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Abstract - This paper first presents the background of dual numbers and dual matrices under the Fan product by using the 

concept and properties of the Fan product, and then it defines some new special matrices under the Fan product. Further, this 

paper defines dual matrices under the Fan product. Also, some new results of the Fan product of these dual matrices have been 

derived. Finally, some theorems regarding the Fan product have been derived. 
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1. Introduction  
Numerous problems in Mathematics can be changed into computation of the Fan product, like system solution of Wiener-

Hopf integral equations and numerical method for solving Volterra integral equations. Professor Ky Fan has given the first 

opinion of this product by using the dimension of the matrix. Therefore, the Fan product plays a very important role in 

converting and developing a matrix transformation of the Volterra integral equation. 

 

W. K. Clifford initially gave the concept of the algebra of dual numbers, but A. P. Kotelnikow had applied it first in the 

field of machine design. Dual number is an extension form of real numbers. Also, there are many applications of dual vector 

algebra used in the fields of Kinematics, Mechanics and Physics. Dual vector algebra also renders a conventional tool for 

handling mathematical units like screws and wrenches. 

 

This paper defines some new special matrices under the Fan product and also derives some properties of these special 

matrices. This paper also defines the Fan product of dual matrices and develops the algebra of dual matrices under the Fan 

product. 

 

In Section 2, the fundamental view of dual numbers, dual matrices and the Fan product are presented. It also presents the 

properties of dual numbers, dual matrices and the Fan product. Section 3 defines some new special matrices with the Fan 

product, for example orthogonal F-matrix. Section 4 defines the Fan product of dual matrices, and Section 5 finally defines 

some special dual matrices under the Fan product. 

 

2. Definitions, Notations and Preliminary Results 
Let ℜ

𝑚×𝑛
 be the set of all real matrices of order 𝑚 × 𝑛. 

Definition 2.1[8]. For any two matrices 𝑃 = [𝑝𝑖𝑗] ∈ ℜ
𝑚×𝑛

 and 𝑄 = [𝑞𝑖𝑗] ∈ ℜ
𝑚×𝑛

, the Fan product of 𝑃 and 𝑄 defined as  

P ⋆  Q = {
−pijqij,    i ≠ j

piiqii ,     i = j
 

For example 

𝑃 = [

  10 −2 −5 −1
−5     25 −10 −15
0 −20    40 −11

−12 −5 −8   34

] ,   𝑄 = [

  5 −1 −2 0
−3   6 −1 −2
−4 −2    5 −1
−1 −3 −4 10

], 

then  

𝑃 ⋆ Q = [

   50 −2 −10     0
−15  150 −10 −30

0 −40   200 −11
−12 −15 −32 340

]. 

http://www.internationaljournalssrg.org/
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2.2[9]. Properties of the Fan Product 

If 𝑃 = [𝑝𝑖𝑗] ∈ ℜ
𝑚×𝑛, 𝑄 = [𝑞𝑖𝑗] ∈ ℜ

𝑚×𝑛, 𝑅 = [𝑟𝑖𝑗] ∈ ℜ
𝑚×𝑛

and k  is a scalar, then 

1. The Fan product is commutative. Let  𝑃 = [𝑝𝑖𝑗], 𝑄 = [𝑞𝑖𝑗] then 𝑃 ⋆ 𝑄 = 𝑄 ⋆ 𝑃. 

2. The Fan product is Linear. Let 𝑃 = [𝑝𝑖𝑗], 𝑄 = [𝑞𝑖𝑗], 𝑅 = [𝑟𝑖𝑗] and 𝑘 ∈ ℜ, then 

     𝑃 ⋆ (𝑄 + 𝑅) = 𝑃 ⋆ 𝑄 + 𝑃 ⋆ 𝑅, and 𝑘(𝑃 ⋆ 𝑄) = (𝑘𝑃) ⋆ 𝑄 = 𝑃 ⋆ (𝑘𝑄) . 
3. Let 𝑃, 𝑄 ≥ 0, then 

(𝑃 ⋆ 𝑄)𝑇 = 𝑃𝑇 ⋆ 𝑄𝑇 . 
4. Rank(𝑃 ⋆ 𝑄) ≤ Rank(𝑃)Rank(𝑄). 
 

Definition 2.3[1]. A 2-tuples (𝑝, 𝑝∗) is called a dual number if 𝑝, 𝑝∗ are real numbers among a real entity 1 and the dual 

entity 𝜀, where 𝜀2 = 𝜀3 = ⋯ = 0, 0𝜀 = 𝜀0 = 0, 1𝜀 = 𝜀1 = 𝜀.  
A dual number is normally signified as �̂� = 𝑝 + 𝜀𝑝∗. 

The set of dual number 𝔇 is defined by 𝔇 = {�̂� = 𝑝 + 𝜀𝑝∗| 𝑝, 𝑝∗ ∈ ℜ, 𝜀2 = 0, 𝜀 ≠ 0 }.  

 

Definition 2.4[1]. Let  𝑃, 𝑃∗ ∈ ℜ𝑚×𝑛 , then A dual matrix is denoted by �̂� and it is defined by  

 �̂� = [

𝑝11 + 𝜀𝑝11
∗ 𝑝12 + 𝜀𝑝12

∗

𝑝21 + 𝜀𝑝21
∗ 𝑝22 + 𝜀𝑝22

∗
… 𝑝1𝑛 + 𝜀𝑝1𝑛

∗

… 𝑝2𝑛 + 𝜀𝑝2𝑛
∗

⋮ ⋮
𝑝𝑚1 + 𝜀𝑝𝑚1

∗ 𝑝𝑚2 + 𝜀𝑝𝑚2
∗

⋮ ⋮
… 𝑝𝑚𝑛 + 𝜀𝑝𝑚𝑛

∗

]. 

Simply above expression as 

�̂� = [

𝑝11 𝑝12

𝑝21 𝑝22

… 𝑝1𝑛

… 𝑝2𝑛

⋮ ⋮
𝑝𝑚1 𝑝𝑚2

⋮ ⋮
… 𝑝𝑚𝑛

] + 𝜀 [

𝑝11
∗ 𝑝12

∗

𝑝21
∗ 𝑝22

∗
… 𝑝1𝑛

∗

… 𝑝2𝑛
∗

⋮ ⋮
𝑝𝑚1

∗ 𝑝𝑚2
∗

⋮ ⋮
… 𝑝𝑚𝑛

∗

]. 

Therefore 

�̂� = [𝑝𝑖𝑗] + 𝜀[𝑝𝑖𝑗
∗] = 𝑃 + 𝜀𝑃∗,  

where 𝜀  is a dual unit and 𝜀2 = 𝜀3 = ⋯ = 0, 0𝜀 = 𝜀0 = 0, 1𝜀 = 𝜀1 = 𝜀. 
Let 𝔇𝑚×𝑛 be the set of all real dual matrices of order 𝑚 × 𝑛.  

 

2.5[1]. Properties of dual number and Dual matrices 

1. Addition and multiplication of dual numbers is again a dual number. 

2. Division of dual numbers is treated as an ordinary division of complex numbers. 

3. Power and square root are defined as 

 �̂�𝑛 = 𝑝𝑛 + 𝜀𝑛𝑝∗𝑝𝑛−1 and √�̂� = √𝑝 + 𝜀
𝑝∗

2√𝑝
. 

4. Multiplication of dual matrices is defined as �̂��̂� = 𝑃𝑄 + 𝜀(𝑃𝑄∗ + 𝑃∗𝑄). 

5. Inverse of a dual matrix is represented as (�̂�)
−1

= 𝑃−1 − 𝜀(𝑃−1𝑃∗𝑃−1). 

6. If �̂� is a nonsingular square matrix, then �̂� = 𝜆 + 𝜀𝜆∗, �̂� = 𝑋 + 𝜀𝑋∗, �̂� ≠ 0  are called eigen value and eigen vector if 

�̂��̂� =  �̂��̂�. 

 

3. Special Real Matrices with the Fan Product  
In linear algebra, there are many types of matrices defined under ordinary multiplication, like as symmetric matrix, 

orthogonal matrix, and periodic matrix. As an impetus, some new special matrix under the Fan product will be defined. These 

matrices are named as F-matrix; for example, a symmetric matrix under the Fan product is called an F-symmetric matrix. 

 

It is easy to check that the set ℜ
𝑚×𝑛

of all real matrices of order 𝑚 × 𝑛 is a group under the Fan product. The identity 

element of this group under the Fan product is defined as  

 

                                             𝐼𝐹 = [𝑒𝑖𝑗], where 𝑒𝑖𝑗 = {
1,  𝑖 = 𝑗

−1, 𝑖 ≠ 𝑗
 

 

𝐼𝐹  is called an F-identity matrix. Also (ℜ𝑚×𝑛 , +, ⋆) is a commutative ring with identity. In addition, ℜ
𝑚×𝑛

 is an algebra over 

real number. 
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Definition 3.1. Let  𝑃 = [𝑝𝑖𝑗] ∈ ℜ
𝑚×𝑚, 𝑝𝑖𝑗 ≠ 0.  If 𝑃 ⋆ 𝑄 = 𝐼𝐹, then 𝑄 = 𝑃−1 is inverse of 𝑃 under the Fan product. It is called 

the F-inverse of 𝑃.  Hence 𝑄 = [
1

𝑝𝑖𝑗
]. 

Example 3.2. Let = [
2 3 −1
3 −5 2
4 7 −8

] , then F-inverse of 𝑃 is  

𝑃−1 = [

1/2 1/3 −1
1/3 −1/5 1/2
1/4 1/7 −1/8

]. 

Definition 3.3. Let 𝑃 ∈ ℜ
𝑚×𝑚

, since the inverse of 𝑃 always exists, if 𝑝𝑖𝑗 ≠ 0, then 𝑃 is called the F-singular matrix; if any 

𝑝𝑖𝑗 = 0. If there is no such 𝑝𝑖𝑗 = 0, then 𝑃 is called the F-regular matrix. 

 

Theorem 3.4. If 𝑃, 𝑄 are two F-regular matrices, then 

(𝑃 ⋆ 𝑄)−1 = (𝑄 ⋆ 𝑃)−1 = 𝑃−1  ⋆ 𝑄−1 = 𝑄−1 ⋆ 𝑃−1. 
Proof. From the properties of inverse  

𝑃 ⋆ 𝑃−1 = 𝐼𝐹 , 
Then  

(𝑃 ⋆ 𝑄) ⋆ (𝑃 ⋆ 𝑄)−1 = 𝐼𝐹 , 
Then by associativity  

𝑃 ⋆ (𝑄 ⋆ (𝑃 ⋆ 𝑄)−1) = 𝐼𝐹 . 
Therefore 

𝑄 ⋆ (𝑃 ⋆ 𝑄)−1 = 𝑃−1, 

then 

 (𝑄−1 ⋆ 𝑄) ⋆ (𝑃 ⋆ 𝑄)−1 = 𝑄−1 ⋆ 𝑃−1, 
𝐼𝐹 ⋆ (𝑃 ⋆ 𝑄)−1 = 𝑄−1 ⋆ 𝑃−1. 

Hence 
(𝑃 ⋆ 𝑄)−1 =  𝑄−1 ⋆ 𝑃−1. 

Similarly, we can easily prove that.  
(𝑄 ⋆ 𝑃)−1 =  𝑄−1 ⋆ 𝑃−1. 

 

Preposition 3.5. If 𝑃, 𝑄 ∈ ℜ
𝑚×𝑛, then tr(𝑃 ⋆ 𝑄) = 𝑡𝑟(𝑄 ⋆ 𝑃). 

 

Definition 3.6. Let 𝑃 ∈ ℜ
𝑚×𝑚

, if 𝑃 ⋆ 𝑃𝑇 = 𝐼𝐹 , then 𝑃 is called the F-orthogonal matrix. Also, if 𝑃 = 𝑃𝑇 , then 𝑃 is called the F-

symmetric matrix and if 𝑃𝑇 = −𝑃, then 𝑃 is called F- skew-symmetric matrix. 

Example 3.7. 𝑃 = [
1 2 5

1/2 1 −7
1/5 −1/7 1

] is an F-orthogonal matrix. 

𝑄 = [
5 2 6
2 3 −4
6 −4 −1

] is an F-symmetric matrix. 

𝑅 = [
0 −4 5
4 0 9

−5 −9 0
] is an F-skew symmetric matrix. 

 

Definition 3.8. Let 𝑃 ∈ ℜ
𝑚×𝑚

, 𝑃 is called F-periodic matrix with period 𝑟, if (𝑃⋆)𝑟+1 = 𝑃.  If 𝑟 = 1 and this equality holds, 

then matrix 𝑃 is called F-idempotent matrix.  

 

Definition 3.9. Let 𝑃 ∈ ℜ
𝑚×𝑚

, if (𝑃⋆)2 = 0, then 𝑃 is called F-nilpotent matrix. This holds only for a zero matrix. 

 

Definition 3.10. Let  𝑃 ∈ ℜ
𝑚×𝑚

, if (𝑃⋆)2 = 𝐼𝐹 , then 𝑃 is called the F-involuntary matrix. An involuntary matrix has elements 

that are either 1 or -1. 

 

Definition 3.11. Let  𝑃 ∈ ℜ
𝑚×𝑚

, if (𝑃⋆)2 = 𝑃,  then 𝑃 is called F-idempotent matrix 

 𝑃 = [
1 −1 1

−1 1 −1
] is an F-idempotent matrix. 
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Definition 3.12. Let  𝑃, 𝑄 ∈ ℜ
𝑚×𝑛, if 𝑃, 𝑄 are non-zero, but 𝑃 ⋆ 𝑄 = 0, then 𝑃, 𝑄 are called nulling each other matrices. 

 Let 𝑃 = [
3 0
0 5
1 0

] , 𝑄 = [
0 1
7 0
0 2

], then the Fan product is 𝑃, and 𝑄 is given by 

𝑃 ⋆ 𝑄 = [
0 0
0 0
0 0

]. 

Therefore, matrices 𝑃, 𝑄 are nulling to each other. 

Theorem 3.13. Let 𝑃 ∈ ℜ
𝑚×𝑛

, then 𝑃 is F-orthogonal if and only if 𝑝𝑖𝑗 . 𝑝𝑗𝑖 = 1. 

Proof. From the definition of F-orthogonal matrix, 

𝑃 ⋆ 𝑃T = 𝐼𝐹 , 
Then  

[𝑝𝑖𝑗] ⋆ [𝑝𝑖𝑗]
𝑇

= 𝐼𝐹, 

[𝑝𝑖𝑗] ⋆ [𝑝𝑖𝑗]
𝑇

= 𝑒𝑖𝑗. 

Therefore  

𝑝𝑖𝑗 . 𝑝𝑗𝑖 = 1. 

4. The Fan product of dual matrices 
Definition 4.1.  Let �̂�, �̂� ∈ 𝔇𝑚×𝑛, then the Fan product of �̂�, �̂� is defined as  

�̂� ⋆ �̂� = (𝑈 + 𝜀𝑈∗) ⋆ (𝑉 + 𝜀𝑉∗) 

                                                   = (𝑈 ⋆ 𝑉) + 𝜀(𝑈∗ ⋆ 𝑉 + 𝑈 ⋆ 𝑉∗) 

4.2. Properties of the Fan product of dual matrices 

 If �̂�, �̂�, �̂�  ∈ 𝔇𝑚×𝑛, then 

1. �̂� ⋆ �̂� = �̂� ⋆ �̂�. 

2. �̂� ⋆ (�̂� ⋆ �̂�) = (�̂� ⋆ �̂�) ⋆ �̂�. 

3. �̂� ⋆ (�̂� + �̂�) = �̂� ⋆ �̂� + �̂� ⋆ �̂�. 

4. For any 𝑎 ∈ ℜ, 

𝑎(�̂� ⋆ �̂�) = (𝑎�̂�) ⋆ �̂� = �̂� ⋆ (a�̂�). 

 

It is easy to prove that (𝔇𝑚×𝑛 , +, ⋆) is a ring with unit element. 

 

Definition 4.3.  Let �̂� ∈ 𝔇𝑚×𝑛, an identity dual matrix under F-product is defined as  𝐼 = 𝐼𝐹 + 𝜀0, so that �̂� ⋆ 𝐼 = �̂� = �̂� ⋆ 𝐼. 
 

Definition 4.4.  Let  �̂� ∈ 𝔇𝑚×𝑛, then the conjugate of �̂� is defined as 

(�̂�)̅̅ ̅̅ ̅ = (𝑃 + 𝜀𝑃∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑃 − 𝜀𝑃∗. 

Theorem 4.5. Let �̂�, �̂� ∈ 𝔇𝑚×𝑛, then 𝑡𝑟(�̂� ⋆ �̂�) = 𝑡𝑟(�̂� ⋆ �̂�). 

Proof. Now                                  𝑡𝑟(�̂� ⋆ �̂�) = 𝑡𝑟((𝑃 ⋆ Q) + 𝜀(𝑃∗ ⋆ Q + 𝑃 ⋆ 𝑄∗)) 

                = 𝑡𝑟(𝑃 ⋆ Q) + 𝜀𝑡𝑟(𝑃∗ ⋆ Q) + 𝜀𝑡𝑟(𝑃 ⋆ 𝑄∗) 

                 = 𝑡𝑟(𝑄 ⋆ 𝑃) + 𝜀𝑡𝑟(𝑄∗ ⋆ 𝑃) + 𝜀𝑡𝑟(𝑄 ⋆ 𝑃∗) 

                                                                       = 𝑡𝑟(�̂� ⋆ �̂�). 

Theorem 4.6. Let �̂� = 𝑃 + 𝜀𝑃∗ ∈ 𝔇𝑚×𝑛 and if 𝑃 ≠ 0 is F-invertible, then 

(�̂�)
−1

=
(�̂�)̅̅ ̅̅ ̅

𝑃2   or (�̂�)
−1

= 𝑃−1 − 𝜀𝑃−2𝑃∗ 

and hence �̂� ⋆ (�̂�)
−1

= 𝐼. 

Proof.                                            (�̂�)
−1

=
1

𝑃+𝜀𝑃∗ =
1

𝑃+𝜀𝑃∗ ×
𝑃−𝜀𝑃∗

𝑃−𝜀𝑃∗ =
𝑃−𝜀𝑃∗

𝑃2 . 

Thus,  

(�̂�)
−1

=
(�̂�)̅̅ ̅̅ ̅

𝑃2
= 𝑃−1 − 𝜀𝑃−2𝑃∗. 

Theorem 4.7. Let �̂�, �̂� ∈ 𝔇𝑚×𝑛 and �̂�, �̂� are regular matrices, then 

(�̂� ⋆ �̂�)
−1

= (�̂�)
−1

⋆ (�̂�)
−1

. 

Proof. Here, first, we prove that (�̂� ⋆ �̂�)
𝑇

= (�̂�)
𝑇

⋆ (�̂�)
𝑇

. 

Since                                  (�̂� ⋆ �̂�)
𝑇

= ((𝑃 ⋆ Q) + 𝜀(𝑃∗ ⋆ Q + 𝑃 ⋆ 𝑄∗))
𝑇
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= (𝑃 ⋆ Q)𝑇 +  𝜀(𝑃∗ ⋆ Q)𝑇 + + 𝜀(𝑃 ⋆ 𝑄∗)𝑇 

                                                           = (�̂�)
𝑇

⋆ (�̂�)
𝑇

. 

Now, 

(�̂� ⋆ �̂�) ⋆ (�̂� ⋆ �̂�)
−1

= 𝐼𝐹 , 

Then by associativity  

�̂� ⋆ (�̂� ⋆ (�̂� ⋆ �̂�)
−1

) = 𝐼𝐹 . 

Therefore 

�̂� ⋆ (�̂� ⋆ �̂�)
−1

= �̂�−1, 

then 

 (�̂� ⋆ �̂�)
−1

= �̂�−1 ⋆ �̂�−1. 

Similarly, we can easily prove that.  

(�̂� ⋆ �̂�)
−1

=  �̂�−1 ⋆ �̂�−1. 

 

5. Special Dual Matrices Under the Fan Product 
Definition 5.1. Let �̂� = [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗

∗] ∈ 𝔇𝑚×𝑛 and if 𝑝𝑖𝑗 = 0, then �̂� is called a pure dual matrix. 

Example 5.2.  �̂� =  [
7𝜀 −𝜀

−3𝜀 2𝜀
5𝜀 𝜀

] is a pure dual matrix. 

Definition 5.3.  Let �̂� = [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗
∗] ∈ 𝔇𝑚×𝑚, then �̂� is called F-singular dual matrix; if any 𝑝𝑖𝑗 = 0. If there is no such 𝑝𝑖𝑗 =

0, then �̂� is called F-regular dual matrix. 

Definition 5.4.  Let �̂� = [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗
∗] ∈ 𝔇𝑚×𝑚, then if �̂� ⋆ �̂�𝑇 = 𝐼, then �̂� is called F-orthogonal dual matrix. Also if �̂� =

�̂�𝑇 , then 𝑃 is called F-symmetric dual matrix and if �̂�𝑇 = −�̂�, then �̂�  is called F- skew symmetric dual matrix. 

Definition 5.5.  Let �̂� ∈ 𝔇𝑚×𝑚, �̂� is called F-periodic dual matrix with period 𝑟, if ((�̂�)
⋆
)

𝑟+1

= �̂�.  If 𝑟 = 1 and this equality 

holds, then matrix �̂�  is called F-idempotent dual matrix.  

Definition 5.6.  Let  �̂� ∈ 𝔇𝑚×𝑚, if ((�̂�)
⋆
)

𝑟

= 0 + 𝜀0, then �̂� is called F-nilpotent dual matrix.  

Definition 5.7.  Let  �̂� ∈ 𝔇𝑚×𝑚, if ((�̂�)
⋆
)

2

= 𝐼, then �̂�  is called F-involuntary dual matrix.  

Definition 5.8.  Let  �̂� ∈ 𝔇𝑚×𝑚, if ((�̂�)
⋆
)

2

= �̂�, then �̂�  is called F-idempotent dual matrix.  

Definition 5.9. Let  �̂�, �̂� ∈ 𝔇𝑚×𝑚, if �̂� ≠ 0, �̂� ≠ 0,but �̂� ⋆ �̂� = 0, then �̂�, �̂� are called nulling each other matrices. 

Theorem 5.10. If �̂� ∈ 𝔇𝑚×𝑚, the 𝑘-th power of �̂� is as follow 

(�̂�)
𝑘

= 𝑃𝑘 + 𝑘𝜀𝑃𝑘−1𝑃∗. 

Proof. We use the Mathematical induction method 

Case I. When 𝑘 = 2, then 

(�̂�)
2

= �̂�. �̂� = [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗
∗]. [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗

∗] = [𝑝𝑖𝑗
2 + 2𝜀(𝑝𝑖𝑗

∗𝑝𝑖𝑗)] = 𝑃2 + 2𝜀𝑃𝑃∗. 

Similarly  

(�̂�)
3

= �̂�. �̂�. �̂� = [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗
∗]. [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗

∗]. [𝑝𝑖𝑗 + 𝜀𝑝𝑖𝑗
∗] = [𝑝𝑖𝑗

3 + 3𝜀(𝑝𝑖𝑗
∗𝑝𝑖𝑗)] = 𝑃3 + 3𝜀𝑃𝑃∗. 

Then, from the induction method, we obtained 

(�̂�)
𝑘

= 𝑃𝑘 + 𝑘𝜀𝑃𝑘−1𝑃∗. 

Corollary 5. 11.  Zero matrix is only F- nilpotent dual matrix.  

Corollary 5.12. Identity dual matrix 𝐼 is only a matrix, which is F-idempotent dual and F-periodic dual matrix. 
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