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Abstract – In this study, by using the set of the source of semiprimeness, we give the definitions of |𝑆𝑆| − inverse semigroup 

and |𝑆𝑆| − inverse monoid which are generalizations of semigroup and monoid concepts. Then, we investigate these structures 

and determine their basic properties. Then, we define |𝑆𝑆| − group using these definitions. Using the definitions given, we 

examine the relationships between the new structures. 

Keywords - Semigroup, Unit element, Inverse element, Semiprime semigroup, Source of semiprimeness. 

1. Introduction 
Studies on the commutativity of rings have an important place in ring theory. Over time, these studies were adapted to 

semigroups. In the studies carried out, new results regarding algebraic structures are achieved by using the concepts of 

primeness and semiprimeness. Recently, it has been discussed how to generalize the results of the concept of semiprimeness in 

studies on algebraic structures. Obtaining the set of The Source of Semiprimeness emerged as a result of these discussions. 

With the discovery of elements that provide semiprimeness in the algebraic structure, various authors have created new types 

of rings, semigroups and groups and contributed to the literature. 

In this study, firstly, we investigate some properties of the source of semiprimeness of semigroups. Then, by using inverse 

semigroup, inverse monoid and group concepts, we give three new semigroups, monoid and group definitions, which are the 

main purpose of the study. With these new definitions, the semigroups without unit elements, inverse elements or unit 

elements, inverse semigroup, inverse monoid and group have been obtained by using the source of semiprimeness. 

The set of the source of semiprimeness is defined in [3] for rings and is used to obtain new ring, domain and field 

definitions. The properties of the source of semiprimeness of rings are examined, and various conclusions are reached. Then in 

[2], the set is defined for semigroups and their properties related to semigroups are examined. With the help of this set, new 

generalizations about semiprimeness can be reached. 

Now, let us take a quick look at the results we have achieved. In the second section of the study, the set of the source of 

semiprimeness 𝑆𝑆 = {𝑎 ∈ 𝑆|𝑎𝑆𝑎 = 0} is given for a semigroup S as defined in [2]. The basic properties of the set are given, 

and their properties are investigated for different types of semigroups. In the third section, the definitions of 𝑆𝑆 inverse 

semigroup, 𝑆𝑆  inverse monoid and 𝑆𝑆  group are given. In this part, the relations of newly defined semigroups with each other 

and different types of semigroups are studied. Examples are given for each of the different semigroups and, specifically, 

properties of the monoid (ℤ𝑛 ,·) are investigated according to the new definitions. Finally, we give important theorems about 

these new concepts, and we define equivalent definitions that may be useful in future studies. 

2. Preliminaries  
Before getting down to the main results, let us give the well-known definitions of semiprime theory that we will use in our 

paper. 

First, let us give the definitions of special elements and semigroup types used in our study.  Definitions are referenced by 

[4] and [5].  Let (𝑆,·) be a semigroup. An identity element of a semigroup S is an element 1𝑆 ∈ 𝑆 such that  1𝑆 𝑥 = 𝑥1𝑆 = 𝑥 for 

all 𝑥 ∈ 𝑆. A semigroup that does have an identity element is called a monoid. Similarly, a zero element of a semigroup S is an 

element 0𝑆 ∈ 𝑆 such that  0𝑆 𝑥 = 𝑥0𝑆 = 0𝑆 for all 𝑥 ∈ 𝑆. In this study, semigroups containing zero were studied. An element 𝑥 
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of a semigroup 𝑆 is called an inverse element if there exists at least one 𝑦 ∈ 𝑆such that 𝑥𝑦𝑥 =  𝑥  and 𝑦𝑥𝑦 =  𝑦. If there is an 

inverse element with uniqueness for each element of the 𝑆 semigroup, the 𝑆 semigroup is called the inverse semigroup. An 

element 𝑥 of a semigroup 𝑆 with identity element is called a unit element if there exists 𝑦 ∈  𝑆 such that 𝑥𝑦 =  𝑦𝑥 =  1𝑆. We 

donate 𝑦 by  𝑥−1. If 𝑥𝑦 =  𝑦𝑥 is satisfied for all 𝑥, 𝑦 ∈  𝑆, then the 𝑆 semigroup is called the commutative semigroup. A 

semigroup S is a cancellative semigroup such that 𝑥𝑧 =  𝑦𝑧 (𝑧𝑥 =  𝑧𝑦) implies 𝑥 =  𝑦 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆. 

Now, let us define the semiprime semigroup that forms the basis of this paper. According to [1] and [6], the ideal 𝐼 is 

called a semiprime ideal if 𝑥𝑆𝑥 ∈ 𝐼 with 𝑥 ∈ 𝑆 implies 𝑥 ∈ 𝐼. A semigroup 𝑆 is called semiprime if the zero ideal is a 

semiprime ideal of 𝑆. Thus, the equivalent definition can be given as follows: if 𝑥𝑆𝑥 =  0 with 𝑥 ∈ 𝑆 implies 𝑥 =  0, then 𝑆 is 

called semiprime semigroup. 

3. Results of the Set of the Source of Semiprimeness 
For similar results obtained for the ring and semigroup structures from the results given in this section, see [1] and [2]. 

Definition 1: [2] The definition of the source of semipirimeness of the A in S is made as follows. In this definition, 𝐴 is a 

nonempty subset of 𝑆. As can be seen, this set is a subset of S. 

𝑆𝑆(𝐴)  =  {𝑎 ∈  𝑆 | 𝑎𝐴𝑎 =  0} 

We will use the notation 𝑆𝑆 instead of 𝑆𝑆(𝑆) for semigroup 𝑆. In this case, the definition given above is written as follows. 

𝑆𝑆 =  {𝑎 ∈  𝑆 | 𝑎𝑆𝑎 =  0} 

First, let us investigate the special cases of the semigroup 𝑆 and the source of semiprimeness. 

1. Let be 𝑆𝑆 =  0. In this case, 𝑎𝑆𝑎 =  0 implies 𝑎 =  0 for 𝑎 ∈ 𝑆. Thus, 𝑆 is semiprime semigroup. Conversely, let 𝑆 be 

semiprime semigroup and ∈ 𝑆𝑆 . By using the definition of the set 𝑆𝑆, we get 𝑎𝑆𝑎 =  0. Since 𝑆 is a semiprime, we get 𝑎 =  0. 

This means that 𝑆𝑆 =  {0}. 

2. Let 𝐴 be a subsemigroup of 𝑆 and SS (A) = {0}. In this case, 𝑎𝐴𝑎 =  0 implies 𝑎 =  0 for 𝑎 ∈  𝑆. Then especially, 

𝑎𝐴𝑎 =  0 implies 𝑎 =  0 also for 𝑎 ∈  𝐴.Hence we have 𝐴 is semiprime subsemigroup. 

3. It is clear that SA ⊆ SS (A) for any subsemigroup A of S. 

4. Let A be a subsemigroup of S and a, b ∈ SA. Then, 𝑎, 𝑏 ∈  𝐴 and 𝑎𝐴𝑎 =  𝑏𝐴𝑏 = 0. Since A is a subsemigroup, we 

obtain 𝑏𝑥 ∈  𝐴 for any 𝑥 ∈  𝐴. Thus, we get (𝑎𝑏) 𝑥 (𝑎𝑏)  =  (𝑎 (𝑏𝑥) 𝑎) 𝑏 =  0𝑏 =  0. This means that ab ∈ SA. 

Using the above results, we give the following proposition. 

Proposition 1: For a semigroup S and its subsemigroup A, the following holds true: 

1. SS = {0} if and only if S is semiprime. 

2. SS (A) = {0} implies A is semiprime. 

3. SA is a subsemigroup of S. Specially, SS is a subsemigroup of S. 

Now, let us examine some different properties of the source of semiprimeness for subsets and subsemigroups of semigroup S. 

Proposition 2: For a semigroup S and subsets A, B, of S, the following holds true: 

1. If A is subsemigroup, then SA = A ∩ SS (A). 

2. If A, B, and AB are subsemigroups and A ⊆ B, then SA.SB ⊆ SAB. 
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3. If A ⊆ B, then SS (B) ⊆ SS (A). Specially, SS ⊆ SS (A) is provided. 

Proof 1. Let 𝑎 ∈  𝐴 ∩  𝑆𝑆(𝐴). Then, 𝑎 ∈  𝐴 and 𝑎 ∈  𝑆𝑆(𝐴). Hence, we get 𝑎 ∈  𝐴 and 𝑎𝐴𝑎 =  0. So, we obtain 𝑎 ∈ 𝑆𝐴 

and 𝐴 ∩ 𝑆𝑆(𝐴)  ⊆  𝑆𝐴. Conversely, since 𝑆𝐴 ⊆  𝑆𝑆(𝐴) and 𝑆𝐴  ⊆ A, the expression 𝑆𝐴  ⊆  𝐴 ∩  𝑆𝑆(𝐴)is provided. Thus, we get 

𝑆𝐴  =  𝐴 ∩  𝑆𝑆(𝐴). 

2. If 𝑏 ∈  𝑆𝐴. 𝑆𝐵 , then 𝑎𝐴𝑎 =  0 and 𝑏𝐵𝑏 =  0 for 𝑎 ∈  𝐴, 𝑏 ∈  𝐵. Since 𝐴 ⊆  𝐵 and B is closed under multiplication, 

we get 𝐴𝐵𝑎 ⊆  𝐵. By using this expression, we obtain 𝑎𝑏 (𝐴𝐵) 𝑎𝑏 =  𝑎𝑏 (𝐴𝐵𝑎) 𝑏 ⊆  𝑎 (𝑏𝐵𝑏)  =  {0}. This means that 𝑏 ∈
 𝑆𝐴𝐵  . So, we get 𝑆𝐴. 𝑆𝐵 ⊆ 𝑆𝐴𝐵. 

3. It is easily proved by the same method in [3] Proposition 2.2. □ 

At this point, we want to mention semigroups with inverse elements and semigroups with unit elements. These semigroups 

form the basis of the structures that we will construct in the next section. Now, let us give some simple observations about the 

source of the semiprimeness of these semigroups. 

1. Let S be an inverse semigroup and a ∈ SS. Since a is an inverse element, there exists b ∈ S such that 𝑎𝑏𝑎 =  𝑎 and 

𝑏𝑎𝑏 =  𝑏. Also, since a ∈ SS, 𝑎𝑏𝑎 =  0 is provided for 𝑏 ∈ 𝑆. This means that 𝑎 =  0. So, we get SS = 0. 

2. Let S be a monoid with each element other than zero as a unit element. If 0 ≠  𝑎 ∈ SS, then 𝑎𝑥𝑎 =  0 for all x ∈ S. 

From this, aa−1a = 0 is satisfied for a−1 ∈ S. This result leads us to the contradiction 𝑎 =  0. So, we get SS = {0}. 

From the above results, it is easy to see that proof of Corollary 3. This result is the basis for the new structures in the next 

section. 

Corollary 3: If S be a semigroup, then there is no inverse element or unit element in  𝑆𝑆. 

4. Results of |𝑺𝑺| −Inverse Semigroups, |𝑺𝑺| −Inverse Monoids and |𝑺𝑺| −Groups 
Definition 2: Let 𝑆 be semigroup with zero such that 𝑆 ≠  𝑆𝑆. 

1. 𝑆 is called |𝑆𝑆| −inverse semigroup if every element of 𝑆 −  𝑆𝑆 is inverse with uniqueness in 𝑆. If 1𝑆  ∈  𝑆, then 𝑆 is 

called |𝑆𝑆| −inverse monoid. 

2.  𝑆 is called |𝑆𝑆| −group if 1𝑆  ∈  𝑆 and every element of 𝑆 −  𝑆𝑆 is unit. 

These definitions are defined by using the definitions in classical semigroup and group theory. They coincide in some 

places with inverse semigroup, inverse monoid and group structures, as well as generalization of these structures in terms of 

some properties. Before proceeding to the examples, we will give some observations about the different properties of these 

newly identified semigroups. 

1. If S = {0}, then 𝑆𝑆  =  {0}  =  𝑆. In this situation, the definitions made have no meaning for zero semigroups for 𝑆 −
𝑆𝑆 =  ∅.  

In case 𝑆 =  𝑆𝑆, 𝑆 −  𝑆𝑆  =  ∅ feature is provided, similar to the feature above. In this situation, too, the definitions 

made have no meaning. 

2. We note that any inverse semigroup (monoid) 𝑆 is an inverse semigroup (monoid). 

3. “if 𝑎 is a unit element, then 𝑎 is an inverse element” condition is always satisfied for the elements of a semigroup. 

Using this condition, the following feature can be easily seen. 

If S is a |𝑆𝑆| −group, then S is a |𝑆𝑆| −inverse monoid. 
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Example 1: Let the first table below be the operation table of the semigroup S. 

From the definitions 

𝑆𝑆 = {0} 

and thus 

𝑆 − 𝑆𝑆 = {𝑎, 𝑏} 

If the elements of 𝑆 − 𝑆𝑆 are examined, since 𝑎𝑏𝑎 =  𝑎 and 𝑏𝑎𝑏 =  𝑏, it is seen that 𝑎 and 𝑏 are inverse elements. Then, 

𝑆 is a |𝑆𝑆| −inverse semigroup. If unit element 1𝑆  ∈  𝑆 to this semigroup, then the second table is the operation table of the 

semigroup 𝑆. 

 

In this case, since 1𝑆  ∈  𝑆, 𝑆 is a |𝑆𝑆| −inverse monoid but not a |𝑆𝑆| −group because 𝑎 and 𝑏 are not a unit element. 

Example 2: Let the table below be the operation table of the semigroup S. 

From the definitions, 

𝑆𝑆 = {0, 𝑎} 

and thus 

𝑆 − 𝑆𝑆 = {1, 𝑏} 

If the elements of 𝑆 − 𝑆𝑆 are examined, since 1 ·  1 =  1 ve 𝑏 ·  𝑏 =  1, it is seen that 𝑎 and 𝑏 are unit elements. So, 𝑆 is a 

|𝑆𝑆| − group. Thus, it is also |𝑆𝑆| −inverse monoid. 

Example 3: Consider the semigroup (ℚ,·). Since 𝑆ℚ = {0}, every element in ℚ−𝑆ℚ are unit. So, ℚ is |𝑆ℚ| −group. It is also 

|𝑆ℚ| −inverse monoid. 

Now, let us take semigroup (ℤ𝑛 ,·)and examine the properties of the source of semiprimeness. We will start with two 

examples before giving generalizations on |𝑆ℤ𝑛  | −group. In the first example, 𝑛 is the square of a prime number. In the second 

example, 𝑛 is a prime number. In both cases, the given semigroup ℤ𝑛 is a |𝑆ℤ𝑛  | −group. Next, we will give a generalization of 

these two examples. 

· 0 a b 1 

0 0 0 0 0 

a    0    a    b     a  

b     0    a    b     b 

1      0      a     b   1 

 

 

0 a  
0 0 0 

0 a  

0 a  

 

 

 

0 1 a b 
0 0 0 0 

0 1 a b 

0 a 0 a 

0 b a 1 
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Example 4: Let (ℤ9 ,·) be semigroup of integers modulo 9. It is easy to see that 

𝑆ℤ9   =  {0̅, 3̅, 6̅} 

and thus 

ℤ9  −  𝑆ℤ9
 =  {1̅, 2̅, 4̅, 5̅, 7̅, 8̅}. 

Since 1 ·  1 =  1, 2 ·  5 =  1, 4 ·  7 =  1, 5 ·  2 =  1, 7 ·  4 =  1, 8 ·  8 =  1, every element in ℤ9  −  𝑆ℤ9
 are unit. So, 

ℤ9  is |𝑆ℤ9  | −group. It is also |𝑆ℤ9  | −inverse monoid. 

Example 5: Let (ℤ7, ·) be semigroup of integers modulo 7. Since 

𝑆ℤ7   =  {0̅} 

we get 

ℤ7  −  𝑆ℤ7
 =  {1̅, 2̅, 3̅, 4̅, 5̅, 6̅}. 

If the elements of ℤ7  −  𝑆ℤ7
  are examined, since 1 ·  1 =  1, 2 ·  4 =  1, 3 ·  5 =  1, 4 ·  2 =  1, 5 ·  3 =  1, 6 ·  6 =

 1, every element in ℤ7  −  𝑆ℤ7
 are unit. So, ℤ7 is |𝑆ℤ7  | −group. It is also |𝑆ℤ7  | −inverse monoid. 

Lemma 4: Let (ℤ𝑛, ·) be semigroup of integers modulo 𝑛. If one of the following conditions is provided, then 𝑆ℤ𝑛   =  {0̅} 

1. 𝑛 is a prime 𝑝. 

2. 𝑛 is written as the product of different primes 𝑝, 𝑞, . . . , 𝑟. 

Proof 1: Let 𝑛 =  𝑝 be a prime number.  We recall that if 𝑔𝑐𝑑 (𝑝, 𝑎)  =  1, then the element 𝑎̅ of ℤ𝑛 is a unit element. 

Since 𝑝 is prime, all 0̅ ≠ 𝑎̅  ∈  ℤ𝑛 is a unit element. Using Corollary 3, we get 𝑆ℤ𝑛  =  {0̅}. 

2. Let 𝑛 =  𝑝. 𝑞. . . 𝑟 for different primes 𝑝, 𝑞, . . . , 𝑟. For an arbitrary element 𝑎̅ of 𝑆ℤ𝑛
, we write 𝑎 𝑥 𝑎̅̅ ̅̅ ̅̅ ̅  =  0̅ for all 𝑥̅  ∈  ℤ𝑛. 

Also, this equation is provided for 𝑞, . . . , 𝑟.  So, we get 𝑎𝑞. . . 𝑟𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =  0̅. From this equation, we write 𝑝. 𝑞. . . 𝑟 | 𝑎 (𝑞. . . 𝑟) 𝑎 and 

thus 𝑝 | 𝑎2.  Since 𝑝 is prime, we obtain 𝑝 | 𝑎.  

Similarly, for each prime number in the product, we get 𝑝 | 𝑎 , 𝑞 | 𝑎, . . . , 𝑟 | 𝑎. Then 𝑝. 𝑞 . . . 𝑟 | 𝑎, and so 𝑎 =
 (𝑝. 𝑞. . . 𝑟) 𝑘 =  𝑛𝑘 for 𝑘 ∈  ℤ. Using this equation, we have 𝑎̅ = 𝑛𝑘̅̅̅̅ = 0̅. So, 𝑆ℤ𝑛  =  {0̅} is provided. 

Theorem 5: Let (ℤ𝑛, ·) be semigroup of integers modulo 𝑛. “𝑛 is either a prime 𝑝 or 𝑝2 ⟺ ℤ𝑛 is a |𝑆ℤ𝑛  | −group” is 

satisfied. 

Proof: Let 𝑛 = 𝑝 be a prime. From Lemma 4, we get 𝑆ℤ𝑛  =  {0̅} Since every element is a unit element. Hence ℤ𝑛 is a 

|𝑆ℤ𝑛  | −group.                

  Now, let 𝑛 =  𝑝2  for prime 𝑝. For an arbitrary element 𝑎̅ of 𝑆ℤ𝑛  , we write 𝑎 𝑥 𝑎̅̅ ̅̅ ̅̅ ̅ =  0̅ for all 𝑥̅  ∈  ℤ𝑛. Specially, 𝑎 𝑝 𝑎̅̅ ̅̅ ̅̅ ̅ =

 0̅ is provided, too. From this equation, we write 𝑝2 | 𝑎𝑝𝑎. This means that 𝑝 | 𝑎2 and since 𝑝 is prime, we get 𝑝 | 𝑎. Then, 𝑎 =
 𝑝𝑘 for 𝑘 ∈  ℤ.  So, we obtain 

ℤ𝑛  −  𝑆ℤ𝑛
=  {0̅, 𝑝̅, 2𝑝̅̅̅̅ , 3𝑝̅̅̅̅ , . . . , (𝑝 −  1) 𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅} 

 

In this case, for every 𝑥̅ element of ℤ𝑛  −  𝑆ℤ𝑛
 ,  𝑔𝑐𝑑 (𝑝, 𝑥)   =  1  is provided, and thus these elements are unit elements. 

So, ℤ𝑛 is a |𝑆ℤ𝑛  | −group. 
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Conversely, let ℤ𝑛 is a |𝑆ℤ𝑛  | −group. Then, every element of ℤ𝑛  −  𝑆ℤ𝑛
 is a unit element. We assume that 𝑝 is a prime 

number and 𝑛 =  𝑝𝑘 for some integer 1 ≤  𝑘 <  𝑛. Since 𝑔𝑐𝑑 (𝑝, 𝑛)  ≠  1, 𝑝̅ is a non-unit element. Hence 𝑝̅ must be in 𝑆ℤ𝑛   , 

and so, 𝑝 𝑥 𝑝̅̅ ̅̅ ̅̅ ̅  =  0̅ for all 𝑥̅  ∈  ℤ𝑛. Using this equation and the properties of the semigroup ℤ𝑛, we get 𝑛 | 𝑝2𝑥. Since 𝑛 =  𝑝𝑘, 

we write 𝑝𝑘 | 𝑝2𝑥. This equation gives us 𝑘 | 𝑝𝑥. Specially, we write 𝑘 | 𝑝 for  𝑥 =  1. Since  𝑝 is prime, we obtain 𝑘 =  1  or  

𝑘 =  𝑝. So, we get 𝑛 =  𝑝 or  𝑛 =  𝑝2. 

Now, we will give properties of |𝑆𝑆  
| −inverse monoid and |𝑆𝑆  

| −group. Also, we will investigate the relations between 

these two constructions. Let us start with the below lemma, which gives us some properties of the source of semiprimeness of 

semigroups. Next, we will give a theorem showing when a |𝑆𝑆  
| −inverse monoid is a |𝑆𝑆  

| −group. 

Lemma 6 Let S be a |𝑆𝑆  
| −group. The following holds true: 

1.  𝑆𝑆 = {𝑎 ∈  𝑆 | 𝑎2  =  0}. 

2. If 𝐴 is a nonzero subset of 𝑆, then 𝑆𝑆(𝐴)  =  𝑆𝑆 . 

Proof 1: Let 𝐵 = {𝑎 ∈  𝑆 | 𝑎2  =  0}. If  ∈  𝑆𝑆 , then 𝑎𝑆𝑎 =  0. Using this equation, we write 𝑎1𝑆𝑎 =  𝑎2  =  0 for 1𝑆 ∈
 𝑆. This means that 𝑎 ∈  𝐵. So, we get 𝑆𝑆  ⊆  𝐵. 

 On the other hand, if 𝑏 ∈  𝐵, then 𝑏2  =  0. We suppose that  ∉  𝑆𝑆 . Thus, since  ∈  𝑆 − 𝑆𝑆 , 𝑏 is a unit element. Right 

multiplication of equation 𝑏2 =  0 by 𝑏−1 , we obtain 𝑏 =  0. But this result contradicts  ∉ 𝑆𝑆 . This means that ∈ 𝑆𝑆 . So, we 

get 𝐵 ⊆  𝑆𝑆  and  𝐵 =  𝑆𝑆.   

2. For the set 𝑆𝑆 (𝐴)  =  {𝑎 ∈  𝑆 | 𝑎𝐴𝑎 =  0}, the inclusion 𝑆𝑆 ⊆ 𝑆𝑆 𝐴) follows from Proposition 2. Let us take 𝑡 ∈
 𝑆𝑆 (𝐴) and we suppose  ∈  𝑆 − 𝑆𝑆 . In this case, 𝑡 is a unit element. Using the equation 𝑡𝐴𝑡 =  0, we lead to the contradiction 

𝐴 =  {0}. This means that 𝑡 ∈ 𝑆𝑆  and 𝑆𝑆(𝐴)  ⊆  𝑆𝑆 . So, we get 𝑆𝑆(𝐴)  =  𝑆𝑆. 

Theorem 7: Let 𝑆 be a semigroup. The following holds true: 

1. If 𝑆 is commutative |𝑆𝑆  
| − inverse monoid, then 𝑆 is a |𝑆𝑆  

| −group. 

2. If 𝑆 is cancellative |𝑆𝑆  
| −inverse monoid, then 𝑆 is a |𝑆𝑆  

| −group. 

3. 𝑆 is a |𝑆𝑆  
| −group if and only if the set 𝑆 − 𝑆𝑆 is a group. 

Proof 1: Let 𝑆 be commutative |𝑆𝑆  
| −inverse monoid. Then, the semigroup 𝑆 has an identity element 1𝑆. If 𝑎 ∈  𝑆 − 𝑆𝑆, 

since 𝑎 is inverse, then there exists 𝑏 ∈  𝑆 such that 𝑎𝑏𝑎 =  𝑎 and 𝑏𝑎𝑏 =  𝑏. Using these equations and 𝑆 is commutative, we 

write (𝑎𝑏) 𝑎 =  𝑎 and 𝑎 (𝑎𝑏)  =  𝑎, (𝑏𝑎) 𝑏 =  𝑏 and 𝑏 (𝑏𝑎)  =  𝑏. So, since 𝑎𝑏 =  𝑏𝑎 =  1𝑆, 𝑎 is a unit element. This gives 

us that 𝑆 is a |𝑆𝑆  
| −group. 

2. Let 𝑆 be cancellative |𝑆𝑆  
| −inverse monoid. Then, the semigroup S has an identity element 1𝑆. If  ∈  𝑆 − 𝑆𝑆 , since 𝑎 

is inverse, then there exists 𝑏 ∈  𝑆 such that  𝑎𝑏𝑎 =  𝑎 and 𝑏𝑎𝑏 =  𝑏. From these equations, we write 𝑎𝑏𝑎 =  𝑎 =  1𝑆𝑎 and 

using cancellative property, we get 𝑏 =  1𝑆 . 

Similarly, it is easy to see that 𝑎 =  1𝑆 . So, since 𝑎𝑏 =  𝑏𝑎 =  1𝑆, 𝑎 is a unit element. This gives us that 𝑆 is a 

|𝑆𝑆  
| −group. 

3. Let 𝑆 be a |𝑆𝑆  
| −group and 𝑎, 𝑥 ∈ 𝑆 − 𝑆𝑆. Since 𝑎 and 𝑥 are unit elements, 𝑎𝑥 is also a unit element. Hence 𝑎𝑥 ∈

 𝑆 −  𝑆𝑆. Also, element 1𝑆 is in the 𝑆 − 𝑆𝑆. 

On the other hand, since 𝑎−1 is also a unit element, 𝑎−1  is in the 𝑆 − 𝑆𝑆 for all 𝑎 ∈  𝑆 − 𝑆𝑆.  So, the set 𝑆 − 𝑆𝑆 is a group. 

Conversely, if 𝑆 − 𝑆𝑆 is a group since every element in 𝑆 − 𝑆𝑆 are unit and 1𝑆 ∈ 𝑆 − 𝑆𝑆 ⊆  𝑆, then 𝑆 is a |𝑆𝑆  
| −group. 
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5. Conclusion 
In this study, previously unexamined features of the source of the semiprimeness were examined, and previous studies 

were looked at from a different perspective. By making use of group, monoid and semigroup structures, new algebraic 

structures were obtained with the help of the source of the semiprimeness. |𝑆𝑆  
| −inverse semigroup, |𝑆𝑆  

| −inverse monoid 

and |𝑆𝑆  
| − group structures were defined, and their properties were examined using the unit element and inverse element, 

which are very important in semigroup theory. Additionally, what kind of generalization is made is mentioned and new 

algebraic structures are explained with examples. With the help of what has been found, cluster |𝑆𝑆  
| − subgroup structure can 

be defined, and its properties can be examined as a continuation of the studies carried out. 

6. Acknowledgments.  
This work was supported by Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit, Project 

number: FBA- 2021-3726. 

 

References 
[1] Donald H. Adams, “Semigroups with No Non-zero Nilpotent Elements,” Mathematische Zeitschrift, vol. 123, pp. 168–176, 1971. 

[CrossRef] [Google Scholar] [Publisher Link] 

[2] Baris Albayrak, Didem Karalarlioğlu Camci, and Didem Yeşil, “The Source of Semiprimeness of Semigroups,” Journal of 

Mathematics, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Neset Aydın, Çagri Demir, and Didem Karalarlıoğlu Camci, “The Source of Semiprimeness of Rings,” Communications of the 

Korean Mathematical Society, vol. 33, no. 4, pp. 1083–1096, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Alfred H. Clifford, and Gordon B. Preston, The Algebraic Theory of Semigroups: Part 1, American Mathematical Society, pp. 1-

224, 1961. [Google Scholar] [Publisher Link] 

[5] Pierre Antoine Grillet, Semigroups: An Introduction to the Structure Theory, 1st ed., Routledge, pp. 1-408, 1995. [CrossRef] 

[Google Scholar] [Publisher Link] 

[6] Young Soo Park, and Ju Pil Kim, “Prime and Semiprime Ideals in Semigroups,” Kyungpook Mathematical Journal, vol. 32, no. 3, pp. 

629-633, 1992. [Google Scholar] [Publisher Link] 

 

https://doi.org/10.1007/BF01110115
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semigroups+with+no+non-zero+nilpotent+elements&btnG=
https://link.springer.com/article/10.1007/bf01110115
https://doi.org/10.1155/2021/4659756
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Source+of+Semiprimeness+of+Semigroups&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/4659756
https://doi.org/10.4134/CKMS.c170409
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neset+Ayd%C4%B1n%2C+%C3%87agri+Demir%2C+and+Didem+Karalarl%C4%B1o%C4%9Flu+Camci%2C+The+Source+of+Semiprimeness+of+Rings&btnG=
http://koreascience.or.kr/article/JAKO201834663387572.page
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AH+Clifford%2C+GB+Preston+-+American+Mathematical+Society+The+Algebraic+Theory+of+Semigroups+I&btnG=
https://www.google.co.in/books/edition/The_Algebraic_Theory_of_Semigroups_Volum/zZ-KAwAAQBAJ?hl=en&gbpv=0
https://doi.org/10.4324/9780203739938
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semigroups%3A+An+Introduction+to+the+Structure+Theory&btnG=
https://www.taylorfrancis.com/books/mono/10.4324/9780203739938/semigroups-zuhair-nashed-pierre-grillet
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prime+and+Semiprime+Ideals+in+Semigroups&btnG=
https://koreascience.kr/article/JAKO199225748114590.page

