𝛽𝑉Λ𝑉𝜇𝐻(𝑝3(1 − 𝑝)𝜂𝜏)

Λ𝐻𝑝3𝜇𝑉
2 𝑤3,                               (57)

𝑤7 =
𝛽𝑉Λ𝑉𝜇𝐻(𝑝3(1 − 𝑝)𝜂𝜏)

Λ𝐻𝑝3𝑝5𝜇𝑉
𝑤3,  𝑤8 =

𝛽𝑉𝛼𝑉Λ𝑉𝜇𝐻(𝑝3(1 − 𝑝)𝜂𝜏)

Λ𝐻𝜇𝑉𝑝3𝑝5
𝑤3.

 

 

Similarly, 𝐽𝛽𝐻
∗  has a left eigenvector 𝐯 = (𝑣1, 𝑣2, … , 𝑣8), satisfying 𝐯 ⋅ 𝐰 = 1 , where 

                                         𝑣1 = 0,  𝑣2 =
𝛼𝐻

𝑝1
𝑣3,  𝑣3 = 𝑣3 > 0,  𝑣4 =

(𝛾𝑥1
∗𝑝1𝑝5𝜇𝑉+𝛽𝐻

∗ 𝛽𝑉𝛼𝐻𝛼𝑉𝜂𝑥6
∗)

𝑥1
∗𝜇𝑉𝑝1𝑝3𝑝5

𝑣3, 

                                         𝑣5 = 0,  𝑣6 = 0,  𝑣7 =
𝛽𝐻
∗ 𝛼𝐻𝛼𝑉

𝑝1𝑝5𝜇𝑉
𝑣3 𝑣8 =

𝛽𝐻
∗ 𝛼𝐻

𝑝1𝜇𝑉
𝑣3                                                                        (58). 

 

We also calculate the related non-zero partial derivatives of the right flanks of the transformed system (53), (evaluated at the 

DFE with 𝛽𝐻 = 𝛽𝐻
∗ ) 
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∂2𝑓2
∂𝑥2 ∂𝑥8

=
∂2𝑓2

∂𝑥3 ∂𝑥8
=

∂2𝑓2
∂𝑥4 ∂𝑥8

=
∂2𝑓2

∂𝑥5 ∂𝑥8
= −

𝛽𝐻
∗

𝑥1
∗ ,

∂2𝑓7
∂𝑥1 ∂𝑥3

=
∂2𝑓7

∂𝑥2 ∂𝑥3
=

∂2𝑓7
∂𝑥3 ∂𝑥4

=
∂2𝑓7
∂𝑥3 ∂𝑥5

= −
𝛽𝑉𝑥6

∗

𝑥1
∗2 ,

∂2𝑓7
∂𝑥1 ∂𝑥4

=
∂2𝑓7

∂𝑥2 ∂𝑥4
=

∂2𝑓7
∂𝑥3 ∂𝑥4

=
∂2𝑓7
∂𝑥4 ∂𝑥5

= −
𝛽𝑉𝑥6

∗𝜂

𝑥1
∗2 ,                               (59)

∂2𝑓7
∂𝑥3 ∂𝑥3

= −
2𝛽𝑉𝑥6

∗

𝑥1
∗2 ,  

∂2𝑓7
∂𝑥3 ∂𝑥6

=
𝛽𝑉
𝑥1
∗ ,

∂2𝑓7
∂𝑥4 ∂𝑥4

= −
2𝛽𝑉𝑥6

∗𝜂

𝑥1
∗2 ,  

∂2𝑓7
∂𝑥4 ∂𝑥6

=
𝛽𝑉𝜂

𝑥1
∗  

∂2𝑓2
∂𝑥8𝛽𝐻

∗ = 1.

 

The bifurcation coefficients, 𝑎 and 𝑏 given below as 

𝑎 = ∑  

𝑛

𝑘,𝑖,𝑗=1

𝑣𝑘𝑤𝑖𝑤𝑗
∂2𝑓𝑘
∂𝑥𝑖 ∂𝑥𝑗

(0,0),   and  𝑏 = ∑  

𝑛

𝑘,𝑖=1

𝑣𝑘𝑤𝑖
∂2𝑓𝑘
∂𝑥𝑖 ∂𝛽𝐻

∗ (0,0)                 (60) 

are also computed. 

𝑎 = −
2𝑣3𝑤3

2

𝑥1
∗2𝑝3

2𝑝4𝛼𝐻𝜇𝐻
[𝐺1𝑥1

∗𝜇𝐻(𝑝4𝐺1 + 𝑝3𝑝4𝛼𝐻 + 𝑝4𝛼𝐻(1 − 𝑝)𝜏 + 𝛼𝐻𝑝3𝑝𝜏)

+𝐺1𝑥1
∗𝑝4𝛼𝐻(𝑝3 + (1 − 𝑝)𝜏) − 𝛽𝐻

∗𝛼𝐻
2𝛼𝑉𝛽𝑉𝑥6

∗𝛿𝑝3𝑝4(𝑝3 + (1 − 𝑝)𝜏)]

𝑏 =
𝑣3𝑤3𝛽𝑉𝛼𝑉𝛼𝐻Λ𝑉𝜇𝐻(𝑝3(1 − 𝑝)𝜂𝜏)

Λ𝐻𝜇𝑉
2𝑝1𝑝3𝑝5

> 0.

(61) 

 

Obviously 𝑏 > 0 for all biologically feasible parameter values. Hence, if 𝛿 = 0 it implies that 𝑎 < 0. For the non-existence 

of backward bifurcation, we consider the special case of the transformed model (53) with negligible disease-induced deaths 𝛿 =
0. Then the backward bifurcation coefficient, 𝑎, given in (61) reduces to: 

 

𝑎 = −
2𝑣3𝑤3

2

𝑥1
∗2𝑝3

2𝑝4𝛼𝐻𝜇𝐻
[𝐺1𝑥1

∗𝜇𝐻(𝑝4𝐺1 + 𝑝3𝑝4𝛼𝐻 + 𝑝4𝛼𝐻(1 − 𝑝)𝜏 + 𝛼𝐻𝑝3𝑝𝜏)

+𝐺1𝑥1
∗𝑝4𝛼𝐻(𝑝3 + (1 − 𝑝)𝜏)] < 0.

       (62) 

 

Though this study has confirmed that the presence of onchocerciasis induced death will cause a backward bifurcation in the 

transmission dynamics of the disease, we are also interested in the impact of the fraction who completed their treatment on the 

bifurcation range. A graphical description of the backward bifurcation phenomenon is given in Figure 4 shows that a decrease in 

the fraction of humans who completed their treatment increases the backward bifurcation range, making disease control more 

challenging. Thus, public health control strategies should not just focus on increasing treatment rates but also making sure that a 

good percentage of the treated population complete their treatment. 

      
(a) 𝑝 = 0.8                                                                                                 (b) 𝑝 = 0.2 

Fig. 4 A backward bifurcation diagram for the onchocerciasis model (2), showing force of infection against the reproduction number 𝓡𝟎 with 𝝉 = 𝜹 = 

0.0005 
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3.5. Universal stability of DFE when 𝛿 = 0 

Here, we show that the DFE of the system (2) is universally asymptotically stable (GAS), when the malady-induced death 

is inconsequential; i.e., 𝛿 = 0. Making use of this assumption, the resulting reduced model is given by 

�̇�𝐻 = Λ𝐻 −
𝛽𝐻𝐼𝑉
𝑁

𝑆𝐻 + 𝜎𝑇𝐶 − 𝜇𝐻𝑆𝐻 ,

�̇�𝐻 =
𝛽𝐻𝐼𝐻
𝑁

𝑆𝐻 − (𝛼𝐻 + 𝜇𝐻)𝐸𝐻 ,

𝐼𝐻 = 𝛼𝐻𝐸𝐻 + 𝛾𝑇𝐹 − (𝜏 + 𝜇𝐻)𝐼𝐻 ,

�̇�𝐹  = (1 − 𝑝)𝜏𝐼𝐻 − (𝛾 + 𝜇𝐻)𝑇𝐹 ,

�̇�𝐶  = 𝑝𝜏𝐼𝐻 − (𝜎 + 𝜇𝐻)𝑇𝐶 ,

�̇�𝑉  = Λ𝑉 −
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁
𝑆𝑉 − 𝜇𝑉𝑆𝑉 ,

�̇�𝑉  =
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁
𝑆𝑉 − (𝛼𝑉 + 𝜇𝑉)𝐸𝑉 ,

𝐼𝑉  = 𝛼𝑉𝐸𝑉 − 𝜇𝑉𝐼𝑉 ,

         (63) 

We declare the ensuing result: 

 

Theorem 3.5: The DFE of the model (2), with negligible disease-induced death (i.e., 𝛿 = 0 ) is 𝐺𝐴𝑆 in 𝒟 if ℛ0 ≤ 1 and not 

stable if ℛ0 > 1. 

Proof: 

Look at the Lyapunov function given by: 

𝒯 = 𝑄1𝐸𝐻 + 𝑄2𝐼𝐻 + 𝑄3𝑇𝐹 + 𝑄4𝐸𝑉 + 𝑄5𝐼𝑉                           (64) 
where 

𝑄1 =
𝛽𝑉
∗𝑆𝑉

∗𝛼𝑉𝛼𝐻(𝑝3 + (1 − 𝑝)𝜂𝜏)

𝑝1𝑝5𝜇𝑉(𝑝2𝑝3 − (1 − 𝑝)𝛾𝜏)
,

𝑄2 =
𝛽𝑉
∗𝑆𝑉

∗𝛼𝑉(𝑝3 + (1 − 𝑝)𝜂𝜏)

𝑝5𝜇𝑉(𝑝2𝑝3 − (1 − 𝑝)𝛾𝜏)
,

𝑄3 =
𝛽𝑉
∗𝑆𝑉

∗𝛼𝑉(𝛾 + 𝜂𝑝2)

𝑝5𝜇𝑉(𝑝2𝑝3 − (1 − 𝑝)𝛾𝜏)
,

𝑄4 =
𝛼𝑉ℛ0

𝑚

𝜇𝑉𝑝5
,  𝑄5 =

ℛ0
𝑚

𝜇𝑉
.

                                            (65) 

 

including Lyapunov derivatives (where a dot depicts a time derivative) 

 

�̇� = 𝑄1�̇�𝐻 + 𝑄2𝐼𝐻 + 𝑄3�̇�𝐹 + 𝑄4�̇�𝑉 + 𝑄5𝐼𝑉                                   (66) 
Placing the right flank of system (2) in (66), we have 

 

�̇� = 𝑄1𝜆𝐻𝑆𝐻 + 𝑄4𝜆𝑉𝑆𝑉 − [𝑄1𝑝1 + 𝑄2𝛼𝐻]𝐸𝐻 − [𝑄2𝑝2 − 𝑄3(1 − 𝑝)𝜏]𝐼𝐻
 −[𝑄3𝑝3 − 𝑄2𝛾]𝑇𝐹 − [𝑄4𝑝5 − 𝑄5𝛼𝑉]𝐸𝑣 − 𝑄5𝜇𝑉𝐼𝑉

 =
𝜆𝐻𝑆𝐻ℛ0

𝑚2

𝛽𝐻𝑆𝐻
∗ +

𝜆𝑉𝑆𝑉𝛼𝑉ℛ0
𝜇𝑉𝑝5

−
𝜆𝑉𝑆𝑉

∗𝛼𝑉
𝜇𝑉𝑝5

−
𝜆𝐻ℛ0

𝑚

𝛽𝐻

 =
𝜆𝐻ℛ0

𝑚

𝛽𝐻
(
𝑆𝐻ℛ0

𝑚

𝑆𝐻
∗ − 1) +

𝜆𝐻𝑆𝑉
∗𝛼𝑉

𝑝5𝜇𝑉
(
𝑆𝑉ℛ0

𝑚

𝑆𝑉
∗ − 1)

 ≤
𝜆𝐻ℛ0

𝑚

𝛽𝐻
(ℛ0

𝑚 − 1) +
𝜆𝑉𝑆𝑉

∗𝛼𝑉
𝑝5𝜇𝑉

(ℛ0
𝑚 − 1)

 = (
𝜆𝐻ℛ0

𝑚

𝛽𝐻
+
𝜆𝑉𝑆𝑉

∗𝛼𝑉
𝑝5𝜇𝑉

) (ℛ0
𝑚 − 1)                                                                                 (67)

 

  

Hence, �̇� ≤ 0 whenever ℛ0 ≤ 1 alongside �̇� = 0 if and only if 𝐼𝑉 = 𝐼𝐻 = 𝑇𝐹 = 0. Thus, 𝒯 is a Lyapunov function in 𝒟. 

Thus, we can safely conclude based on LaSalle's Invariance Principle [22] that: 
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(𝐸𝐻(𝑡), 𝐼𝐻(𝑡), 𝑇𝐹(𝑡), 𝐸𝑉(𝑡), 𝐼𝑣(𝑡)) → (0,0,0,0,0,0)  as  𝑡 → ∞.     (68)  
 

Hence, all orbits of the equations of system (2), with 𝛿 = 0, approach the DFE of system (2), as 𝑡 → ∞ for ℛ0 ≤ 1. This 

outcome shows that in a community (where individuals are most likely to fail treatment), with the assumption of negligible 

disease induced death (𝛿 = 0), then the DFE of the system (2) will be universally asymptotically stable (GAS) given the 

condition that ℛ0 ≤ 1. Therefore, Onchocerciasis is certain to be eliminated from the population regardless of the first 

magnitudes of the sub-population given the condition that ℛ0 ≤ 1. 

 
3.6. Global Stability of an Endemic Steady State 

Consider a unique case of the system (2) when there is no waning of treatment received by infected individuals (i.e. the 

disease confers life long immunity), meaning once treated, the individuals remain treated for life (𝜎 = 0). This leads to the 

following reduced model. 

�̇�𝐻  = Λ𝐻 −
𝛽𝐻𝐼𝑉
𝑁

𝑆𝐻 − 𝜇𝐻𝑆𝐻 ,

�̇�𝐻 =
𝛽𝐻𝐼𝐻
𝑁

𝑆𝐻 − (𝛼𝐻 + 𝜇𝐻)𝐸𝐻 ,

𝐼𝐻  = 𝛼𝐻𝐸𝐻 + 𝛾𝑇𝐹 − (𝜏 + 𝜇𝐻)𝐼𝐻 ,

�̇�𝐹  = (1 − 𝑝)𝜏𝐼𝐻 − (𝛾 + 𝜇𝐻)𝑇𝐹 ,                                                             (69)

�̇�𝐶  = 𝑝𝜏𝐼𝐻 − 𝜇𝐻𝑇𝐶 ,

�̇�𝑉  = Λ𝑉 −
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁
𝑆𝑉 − 𝜇𝑉𝑆𝑉 ,

�̇�𝑉  =
𝛽𝑉(𝐼𝐻 + 𝜂𝑇𝐹)

𝑁
𝑆𝑉 − (𝛼𝑉 + 𝜇𝑉)𝐸𝑉 ,

𝐼𝑉  = 𝛼𝑉𝐸𝑉 − 𝜇𝑉𝐼𝑉 ,

 

 

Furthermore, let the stable manifold of the DFE of the model (2) (with 𝜎 = 0 ) be given by 

                   𝒟0 = {(𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑇𝐹 , 𝑇𝐶 , 𝑆𝑉 , 𝐸𝑉 , 𝐼𝑉) ∈ 𝒟:𝐸𝐻 = 𝐼𝐻 = 𝑇𝐹 = 𝐸𝑉 = 𝐼𝑉 = 0}.                          (70)            
 

We declare the ensuing result. 

 

Theorem 3.6 The EEP, ℰ1(with 𝜎 = 0 ) is 𝐺𝐴𝑆 in 𝒟 ∖ 𝒟0 whenever ℛ0 > 1. 

Proof: Let 𝒬 be a Lyapunov function expressed as  

𝒬 = 𝑆𝐻 − 𝑆𝐻
∗∗ln (

𝑆𝐻
𝑆𝐻
∗∗) + 𝐸𝐻 − 𝐸𝐻

∗∗ln (
𝐸𝐻
𝐸𝐻
∗∗) + 𝐵1 (𝐼𝐻 − 𝐼𝐻

∗∗ln 
𝐼𝐻
𝐼𝐻
∗∗)

 +𝐵2 (𝑇𝐹 − 𝑇𝐹
∗∗ln 

𝑇𝐹
𝑇𝐹
∗∗) + 𝑆𝑉 − 𝑆𝑉

∗∗ln (
𝑆𝑉
𝑆𝑉
∗∗) + 𝐸𝑉 − 𝐸𝑉

∗∗ln (
𝐸𝑉
𝐸𝑉
∗∗)

 +𝐵3 (𝐼𝑉 − 𝐼𝑉
∗∗ln 

𝐼𝑉
𝐼𝑉
∗∗) ,

   (71) 

 

where:  𝐵1 =
𝑝1

𝛼𝐻
,  𝐵2 =

𝑝1𝑝2

𝛼𝐻(1−𝑝)𝜏
,  𝐵3 =

𝑝5

𝛼𝑉
, and derivatives with respect to time of the Lyapunov functional, 𝒬 defined by 

 

�̇� = (1 −
𝑆𝐻
∗∗

𝑆𝐻
) �̇�𝐻 + (1 −

𝐸𝐻
∗∗

𝐸𝐻
) �̇�𝐻 + 𝐵1 (1 −

𝐼𝐻
∗∗

𝐼𝐻
) 𝐼𝐻 + 𝐵2 (1 −

𝑇𝐹
∗∗

𝑇𝐹
) �̇�𝐹

 + (1 −
𝑆𝑉
∗∗

𝑆𝑉
) �̇�𝑉 + (1 −

𝐸𝑉
∗∗

𝐸𝑉
) �̇�𝑉 + 𝐵3 (1 −

𝐼𝑉
𝐼𝑉
∗∗) 𝐼�̇�

         (72) 

 

Putting the right flanks of the equations in Equation (69) representing �̇�𝐻 , �̇�𝐻 , 𝐼𝐻 , �̇�𝐹 , �̇�𝑉 , �̇�𝑉, and 𝐼𝑉 into (72), after several algebraic 

calculations gives: 
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�̇� ≤ 𝜇𝐻𝑆𝐻
∗∗ (2 −

𝑆𝐻
∗∗

𝑆𝐻
−
𝑆𝐻
𝑆𝐻
∗∗) + 𝜇𝑉𝑆𝑉

∗∗ (2 −
𝑆𝑉
∗∗

𝑆𝑉
−
𝑆𝑉
𝑆𝑉
∗∗)

 +𝛽𝐻𝐼𝑉
∗∗𝑆𝐻

∗∗ (5 −
𝑆𝐻
∗∗

𝑆𝐻
−
𝐸𝐻
∗∗𝑆𝐻
𝐸𝐻𝑆𝐻

∗∗ −
𝐸𝐻𝐼𝐻

∗∗

𝐸𝐻
∗∗𝐼𝐻

−
𝑇𝐹
𝑇𝐹
∗∗ −

𝑇𝐹
∗∗𝐼𝐻
𝑇𝐹𝐼𝐻

∗∗)

 +
𝛾𝛽𝐻𝐼𝑉

∗∗𝑆𝐻
∗∗𝑇𝐹

∗∗

𝛼𝐻𝐸𝐻
∗∗ (1 −

𝐼𝐻
∗∗

𝐼𝐻
)

 +𝛽𝑉𝐼𝐻
∗∗𝑆𝑉

∗∗ (4 −
𝑆𝑉
∗∗

𝑆𝑉
−
𝐸𝑉
∗∗𝑆𝑉
𝐸𝑉𝑆𝑉

∗∗ −
𝐼𝑉
𝐼𝑉
∗∗ −

𝐼𝑉
∗∗𝐸𝑉
𝐼𝑉𝐸𝑉

∗∗)

 +𝛽𝑉𝜂𝑇𝐹
∗∗𝑆𝑉

∗∗ (4 −
𝑆𝑉
∗∗

𝑆𝑉
−
𝐸𝑉
∗∗𝑆𝑉
𝐸𝑉𝑆𝑉

∗∗ −
𝐼𝑉
𝐼𝑉
∗∗ −

𝐼𝑉
∗∗𝐸𝑉
𝐼𝑉𝐸𝑉

∗∗).                                            (73)

 

 

Due to the fact that the arithmetic mean is exceeds the geometric mean, the corresponding inequalities hold 

1 −
𝐼𝐻
∗∗

𝐼𝐻
≤ 0

2 −
𝑆𝐻
∗∗

𝑆𝐻
−
𝑆𝐻
𝑆𝐻
∗∗ ≤ 0,  2 −

𝑆𝑉
∗∗

𝑆𝑉
−
𝑆𝑉
𝑆𝑉
∗∗ ≤ 0,

4 −
𝑆𝑉
∗∗

𝑆𝑉
−
𝐸𝑉
∗∗𝑆𝑉
𝐸𝑉𝑆𝑉

∗∗ −
𝐼𝑉
𝐼𝑉
∗∗ −

𝐼𝑉
∗∗𝐸𝑉
𝐼𝑉𝐸𝑉

∗∗ ≤ 0

5 −
𝑆𝐻
∗∗

𝑆𝐻
−
𝐸𝐻
∗∗𝑆𝐻
𝐸𝐻𝑆𝐻

∗∗ −
𝐸𝐻𝐼𝐻

∗∗

𝐸𝐻
∗∗𝐼𝐻

−
𝑇𝐹
𝑇𝐹
∗∗ −

𝑇𝐹
∗∗𝐼𝐻
𝑇𝐹𝐼𝐻

∗∗ ≤ 0

                                                  (74) 

 

Thus, �̇� ≤ 0 whenever ℛ0 > 1. 

 

Since the corresponding variables in the equations for 𝑇𝐶  are at the endemic equilibrium, these can be transferred into the 

equation for 𝑇𝐶  in the model (2) (with 𝜎 = 0 ), so that: 

 

𝑇𝐶(𝑡) → 𝑇𝐶
∗∗  as  𝑡 → ∞                                              (75) 

 

Thus, 𝒬 is a Lyapunov function in 𝒟 ∖ 𝒟0. Epidemiologically, the result showed that in a population (where individuals are 

most likely to fail treatment), Onchocerciasis induced death and waning of treatment are negligible (i.e., 𝛿 = 𝜎 = 0 ), the endemic 

critical point is guaranteed to be universally asymptotically stable (GAS) given that ℛ0 > 1 implying that Onchocerciasis will 

thrive in the community under consideration no matter the first sizes of the sub-population given that ℛ0 > 1. 

 

4. Discussions and Conclusion 
An Onchocerciasis mathematical model incorporating humans who failed to complete their treatment is formulated and 

analyzed. The disease-free equilibrium of system (2) was shown to be locally asymptotically stable in 𝒟 given that ℛ0 < 1, 

which implied that Onchocerciasis can be eradicated from the population given that the first sizes of the sub-classes of the system 

(2) lie in the basin of attraction of the DFE and that a small influx of infected humans with Onchocerciasis into the community 

where individuals failed treatment would not generate large outbreaks, and unstable and if ℛ0 > 1. Analyzing the reproduction 

number (ℛ0), it was seen that if the infected persons who failed to complete their treatment is 50% as infectious as the infected 

persons who did not get to be treated, then over 67% of the infected persons will need to complete their treatment for effective 

disease control. The system (2) was also shown to undergo the backward bifurcation phenomenon induced by human deaths 

induced by onchocerciasis. The backward bifurcation range was also seen to increase by a decrease in the fraction of humans 

who completed their treatment. The equilibrium at the infection free state was shown to be globally asymptotically stable when 

there is negligible Onchocerciasis induced human deaths. Also, the endemic equilibrium was shown to be globally asymptotically 

stable for the unique case given that there is negligible disease induced death and permanent immunity upon completion of 

treatment. 
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