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Abstract - This paper presents the local well-posedness of the strong solutions to the 2D incompressible 

magnetohydrodynamics (MHD) equations without magnetic diffusion in a strip domain. Via a semi-discrete Galerkin scheme, 

we construct approximate solutions with Navier-type boundary conditions, and can have solutions by passing the limit. 

Moreover, our results are valid for the Cauchy problem. 
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1. Introduction 

Magnetohydrodynamics(MHD)  describes the motion of conductive fluids such as plasmas, liquid metals and 

electrolytes in magnetic fields and has a wide range of applications in astrophysics, geophysics, high-speed aerodynamics 

and engineering. Under the continuity hypothesis, the motion of the fluid satisfies the conservation of mass, momentum and 

energy. 

The incompressible magnetohydrodynamics (MHD) can be described as follows: 

                                            {
𝜕𝑡𝑢 + 𝑢 ∙ ∇𝑢 − 𝜇Δ𝑢 + ∇𝑝 = 𝑏 ∙ ∇𝑏,
𝜕𝑡𝑏 + 𝑢 ∙ ∇𝑏 − 𝜈∆𝑏 = 𝑏 ∙ ∇𝑢,           
∇ ∙ 𝑢 = 0, ∇ ∙ 𝑏 = 0                              

                                                      (1.1) 

where 𝑢 = 𝑢(𝑥1, 𝑥2, 𝑡) denotes the fluid velocity, 𝑏 = 𝑏(𝑥1, 𝑥2, 𝑡) is the magnetic field and 𝑝 = 𝑝(𝑥1, 𝑥2, 𝑡) is the pressure 

of the field, 𝜇 is the kinematic viscosity,  
1

𝜈
 is the magnetic Reynolds number. 𝜇 and 𝜈 are positive constants. 

2. Literature Review 

Magnetohydrodynamic(MHD) has been extensively studied by physicists and mathematicians because it plays an 

important role in simulating many phenomena in astrophysics, geophysics, and plasma physics, as detailed in [3-5,11,13,15] 

and the literature cited therein. There is a strong coupling and interaction between fluid motion and magnetic field in MHD 

systems, which makes the study of well-posedness and dynamical behavior of the systems very complicated. Nonetheless, 

many important advances have been made in the mathematical analysis of these topics for MHD systems in recent years. 

 

Among them, we briefly review the results of the high-dimensional incompressible MHD equations that are more 

relevant to this problem. For the homogeneous incompressible MHD equations, Durant and Lions[7] established the 
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existence of a global weak solution with finite energy. In the case that the given initial data is smooth, the smoothness and 

uniqueness in the 2D case are also proved. Sermange and Teman[13] respectively constructed local strong solutions and 

global strong solutions (with small initial data) in the three-dimensional case. For the nonhomogeneous incompressible MHD 

equations, Gerbeau, Le Bris  [8] and Desjardins, Le Bris  [6] established respectively the global existence of weak solutions 

with finish energy on three-dimensional bounded domains and on the torus. For the initial density 𝜌0 bounded away from 

zero, Abidi, Hmidi[1] and Abidi, Paicu[2] have established the existence of local and global (with small initial data) strong 

solutions in some Besov Spaces. 

 

If the magnetic field 𝑏 = 0, the MHD equations reduce to the classical Navier-Stokes equations. Ren, Xiang and Zhang 

investigated the local existence of the two-dimensional MHD systems with no-slip boundary condition in a strip domain in  

[12]. In the present paper it studys the local existence for 2D MHD  equation with Navier-slip boundary condition in a strip 

domain. 

 

3. Main Results 

This paper will study small perturbations of equation (1.1) around the equilibrium 𝑒1 = (1,0). Let 𝐵 = 𝑏 − 𝑒1, and 

substitute it into (1.1) , the two-dimensional incompressible magnetohydrodynamics (MHD) system without magnetic 

diffusion can be written as follows: 

{
𝜕𝑡𝑢 + 𝑢 ∙ ∇𝑢 − 𝜇Δ𝑢 + ∇𝑝 = 𝜕1𝐵 + 𝐵 ∙ ∇𝐵,
𝜕𝑡𝐵 + 𝑢 ∙ ∇𝐵 = 𝜕1𝑢 + 𝐵 ∙ ∇𝑢,                        
∇ ∙ 𝑢 = 0, ∇ ∙ 𝐵 = 0                                          

                                                          (1.2) 

The system (1.2) will be considered in a strip domain: 

                                             Ω = {𝑥 = (𝑥1, 𝑥2)|𝑥1 ∈ ℝ, 𝑥2 ∈ (0,1)} ⊂ ℝ
2.                                      (1.3) 

 

We need to pay attention that 𝑢  satisfies the Navier-slip boundary  condition: 

                                                             𝑢 ⋅ 𝑛 = 0,     𝑐𝑢𝑟𝑙𝑢 = 0   𝑜𝑛 𝜕Ω,                                                    (1.4) 

and the container is perfectly conductive to the magnetic field 𝐵, i.e., 

                                                                         𝐵 ⋅ 𝑛 = 0  𝑜𝑛 𝜕Ω,                                                        (1.5) 

where 𝑛 = (𝑛1, 𝑛2) denotes the  unit outward normal vector. 

Especially since Ω is a strip domain, the boundary condition (1.4) and (1.5) are equivalent to the boundary condition 

                                                              (𝑣2, 𝜕2𝑣1, 𝐵2)|𝜕Ω = 0.                                                   (1.6) 

 

Here the following initial boundary value problem can be deduced: 

 

{
 
 

 
 
𝜕𝑡𝑢 + 𝑢 ∙ ∇𝑢 − 𝜇Δ𝑢 + ∇𝑝 = 𝜕1𝐵 + 𝐵 ∙ ∇𝐵,               
𝜕𝑡𝐵 + 𝑢 ∙ ∇𝐵 = 𝜕1𝑢 + 𝐵 ∙ ∇𝑢,                                       
∇ ∙ 𝑢 = 0, ∇ ∙ 𝐵 = 0                                                          
(𝑣2, 𝜕2𝑣1, 𝐵2)|𝜕Ω = 0                                                      

𝑢(𝑥1, 𝑥2, 0) = 𝑢0(𝑥1, 𝑥2), 𝐵(𝑥1, 𝑥2, 0) = 𝐵0(𝑥1, 𝑥2)

                               (1.7) 

 

Then, The main results are stated as follows. 

Theorem 1.1 Assume that the initial data (𝑢0, 𝐵0) ∈ 𝐻
2(Ω) × 𝐻2(Ω) such that 𝑑𝑖𝑣 𝑢0 = 0 in Ω Then there exists a 𝑇 > 0 

such that the MHD system (1.7) admits a unique solution (𝑢, 𝜔) on [0, 𝑇] satisfying 

(𝑢, 𝐵) ∈ 𝐶([0, 𝑇]; 𝐻2(Ω)). 

In the second section, we will give some known facts and basic inequalities, which will be used later in the 

analysis. In the third section, a priori estimate for understanding (𝑢, 𝐵) is given, thus ensuring the extension of the 
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local strong solution, i.e., theorem 1.1, via the semi-discrete Galerkin scheme. 

Section 3 is devoted to deriving the priori estimates of solutions (𝑢, 𝐵), and then the result can guarantee the 

extension of the local strong solution, i.e., Theorems 1.1, via a semi-discrete Galerkin scheme. 

Notations In this paper, the norms of 𝐿𝑝 and 𝐻𝑠 are ‖∙‖𝐿𝑝 and ‖∙‖𝐻𝑠, respectively. For simplicity, 𝐼𝑡: = (0, 𝑡), 

𝐼�̅�: = [0, 𝑡] and ∫ ≔ ∫Ω . 

4. Preliminaries 

This section will introduce some known facts and essential inequalities that will be used frequently in the 

future. Firstly, the product estimate as follows [10]. 

Lemma 2.1 Product estimate: 

‖𝑔ℎ‖𝐻𝑖
<
~
{

‖𝑔‖𝐻1‖ℎ‖𝐻1                          𝑓𝑜𝑟   𝑖 = 0; 
‖𝑔‖𝐻𝑖‖ℎ‖𝐻2                                    𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 2

‖𝑔‖𝐻2‖ℎ‖𝐻𝑖 + ‖𝑔‖𝐻𝑖‖ℎ‖𝐻2             𝑓𝑜𝑟   𝑖 = 3.

;                              (2.1) 

Lemma 2.2 ([14]) let 𝜑(∙)be a nonnegative, absolutely continuous function on 𝐼�̅�, for all 𝑡 ∈ 𝐼�̅�, which satisfies 

for a.e. 𝑡 the differential inequality 

𝑓′(𝑡) ≤  𝑓(𝑡)𝑔(𝑡) + ℎ(𝑡), 

where 𝑔(𝑡) and ℎ(𝑡) are nonnegative, summable functions on 𝐼�̅�. Then 

                                            𝑓(𝑡) ≤ 𝑒∫ 𝑔(𝑠)𝑑𝑠
𝑡

0 [ 𝑓(0) + ∫ ℎ(𝑠)𝑑𝑠
𝑡

0
].                                   (2.2) 

Lemma 2.3 ([12])  Let Ω  be the strip domain defined by (1.3)  and 𝑓 ∈  𝐻𝑘(Ω)  for 𝑘 ≥  0 . If 𝑢 ∈  𝐻1(Ω) is a 

weak solution to the following Stokes system with 𝑢 ∙ 𝑛 = 0  and 𝑐𝑢𝑟𝑙𝑢 = 0 on 𝜕Ω, 

{
−∆𝑢 + ∇𝑝 = 𝑓, 𝑥 ∈ Ω,
𝑑𝑖𝑣𝑢 = 0,           𝑥 ∈ Ω,

 

then 𝑢 ∈  𝐻𝑘+2(Ω) and there exists a positive constant 𝐶 such that 

                                                 ‖∇𝑢‖𝐻𝑘+1 + ‖∇𝑝‖𝐻𝑘 ≤ 𝐶‖𝑓‖𝐻𝑘.                                        (2.3) 

5. The Main Proof 

The content of this section is divided into two parts. The one part provides a prior estimate, and the other part uses 

the regularity of a prior estimate to proof Theorem 1.1. 

5.1. Proposition 3.1 

Assume (𝑢0, 𝐵0) ∈ 𝐻
2(Ω) × 𝐻2(Ω),then there exists the positive constants 𝐶𝑇 may depending on 𝜇, 𝑇, 𝑢0and 𝐵0 such that 

                               ‖𝑢‖𝐻2
2 + ‖𝐵‖𝐻2

2 + ∫ (‖∇𝑢‖𝐻2
2 + ‖𝑢𝑡‖𝐻1

2 + ‖𝐵𝑡‖𝐻1
2 )𝑑𝑡

<
~

𝑇

0
 𝐶𝑇 .                            (3.1) 

Proof: There are mainly some energy estimates to prove proposition 3.1. First, there will have the energy estimates for 𝐿2. 

Step 1. 𝐿2 estimate of (𝑢, 𝐵). 

Making the 𝐿2 inner product of (1.7)1 with 𝑢, ones have 

                                
1

2

𝑑

𝑑𝑡
‖𝑢(𝑡)‖𝐿2

2 + 𝜇‖∇𝑢(𝑡)‖𝐿2
2 = ∫(𝜕1𝐵 + 𝐵 ∙ ∇𝐵) ∙ 𝑢𝑑𝑥,                             (3.2) 

Where take advantage of the fact that 

∫(𝑢 ∙ ∇𝑢 + ∇𝑝) ∙ 𝑢𝑑𝑥 = ∫
1

2
𝑢 ∙ ∇|𝑢|2𝑑𝑥 − ∫𝑑𝑖𝑣𝑢𝑝𝑑𝑥 

                                                                           = −∫(
1

2
|𝑢|2 + 𝑝) 𝑑𝑖𝑣𝑢𝑑𝑥 + ∫ (

1

2
|𝑢|2 + 𝑝)

𝜕Ω
𝑢 ∙ 𝑛𝑑𝑠 

                                                                           = 0. 

Making the 𝐿2 inner product of (1.7)2with 𝐵  can get 
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1

2

𝑑

𝑑𝑡
‖𝐵(𝑡)‖𝐿2

2 = ∫(𝜕1𝑢 + 𝐵 ∙ ∇𝑢) ∙ 𝐵𝑑𝑥,                                         (3.3) 

where it have used 

∫𝑢 ∙ ∇𝐵 ∙ 𝐵𝑑𝑥 = −
1

2
∫𝑑𝑖𝑣𝑢|𝐵|2𝑑𝑥 +

1

2
∫ |𝐵|2𝑢 ∙ 𝑛𝑑𝑠 = 0
𝜕Ω

. 

The integration by parts together with  the boundary condition (1.7)4 gives that 

 

∫ 𝜕1 𝐵 ∙ 𝑢𝑑𝑥 + ∫𝜕1 𝑢 ∙ 𝐵𝑑𝑥 = ∫𝜕1 𝐵 ∙ 𝑢𝑑𝑥 − ∫𝑢 ∙ 𝜕1𝐵 𝑑𝑥 = 0,                               (3.4) 

and 

                                                   ∫𝐵 ∙ ∇𝐵 ∙ 𝑢 𝑑𝑥 + ∫𝐵 ∙ ∇𝑢 ∙ 𝐵 𝑑𝑥 = 0.                                             (3.5) 

Then,  by(3.2) − (3.5) , it can obtain 

                                                   
1

2

𝑑

𝑑𝑡
(‖𝑢‖𝐿2

2 +‖𝐵‖𝐿2
2 ) + 𝜇‖∇𝑢‖𝐿2

2 = 0.                                              (3.6) 

Step 2. 𝐿2 estimate of (𝑢𝑡 , 𝐵𝑡). 

Making the 𝐿2 product of equation (1.7)1 with 𝑢𝑡, it gives 

                                              
𝜇

2

𝑑

𝑑𝑡
‖∇𝑢‖𝐿2

2 + ‖𝑢𝑡‖𝐿2
2 = ∫(𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢) ∙ 𝑢𝑡𝑑𝑥,                 (3.7) 

where it have used −𝜇 ∫∆𝑢 ∙ 𝑢𝑡𝑑𝑥 =
𝜇

2

𝑑

𝑑𝑡
‖∇𝑢‖𝐿2

2 . Then by 𝐻�̈�𝑙𝑑𝑒𝑟 inequality, Young's inequality and (2.1), it have 

∫(𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢) ∙ 𝑢𝑡𝑑𝑥 ≤ ‖𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢‖𝐿2‖𝑢𝑡‖𝐿2
2  

                                                       
<
~
‖𝐵‖𝐻2

2 (1 + ‖𝐵‖𝐻1
2 )‖𝑢‖𝐻2

2 ‖∇𝑢‖𝐿2
2 +

1

2
‖𝑢𝑡‖𝐿2

2 .                            (3.8) 

By the same way, it can obtain 

‖𝐵𝑡‖𝐿2
2 ≤ ‖𝜕1𝑢 + 𝐵 ∙ ∇𝑢 − 𝑢 ∙ ∇𝐵‖𝐿2 

                                                                  
<
~
‖𝑢‖𝐻2(1 + ‖𝐵‖𝐻2).                                                        (3.9) 

From (3.7), (3.8) and (3.9), it can get 

                    
𝜇

2

𝑑

𝑑𝑡
‖∇𝑢‖𝐿2

2 + ‖𝑢𝑡‖𝐿2
2 + ‖𝐵𝑡‖𝐿2

2 <
~
(‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 )(1 + ‖𝑢‖𝐻1

2 + ‖𝐵‖𝐻1
2 ).                (3.10) 

Step 3. 𝐻1 estimate of (𝑢, 𝐵). 

Making the 𝐿2 product of equation (1.7)1 with −∆𝑢, then it can obtain 

                              
1

2

𝑑

𝑑𝑡
‖∇𝑢‖𝐿2

2 + 𝜇‖∆𝑢‖𝐿2
2 = −∫(𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢) ∙ ∆𝑢𝑑𝑥.                   (3.11) 

For 𝐵, The inner product of 𝐿2 of  (1.7)2 and −∆𝐵 is obtained 

                                               
1

2

𝑑

𝑑𝑡
‖∇𝐵‖𝐿2

2 = −∫(𝜕1𝑢 + 𝑢 ∙ ∇𝐵 − 𝐵 ∙ ∇𝑢) ∙ ∆𝐵𝑑𝑥.                         (3.12) 

Along the same line as (3.8) and (3.9) will have 

−∫(𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢) ∙ ∆𝑢𝑑𝑥 ≤ ‖𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢‖𝐿2‖∆𝑢‖𝐿2 

                                                            
<
~
(‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 )(1 + ‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 ),                           (3.13) 

and 

−∫(𝜕1𝑢 + 𝑢 ∙ ∇𝐵 − 𝐵 ∙ ∇𝑢) ∙ ∆𝐵𝑑𝑥 ≤ ‖𝜕1𝑢 + 𝑢 ∙ ∇𝐵 − 𝐵 ∙ ∇𝑢‖𝐿2‖∆𝐵‖𝐿2 
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<
~
(‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 )(1 + ‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 ).                         (3.14) 

Thus together with (3.11) − (3.14), we conclude that 

1

2

𝑑

𝑑𝑡
(‖∇𝑢‖𝐿2

2 + ‖∇𝐵‖𝐿2
2 ) + 𝜇‖∆𝑢‖𝐿2

2 <
~
(‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 )(1 + ‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 ).    (3.15) 

Step 4. 𝐻1 estimate of (𝑢𝑡 , 𝐵𝑡). 

To estimate the one-order derivative of 𝑢𝑡 and 𝐵𝑡 , multiplying (1.7)1 by −∆𝑢𝑡  to obtain 

                                        
𝜇

2

𝑑

𝑑𝑡
‖∆𝑢‖𝐿2

2 + ‖∇𝑢𝑡‖𝐿2
2 = −∫(𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢) ∙ ∆𝑢𝑡𝑑𝑥.                (3.16) 

A direct computation implies 

−∫(𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢) ∙ ∆𝑢𝑡𝑑𝑥 

≤ ‖∇(𝜕1𝐵 + 𝐵 ∙ ∇𝐵 − 𝑢 ∙ ∇𝑢)‖𝐿2‖∇𝑢𝑡‖𝐿2 

                                                 
<
~
(‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 )(1 + ‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 ) +

1

2
‖𝑢𝑡‖𝐿2

2 .                   (3.17) 

To estimate the one-order derivative of 𝐵𝑡 , applying operator ∇ to (1.7)2 and taking the 𝐿2 inner product will have 

‖∇𝐵𝑡‖𝐿2 ≤ ‖∇(𝜕1𝑢 + 𝐵 ∙ ∇𝑢 − 𝑢 ∙ ∇𝐵)‖𝐿2 

                                                                
<
~
(‖𝑢‖𝐻2 + ‖𝐵‖𝐻2)(1 + ‖𝑢‖𝐻2 + ‖𝐵‖𝐻2).                           (3.18) 

Thus plugging (3.17) into  (3.16), together with (3.18), ones have 

                    
𝜇

2

𝑑

𝑑𝑡
‖∆𝑢‖𝐿2

2 + ‖∇𝑢𝑡‖𝐿2
2 + ‖∇𝐵𝑡‖𝐿2

<
~
(‖𝑢‖𝐻2 + ‖𝐵‖𝐻2)(1 + ‖𝑢‖𝐻2 + ‖𝐵‖𝐻2).               (3.19) 

Step 5. 𝐻3 estimate of (𝑢, 𝐵). 

By the Stokes estimates, i.e., Lemma 2.3, it gives 

‖∇𝑢‖𝐻2 + ‖∇p‖𝐻1
<
~
‖𝜕1𝐵 − 𝑢 ∙ ∇𝑢 + 𝐵 ∙ ∇𝐵 − 𝑢𝑡‖𝐻1 

                               
<
~
‖𝑢𝑡‖𝐻1+(‖𝑢‖𝐻2 + ‖𝐵‖𝐻2)(1 + ‖𝑢‖𝐻2 + ‖𝐵‖𝐻2).                                             (3.20) 

Then by collecting (3.6), (3.10), (3.15), (3.19)and (3.20) will obtain 

𝑑

𝑑𝑡
(‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 ) + ‖∇𝑢‖𝐻2

2 + ‖𝑢𝑡‖𝐻1
2 + ‖𝐵𝑡‖𝐻1

2 <
~
(‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 )(1 + ‖𝑢‖𝐻2

2 + ‖𝐵‖𝐻2
2 ). 

So, there are positive constants 𝑇 ≜ 𝑚𝑖𝑛{1,𝑀−1}, 

𝑠𝑢𝑝
0 ≤ 𝑡 ≤ 𝑇

(1 + ‖𝑢‖𝐻2
2 + ‖𝐵‖𝐻2

2 ) ≤ 𝑀, 

which together with Lemma 2.2 gives (3.1). 

5.2. Proof of Theorems 1.1 

The above has derived a priori estimate of the high regularity of 𝑢 and 𝐵, so a standard argument can be used to establish 

the existence of a strong solution: We construct approximate solutions in a strip domains by a semi-discrete Galerkin scheme 

to derive a uniform bound, thereby obtaining a solution by passing to the limit. 

Moreover, we can deduce from (3.1) that the sequence (𝑢𝛿 , 𝐵𝛿)converges, up to the extraction of subsequences, to 

some limit (𝑢, 𝐵) in the obvious weak sense, that is, as 𝛿 → 0, we obtaion 

𝑢𝛿 → 𝑢   𝑤𝑒𝑎𝑘𝑙𝑦 ∗    𝑖𝑛  𝐿∞(0, 𝑇; 𝐻2), 

𝐵𝛿 → 𝐵   𝑤𝑒𝑎𝑘𝑙𝑦 ∗    𝑖𝑛  𝐿∞(0, 𝑇; 𝐻2), 

∇𝑢𝛿 → ∇𝑢   𝑤𝑒𝑎𝑘𝑙𝑦 ∗    𝑖𝑛  𝐿2(0, 𝑇; 𝐻2), 
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𝑢𝑡
𝛿 → 𝑢𝑡    𝑤𝑒𝑎𝑘𝑙𝑦 ∗    𝑖𝑛  𝐿

2(0, 𝑇; 𝐻1), 

𝐵𝑡
𝛿 → 𝐵𝑡    𝑤𝑒𝑎𝑘𝑙𝑦 ∗    𝑖𝑛  𝐿

2(0, 𝑇; 𝐻1) 

Then by making 𝛿 → 0, it implies that (𝑢, 𝐵) is a strong solution of (1.7) on Ω × (0, 𝑇]. 

Finally, it’s easy to see the uniqueness of the strong solution (𝑢, 𝐵) holds, that is, it remains by using the method which 

is due to Germain [9]. 
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