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Abstract - This study explores achieving stochastic stability in Semi-Markov jump systems under dynamic event-triggering 

mechanisms. Addressing critical challenges in system control, it investigates the feasibility of stability dynamic triggers, offering 

insights into enhancing system performance and reliability. 
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1. Introduction  

As a specialized form of stochastic hybrid system, Markov jump systems (MJSs) find extensive applications across various 

domains, including manufacturing, neural networks, robotics, and epidemiology.[1-5] Nonetheless, their practical utility is 

limited due to the exponential distribution governing the sojourn time at each state of a Markov process.  

 

This stringent requirement significantly constrains the applicability of MJSs, leading to inherent conservatism in many 

obtained outcomes. To overcome these constraints, Semi-Markov jump systems (SMJSs) have been proposed.[6]-[8] 

 

Numerous significant works have emerged for the dynamic analysis of SMJSs, spanning stability and stabilization, [9]-[12] 

event-triggered schemes,[13]-[16] passivity[17], and H∞ performance analysis.[18]-[19] Additionally, remarkable progress has 

been made in the advancement of  dynamic event-triggering mechanisms. Dynamic event-triggered mechanisms (DETM) can 

ensure trigger intervals surpassing those achieved by static mechanisms, thereby enhancing system performance.[20]  

 

Generally, due to the existence of SMJSs and DETM, investigating such systems poses a challenge. However, there have 

been no relevant theoretical results available, which underscores the significance of our study.

http://www.internationaljournalssrg.org/
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2. Problem Statement 

2.1. Consider a Nonlinear Hybrid Time-Delay Switching System with Perturbations as follows: 

{

𝑥̇(𝑡) = 𝐴(𝑟𝑡)𝑥(𝑡) + 𝐶(𝑟𝑡)𝑓(𝑥(𝑡), 𝑟𝑡) + 𝐵(𝑟𝑡)𝑢(𝑡) + 𝐸(𝑟𝑡)𝜔(𝑡),

𝑦(𝑡) = 𝐷(𝑟𝑡)𝑥(𝑡),
                               (1) 

where 𝑥(𝑡) is the state variable; 𝑢(𝑡) is the control input; 𝑦(𝑡) is the measurement output; 𝑓(𝑥(𝑡),  𝑥(𝑡 − 𝑑(𝑡)) is a 

nonlinear perturbation; 𝐴𝑟𝑡 , 𝐵𝑟𝑡 , 𝐸𝑟𝑡 , 𝐶𝑟𝑡 , 𝐷𝑟𝑡  are constant matrices with the appropriate dimension.  

The continuous-time semi-Markov chain 𝑟𝑡 takes values of 𝒩1 = {1,2, . . . ,𝒩}, subject to the transition probability matrix as 

follows: 

    

𝑃[𝑟(𝑡 + ℎ) = 𝑗 ∣ 𝑟(𝑡) = 𝑖] = {

𝜆𝑖𝑗(ℎ)ℎ + 𝑜(ℎ), 𝑖 ≠ 𝑗

1 + 𝜆𝑖𝑖(ℎ)ℎ + 𝑜(ℎ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                （2） 

where ℎ represents the sojourn time. 𝜋𝑝𝑞(ℎ) denotes the transition rate from mode 𝑝 at time 𝑡 to mode 𝑞 at time 𝑡 + ℎ, 

and 𝜋𝑝𝑝(ℎ) = −∑ 𝜋𝑝𝑞𝑞∈𝒩,𝑞≠𝑝 (ℎ).  

The nonlinear perturbation satisfies the following assumption: 

𝑓𝑟𝑡
T(𝑡, 𝑥(𝑡))𝑓𝑟𝑡(𝑡, 𝑥(𝑡)) ≤ 𝑥T(𝑡)𝐻𝑟𝑡𝑥(𝑡),                                   (3)                                                          

where 𝐻𝑟𝑡  is symmetrical positive definite matrices. Suppose the last trigger success moment is 𝑟𝑘, and the next trigger 

success moment is 𝑟𝑘 + 1.  The threshold error:𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡𝑚ℎ). Construct the following controller: 

𝑢(𝑡) = 𝐾𝑖𝑥(𝑟𝑘),  𝑡 ∈ [𝑟𝑘 , 𝑟𝑘+1).                                  (4) 

Consider the following dynamic event-triggered mechanism: 

𝑟𝑘+1 = inf {𝑡|𝑡 > 𝑟𝑘 ∧ 𝜂(𝑡) + 𝜉 (𝑥𝑇(𝑡)𝛯𝜎(𝑡)𝑥(𝑡) − 𝑒𝑇(𝑡)𝛯𝜎(𝑡)𝑒(𝑡)) ≤ 0},                                   (5)    

Where 𝛯𝜎(𝑡) > 0 is a positive weight matrix of the triggered condition to be designed, 𝜉 ≥ 0.  𝜂(𝑡) is the internal dynamic 

variable satisfying 

𝜂̇(𝑡) = −𝛿𝜂(𝑡) + 𝑥𝑇(𝑡)𝛯𝜎(𝑡)𝑥(𝑡) − 𝑒𝜏
𝑇(𝑡)𝛯𝜎(𝑡)𝑒𝜏(𝑡),                                   (6) 

Where 𝛿 > 0, the initial condition 𝜂(0) ≥ 0 . 

Considering the controller (4) and dynamic event-triggered mechanism (5),  (1)can be described as follows: 

 

{
𝑥̇(𝑡) = (𝐴(𝑟𝑡) + 𝐵(𝑟𝑡)𝐾(𝑟𝑡))𝑥(𝑡) + 𝐶(𝑟𝑡)𝑓(𝑥(𝑡), 𝑟𝑡) − 𝐵(𝑟𝑡)𝐾(𝑟𝑡)𝑒(𝑡) + 𝐸(𝑟𝑡)𝜔(𝑡),

𝑦(𝑡) = 𝐷(𝑟𝑡)𝑥(𝑡),
                    (7) 

Definition 2.1. 𝐹𝑜𝑟  𝑟0 ∈ 𝒩,the system under  𝜔(𝑡) =

0 is called stochastic stability, if the following conditionis satisfled: 

lim
𝑡→∞

𝔼 {∫ ∥
𝑡

0
𝑥(𝑠) ∥2 𝑑𝑠 ∣ (𝑥0, 𝑟0)} ≤ ∞.                (8) 

lemma 2.1. The system (7) is said to be H∞ performance if the following inequality holds for any 𝑡𝑓 ≥ 0 and all 

𝜔(𝑡) ∈ 𝐿2[0,∞): 

ℰ {∫ −
𝑡𝑓
0

𝑦𝑇(𝑠)𝑦(𝑠) + 𝛾2𝜔𝑇(𝑠)𝜔(𝑠)𝑑𝑠} ≥ 0,                                   (9) 
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3. Stochastic Stability and 𝐇∞ Performance Analysis 

Theorem3.1.  Given positive scalars δ, the nonlinear asynchronous switched system (7) under dynamicon 𝑒𝑣𝑒𝑛𝑡 −

𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑  𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 (5) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑐𝑡𝑖𝑜𝑛  (4) 𝑖𝑠 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒defnite matrices P𝑟𝑡 , 𝐻𝑟𝑡 , 𝛯𝑟𝑡𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑝𝑒𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝛹𝑝 = [

𝛹11 −𝑃𝑝𝐵𝑝𝐾𝑝 0 𝑃𝑝𝐶𝑝

∗ −𝛯𝑝 0 0

∗ ∗ −𝛿𝐼 0
∗ ∗ ∗ −𝐼

] < 0,            (10) 

 

𝛹11 = 𝐴𝑝
𝑇𝑃𝑝 + 𝑃𝑝𝐴𝑝 + 𝛯𝑝 + 𝑃𝑝𝐵𝑝𝐾𝑝 + 𝐾𝑝

𝑇𝐵𝑝
𝑇𝑃𝑝 + 𝐻1𝑝 + ∑ 𝜋𝑝𝑞

𝑞∈𝒩′

(ℎ)𝑃𝑞 . 

Proof: Assume rt = p, define the Lyapunov function as follows: 

𝑈𝑝 = 𝑥𝑇(𝑡)𝑃𝑝𝑥(𝑡) + 𝜂(𝑡),                        (11) 

Taking the time derivative of 𝑈𝑝 along the state trajectory of (11), when ω(t) = 0  have 

ℒ𝑈(𝑥(𝑡), 𝑟𝑡 = 𝑝) = 𝑥𝑇(𝑡)𝑃𝑝 (𝐴𝑝 + 𝐵𝑝𝐾𝑝𝑥(𝑡) + 𝐶𝑝𝑓
T(𝑥(𝑡), 𝑟𝑡)) − 𝐵𝑝𝐾𝑝𝑒(𝑡))𝑥(𝑡)

+ (𝐴𝑝 + 𝐵𝑝𝐾𝑝𝑥(𝑡) + 𝐶𝑝𝑓
T(𝑥(𝑡), 𝑟𝑡)) − 𝐵𝑝𝐾𝑝𝑒(𝑡))𝑥(𝑡)𝑇𝑃𝑝𝑥(𝑡) + 𝑥𝑇(𝑡) ( ∑ 𝜋𝑝𝑞

𝑞∈𝒩′

(ℎ)𝑃𝑞)𝑥(𝑡) + 𝜂̇(𝑡).
 

According to (3), get 

ℒ𝑈(𝑥(𝑡), 𝑟𝑡 = 𝑝) ≤ 𝑥𝑇(𝑡)𝑃𝑝(𝐴𝑝 + 𝐵𝑝𝐾𝑝𝑥(𝑡) + 𝐶𝑝𝑓
T(𝑥(𝑡), 𝑟𝑡)) − 𝐵𝑝𝐾𝑝𝑒(𝑡) + 𝐻𝑝)

+ (𝐴𝑝 + 𝐵𝑝𝐾𝑝𝑥(𝑡) + 𝐶𝑝𝑓
T(𝑥(𝑡), 𝑟𝑡)) − 𝐵𝑝𝐾𝑝𝑒(𝑡))𝑥(𝑡)𝑇𝑃𝑝𝑥(𝑡)

+𝑥𝑇(𝑡)(∑ 𝜋𝑝𝑞𝑞∈𝒩 (ℎ)𝑃𝑞)𝑥(𝑡) − 𝑓T(𝑥(𝑡), 𝑟𝑡))𝑓(𝑥𝑡, 𝑟𝑡) − 𝛿𝜂(𝑡) + 𝑥𝑇(𝑡)𝛯𝜎(𝑡)𝑥(𝑡)

−𝑒𝑇(𝑡)𝛯𝜎(𝑡)𝑒(𝑡).

                 (12) 

 

Combined with (10) and (12), get 

ℒ𝑈(𝑥𝑡 , 𝑟𝑡 = 𝑝) ≤ 𝜁𝑇(𝑡)𝛤𝑝𝜁(𝑡) < 0, 

where 𝜁(𝑡) = 𝑐𝑜𝑙{𝑥(𝑡), 𝑒(𝑡), 𝜂(𝑡), 𝑓(𝑥(𝑡), 𝑟𝑡 = 𝑝)}. Thus ℒ𝑈(𝑥𝑡 , 𝑟𝑡 = 𝑝) ≤ −𝜖 ∥ 𝑥(𝑡) ∥2 . By Dynkin’s formula and  the 

well-known Gronwell-Bellman lemma, obtain: 

ℰ {∫ ∥
𝑡

0

𝑥(𝑠) ∥2 𝑑𝑠} ≤
1

𝜖
𝑈(𝑥𝑡0 , 𝑟0) −

𝜀

𝜖
ℰ{∥ 𝑥(𝑠) ∥2} ≤

1

𝜖
𝑈(𝑥𝑡0 , 𝑟0) < ∞. 

 

Thereby, by Definition 2.1, The system (7) under ω(t) = 0 is called SS.   

Theorem3.2.  Given positive scalars δ, γ,  the nonlinear asynchronous switched system (7) under the dynamic event-triggered 

mechanism (5) and the control action (4) is  H∞, if there exist symmetrical positive definite matrices  P𝑟𝑡
, 𝐻𝑟𝑡

, 𝛯𝑟𝑡
 with proper 

dimensions, such that 

𝛷p =

[
 
 
 
 
𝛷11 −𝑃𝑝𝐵𝑝𝐾𝑝 0 𝑃𝑝𝐶𝑝 𝑃𝑝𝐸𝑝

∗ −𝛯𝑝 0 0 0

∗ ∗ −𝛿𝐼 0 0
∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ −𝛾2𝐼]

 
 
 
 

< 0,
                             (13) 

𝑤ℎ𝑒𝑟𝑒, 𝛷11 = 𝛹11 + 𝐷𝑝
𝑇𝐷𝑝 . 
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Proof: Define 𝛥(𝑡) = −𝑦𝑇(𝑡)𝑦(𝑡) + 𝛾2𝜔𝑇(𝑡)𝜔(𝑡). Take the same Lyapunov function as Theorem 3.1.  When 𝜔(𝑡) ≠ 0, 

ℒ𝑈(𝑥(𝑡), 𝑟𝑡 = 𝑝) − 𝛥(𝑡) = 𝜁1
𝑇(𝑡)𝛶𝑝𝜁1(𝑡) ≤ 0, 

where,  𝜁1(𝑡) = 𝑐𝑜𝑙{𝜁(𝑡),  𝜔(𝑡)}. 

By Dynkin’s formula,  for any 𝑡 ≥ 0,  obtain: 

ℰ{𝑈(𝑥𝑡 , 𝑟𝑡 = 𝑝)} ≤ ℰ{𝑈(𝑥𝑡0 , 𝑟0)} + ℰ {∫ 𝛥
𝑡

0

(𝑠)𝑑𝑠}. 

Recalling(11),  have 

𝑈(𝑥(𝑡), 𝑟𝑡 = 𝑝) ≥ 𝑥𝑇(𝑡)𝑃𝑝𝑥(𝑡) ≥ 0. 

Thus, for ∀𝑡𝑓 ≥ 0, 

ℰ {∫ 𝛥
𝑡𝑓

0

(𝑠)𝑑𝑠} ≥ ℰ {∫ 𝛥
𝑡

0

(𝑠)𝑑𝑠} ≥ 𝑥𝑇(𝑡)𝑝𝑥(𝑡) ≥ 0. 

Thereby, by Definition 2.1, The system (7) is called 𝐻∞. 

4. Controller Design 

Theorem 4.1.  Given positive scalars δ,  the nonlinear asynchronous switched system (7) under dynamicon 𝑒𝑣𝑒𝑛𝑡 −

𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑  𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 (5) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑐𝑡𝑖𝑜𝑛  (4) 𝑖𝑠 𝑆𝑆  𝑎𝑛𝑑 𝐻∞ , 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒defnite matrices P𝑟𝑡 , 𝐻𝑟𝑡 , 𝛯𝑟𝑡  𝑎𝑛𝑑 𝐿𝑟𝑡  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑝𝑒𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 

∆p=

[
 
 
 
 
 
𝛩p 𝑍1p

𝑇 𝑌𝑝
𝑇 𝑍2p

𝑇 𝑌𝑝
𝑇

∗ −𝑀𝑝 0 0 0

∗ ∗ −𝑀𝑝 0 0

∗ ∗ ∗ −𝑀𝑝 0

∗ ∗ ∗ ∗ −𝑀p]
 
 
 
 
 

< 0,
                    (14) 

Where, 𝛩𝑝 =

[
 
 
 
 
𝛩11 −𝐵𝑝𝐿𝑝 0 𝑃𝑝𝐶𝑝 𝑃𝑝𝐸𝑝

∗ −𝛯𝑝 0 0 0

∗ ∗ −𝛿𝐼 0 0
∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ −𝛾2𝐼]

 
 
 
 

, 

𝛩11 = 𝐴𝑝
𝑇𝑃𝑝 + 𝑃𝑝𝐴𝑝 + 𝛯𝑝 + 𝑃𝑝𝐵𝑝𝐾𝑝 + 𝐾𝑝

𝑇𝐵𝑝
𝑇𝑃𝑝 + 𝐻1𝑝 + ∑ 𝜋𝑝𝑞

𝑞∈𝒩′

𝑃𝑞 + 𝐷𝑝
𝑇𝐷𝑝 . 

 

Proof: Due to 𝑃𝑃𝐵𝑃𝐾𝑃 ,in inequality (12) ,we cannot resort to LMI to solve it. Let 𝑀𝑃𝐾𝑃 = 𝐿𝑃 . Since 𝑀𝑃 is a positive 

definite matrix, there exists 𝑀𝑝
−1.  Defining 𝑋1𝑝 = 𝑁𝑝

−1𝑍1𝑝 = 𝑁𝑝
−1[0, 𝐿𝑝, 0, 0, 0], 𝑋2𝑝 = 𝑁𝑝

−1𝑍2𝑝 = 𝑁𝑝
−1[𝐿𝑝 + 𝐿𝑝

𝑇 , 0, 0, 0], 

𝑌𝑝 = [𝐵𝑝
𝑇𝑃𝑝 − 𝑁𝑝

𝑇𝐵𝑝
𝑇 , 0, 0, 0],  According to (14), one can obtain 

𝛩𝑝 + 𝑋1𝑝
𝑇 𝑌𝑝 + 𝑌𝑝

𝑇𝑋1𝑝 + 𝑋2𝑝
𝑇 𝑌𝑝 + 𝑌𝑝

𝑇𝑋2𝑝

≤ 𝛩𝑝 + 𝑋1𝑝
𝑇 𝑁𝑝𝑋1𝑝 + 𝑌𝑝

𝑇𝑁𝑝
−1𝑌𝑝 + 𝑋2𝑝

𝑇 𝑁𝑝𝑋2𝑝 + 𝑌𝑝
𝑇𝑁𝑝

−1𝑌𝑝 =  ∆p  

 

Based on Schur complement and (14),  get  ∆p <  0 .  This completes the proof. 
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5. Simulation Example 

5.1. Consider the Switched System (12) with Two Subsystems in the following Matrices 

A1 = [
0 1

−4.9050 −0.1
] , A2 = [

0 1
−4.9050 −0.8

] , B1 = [
0
1
] , B2 = [

0
0.8

] , D1 = [
0.2 0
0 0.1

] , E1 = [
0.02 0
0 0.01

], 

 C1 = [
0.1 0.01
0 0.3

] , D2 = D1, E2 = E1, C2 = C1, δ = 0.2, γ = 0.1, H1 = H2 = 0.01I.  

Solving the matrix inequalities in Theorem 4.1 gives rise to 

P1 = [
0.6751 −0.0533

−0.0533 3.4856
] ,  P2 = [

0.6417 −0.1503
−0.1503 2.8056

] ,  X1 = [
0.0508 0.0002
0.0002 0.0633

] ,  X2 = [
0.0564

−0.0001
]

L1 = [0.0019 −0.0495],  L2 = [−0.0028 −0.0571],  K1 = [
0.0006

−0.0144
] ,  K2 = [

−0.0010
−0.0200

] ,

N1 = 3.4489,  N2 = 2.8517

 

ℰ{πpq(h)} = [
−1.7725 1.7725
2.7082 −2.7082

] 

  

                 Fig. 1 The state trajectories of the system (7)                             Fig. 2 The triggering intervals 

   

               Fig. 3 The switching modes at different times                            Fig. 4 The evolution of η(t) 

 

Fig. 1 Show the state trajectories of the system (7) when perturbation input ω(t) = 0, which indicates that the system (12) is stochastic stability.   

Fig. 2 Presents the triggering intervals of the dynamic event-triggered mechanism. The switching modes at different times are displayed in Fig. 3. Fig. 

4 shows the evolution of η(t), which indicates η(t) ≥ 0. 
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6. Conclusion 

This study introduces a DETM with the aim of enhancing the flexibility and performance of control systems. Nonlinear are 

taken into account in the SMJSs. Strong conditions based on Lyapunov functions to ensure H∞ performance and SS of the 

system. Finally, one numerical example is given to illustrate the effectiveness of the proposed methods. 
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