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Abstract - This study explores achieving stochastic stability in Semi-Markov jump systems under dynamic event-triggering
mechanisms. Addressing critical challenges in system control, it investigates the feasibility of stability dynamic triggers, offering
insights into enhancing system performance and reliability.
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1. Introduction

As a specialized form of stochastic hybrid system, Markov jump systems (MJSs) find extensive applications across various
domains, including manufacturing, neural networks, robotics, and epidemiology.[1-5] Nonetheless, their practical utility is
limited due to the exponential distribution governing the sojourn time at each state of a Markov process.

This stringent requirement significantly constrains the applicability of MJSs, leading to inherent conservatism in many
obtained outcomes. To overcome these constraints, Semi-Markov jump systems (SMJSs) have been proposed.[6]-[8]

Numerous significant works have emerged for the dynamic analysis of SMJSs, spanning stability and stabilization, [9]-[12]
event-triggered schemes,[13]-[16] passivity[17], and Hoo performance analysis.[18]-[19] Additionally, remarkable progress has
been made in the advancement of dynamic event-triggering mechanisms. Dynamic event-triggered mechanisms (DETM) can
ensure trigger intervals surpassing those achieved by static mechanisms, thereby enhancing system performance.[20]

Generally, due to the existence of SMJSs and DETM, investigating such systems poses a challenge. However, there have
been no relevant theoretical results available, which underscores the significance of our study.
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2. Problem Statement

2.1. Consider a Nonlinear Hybrid Time-Delay Switching System with Perturbations as follows:
x() = A(r)x(t) + Cr)f (x(6), ) + B(ru(t) + E(r)w(t),
(1
y(®) = D(r)x (D),

where x(t) is the state variable; w(t) is the control input; y(t) is the measurement output; f(x(t), x(t - d(t)) isa

nonlinear perturbation; A,,, B, E,,, C,,, Dy, are constant matrices with the appropriate dimension.
The continuous-time semi-Markov chain r; takes values of N; = {1,2,..., '}, subject to the transition probability matrix as

follows:

Plr(t+h)=jlr(t)=1i] = (2)
1+ A;(W)h + o(h), otherwise

where h represents the sojourn time. m,q(h) denotes the transition rate from mode p attime t to mode g attime t + h,

and m,, (h) = — Xqen qzp Tpqg (R)-
The nonlinear perturbation satisfies the following assumption:
fin (6, x(O)) fr, (£, x([®)) < xT(O)H,,x(2), ()

where H,, is symmetrical positive definite matrices. Suppose the last trigger success moment is r;, and the next trigger
success moment is r, + 1. The threshold error:e(t) = x(t) — x(t,,n). Construct the following controller:

u(t) = Kix(r), t € [1y, Ties1)- 4)

Consider the following dynamic event-triggered mechanism:

Tera = inf{t]t > 1 An(E) + § (X7 (OZ,0x(6) — €T (OF,me(®)) < 0}, ©)

Where Z,(t) > 0 is a positive weight matrix of the triggered condition to be designed, ¢ = 0. n(t) is the internal dynamic
variable satisfying

nt) = —=n(t) + x" () E;x(t) — ef () Ey e (t), (6)

Where § > 0, the initial condition n(0) >0 .
Considering the controller (4) and dynamic event-triggered mechanism (5), (1)can be described as follows:

{X(t) = (A(r) + Br)K(1))x () + Co)f (x(£), 1) = Br)K (r)e(®) + E(r)w(®), 0
y(@) = D(r)x (o),

Definition 2.1. For r, € V' ,the system under w(t) =
0 is called stochastic stability, if the following conditionis satisfled:

gi_gloIE{f; I x(s) 12 ds | (xo,ro)} < oo, @)

lemma 2.1. The system (7) is said to be H, performance if the following inequality holds for any t; > 0 and all
w(t) € L,[0, 0):

£ {fotf —yT(s)y(s) + ysz(s)w(s)ds} >0, ©)
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3. Stochastic Stability and H,, Performance Analysis
Theorem3.1. Given positive scalars 8, the nonlinear asynchronous switched system (7) under dynamicon event —
triggered mechanism (5) and the control action (4) is stochastic stability if there exist symmetrical

positivedefnite matrices Py, H,,, Z, withproper dimensions, such that
Y. —BByK, 0 BG

* —-Z 0 0
¥ = p <0, 10
P * * -0 0 (10)
* * * —1

Y1, = ApB, + P,Ay, + &, + P,B,K,, + K; By B, + Hy,, + Z Tpq (WP,
qeN’
Proof: Assume rt = p, define the Lyapunov function as follows:
Up = x"(O)Bx(t) + n(t), 11
Taking the time derivative of U, along the state trajectory of (11), when  (t) =0 have

LUG(), 7 = p) = 2" ()P, (4 + ByKpx(t) + Cof T(x(6), 7)) — B, Kype())x(t)

+ (Ap + B,K,x(t) + Cpr(x(t),rt)) — B,K,e(£)x ()" Pyx(t) + xT(t) Z Tpq (WP, |x(6) +1(¢).

qeN’

According to (3), get

LUx(6), 1, =p) < x" ()P, (A, + ByK,x(t) + Cp fT(x(t), 1)) — B,Kpe(t) + H,,)
+(4p + ByKox(8) + Cof T(x(6),7)) = BpKpe(£)x(6)T Byx()

+x"(0) (Zgenw Tpg (WP)x (@) = FTCx(), 1)) f (xt, 1) = S0 (6) + xT () E, 0y x(1)
—€T(t)50(t)€(t).

(12)

Combined with (10) and (12), get

LU (x, 1t = p) < {T(OTPI(E) <0,
where {(t) = col{x(t), e(t), n(t), f(x(t), 7. = p)}. Thus LU(x,;, 7 = p) < —€ | x(t) II* . By Dynkin’s formula and the
well-known Gronwell-Bellman lemma, obtain:

t 1 1
e{ fo Ilx(s) 112 ds} <~ U(xeymo) = Zs{u x($) 12} < ZU (3, m0) < 0.

Thereby, by Definition 2.1, The system (7) under o (t) = 0is called SS.

Theorem3.2. Given positive scalars §,y, the nonlinear asynchronous switched system (7) under the dynamic event-triggered
mechanism (5) and the control action (4) is H.,, if there exist symmetrical positive definite matrices P, H,,, Z,, with proper
dimensions, such that

@, —BByK, 0 BC, PRE,

A 0o 0 0
* * * -1 0
* * * * —yZI

Where, d)ll = qlll + Dz’l;Dp.
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Proof: Define A(t) = —yT()y(t) + y2wT (t)w(t). Take the same Lyapunov function as Theorem 3.1. When w(t) # 0,
LUx(t), 1, = p) = A(t) = {{ (Y4, () <0,
where, ¢;(t) = col{{(t), w(t)}.

By Dynkin’s formula, forany ¢t > 0, obtain:

E{U(x, 1, =p)} < S{U(xto,ro)} + & {ftd (s)ds}.
Recalling(11), have

Ux(®), 1 =p) = xT(O)B,x(t) = 0.
Thus, for vt > 0,

E {ftfﬁ (s)ds} > E{Itﬁ (s)ds} > xT(t)px(t) = 0.

Thereby, by Definition 2.1, The system (7) is called H,,.

4. Controller Design
Theorem 4.1. Given positive scalars 6, the nonlinear asynchronous switched system (7) under dynamicon event —
triggered mechanism (5) and the control action (4) is SS and H, , if there exist symmetrical
positivedetnite matrices P, H,,, Z,, and L,; with proper dimensions, such that

e, zI, Y& 7%, Yf
£ =M, 0 0

o

0 (14)

@11 _Bpr 0 PpCp PpEp

x —E 0 0 0
Where, 0, =| « * -6 0 0 |
* * * -1 0
* * * * —yzl
0,1, = ALP, + B,A, + &, + P,B,K, + K} By P, + H;), + z Tpq Py + Dy D,

qenN’

Proof: Due to PpBpKp,in inequality (12) ,we cannot resort to LMI to solve it. Let MpKp, = Lp. Since Mj is a positive
definite matrix, there exists M,*. Defining X;,, = N, 'Z;,, = N, *[0,L,, 0,0, 0], X,, = N, 'Z,, = N, *[L, + L},, 0, 0, 0],
Y, = [ByB, — Ny B;,0,0,0], According to (14), one can obtain

T T T T
O, + XY, + YT X1, + XY, + Y Xy,
T T nr— T T A7— _
< 0, + XI,N,X1p + YT NG 'Y, + X1, N, X, + Y N 1Y, = A,

Based on Schur complement and (14), get A, < 0 . This completes the proof.
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5. Simulation Example
5.1. Consider the Switched System (12) with Two Subsystems in the following Matrices

Ay = [—4.8050 —(1).1]'A2 - [—4.8050 —(1).8]'81 - [(1)]’82 - [0(.)8]’1)1 - [062 0(.)1]'El - [0'(())2 0.(())1]'

C, = [0.1 0.01] ,D, =D,,E, =E;,C, =C,6 =0.2, y=0.1,H, = H, = 0.01L.
0 03
Solving the matrix inequalities in Theorem 4.1 gives rise to

_[06751 —0.0533] , _[06417 —0.1503] 4 :[0.0508 0.0002]  _ [ 0.0564
—0.0533 3.4856 1" 27 1-0.1503 2.8056 1’ "1 7 10.0002 0.0633)" 7“2 1—0.0001

_ _ _ 7 0.0006 _ [~0.0010
Ly = [0.0019 —-0.0495], L, = [-0.0028 —0.0571], K, = | """ | Ko = |~ 00|
N, = 3.4489, N, = 2.8517

P

_[=1.7725 1.7725
Efmpq ()} = [ 2.7082 —2.7082]

0.2,
X0 1.4
(‘.15;:;3 ----- XA 12
| =
: o3
0.1 = |
2
~ 0.05 -;0 0.8
2 i 5 0.6
OF 3 F 307 % §% 5% 70 S0 N et et e =
= 1]
04
0.05 o 2
0.2
0.1 i 0
0 5 10O 15 20 25 0 0 5 10 15 20 25 30
t the triggering time instant
Fig. 1 The state trajectories of the system (7) Fig. 2 The triggering intervals
= 0.4
25 — Y1)
) 0.3
g 2
=
E
2 = 0.2
= 1.5 =
- \ =
2 || | 0.1
g LIS |
0s 0
"“ 5 10 15 20 25 a0 () 5 IO IS 2() 25 3()
s |
Fig. 3 The switching modes at different times Fig. 4 The evolution of 7 (t)

Fig. 1 Show the state trajectories of the system (7) when perturbation input o (t) = 0, which indicates that the system (12) is stochastic stability.
Fig. 2 Presents the triggering intervals of the dynamic event-triggered mechanism. The switching modes at different times are displayed in Fig. 3. Fig.

4 shows the evolution of 7 (t), which indicates 7 (t) 2 0.
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6. Conclusion

This study introduces a DETM with the aim of enhancing the flexibility and performance of control systems. Nonlinear are
taken into account in the SMJSs. Strong conditions based on Lyapunov functions to ensure H,, performance and SS of the
system. Finally, one numerical example is given to illustrate the effectiveness of the proposed methods.
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