Original Article

Orthogonal (σ , τ)-Derivations on Semiprime Γ -Semirings

V.S.V. Krishna Murty¹, C. Jaya Subba Reddy², K. Chennakesavulu³

^{1,2}Department of Mathematics, S.V. University, Tirupathi, Andhra Pradesh, India. ³Department of Mathematics, PVKKIT, Ananthapuram, Andhra Pradesh, India.

²Corresponding Author : cjsreddysvu@gmail.com

Received: 20 May 2024 Revised: 27 June 2024 Accepted: 13 July 2024	Published: 31 July 2024
--	-------------------------

Abstract - Assume S is a semiprime Γ -semiring and d: $S \rightarrow S$ is an additive mapping that obeys $d(u\alpha v) = d(u)\alpha\sigma(v) + \tau(u)\alpha d(v)$ for all $u, v \in S, \alpha \in \Gamma$, then d is termed as (σ, τ) - derivation on S. This paper introduces orthogonal (σ, τ) derivations within semiprime Γ -semirings and provides several characterizations of these semirings. It also establishes the
criteria under which two (σ, τ) -derivations can be deemed orthogonal.

Keywords - (σ, τ) -derivation, Orthogonal (σ, τ) -derivation, Γ -semiring.

1. Introduction

The idea of a semiring was first proposed by H.S. Vandiver [8]. The concept of a Γ -ring was introduced by Nobusawa [14] as a generalization of a ring. Sen [10] introduced the notion of a Γ -semigroup. Murali Krishna Rao [12,13] further developed this by introducing the concept of Γ -semirings. S.Huang et al. [16] examined orthogonal generalized (σ , τ)-derivations in semiprime near-rings. K.K.Dey et al. [9] investigated orthogonal generalized derivations in semiprime Γ -near-rings. M.A. Javed et al. [11] presented the idea of derivations in prime Γ -semirings. N. Suganthameena et al. [15] introduced the concept of orthogonal derivations on semirings. B. Venkateswarlu et al. [2,3] established some necessary and sufficient conditions for orthogonal derivations and reverse derivations in semiprime Γ -semirings. A.H. Majeed [1] explored orthogonal generalized derivations in semiprime Γ -semirings. Recently, C. Jaya Subba Reddy et al. [4,5,6,7] proved some results on the orthogonality of generalized symmetric reverse bi-(σ , τ)-derivations in semiprime rings and orthogonality of generalized reverse -(σ , τ)-derivations in semiprime Γ -rings.

In this paper, we propose the concept of (σ, τ) -derivations for semiprime Γ -semirings. We also establish the necessary and sufficient conditions for the orthogonality of two such derivations in semiprime Γ -semirings, expanding upon the results found in [2].

2. Preliminaries

A set S is called a semiring if it is equipped with two associative binary operations denoted by '+' (addition) and '.' (multiplication) and satisfies the following conditions:

(i) The addition operation is commutative.

(ii) The multiplication operation is distributive over addition from both the left and the right.

(iii) There exists an element 0 in S such that , u + 0 = u and $u \cdot 0 = 0$. $u = 0, \forall u \in S$.

If (S, +) and $(\Gamma, +)$ are two abelian semigroups with identity elements 0 and θ of S and Γ respectively, and there exists a mapping of $S \times \Gamma \times S \rightarrow S$ satisfying the following properties for $u, v, w \in S$ and $\alpha, \beta \in \Gamma$

- 1. $(u + v)\alpha w = u\alpha w + v\alpha w$.
- 2. $u(\alpha + \beta)v = u\alpha v + u\beta v$.
- 3. $u\alpha(v + w) = u\alpha v + u\alpha w$.
- 4. $(u\alpha v)\beta w = u\alpha (v\beta w)$.
- 5. $u\alpha 0 = 0\alpha u = 0$ and $u\theta v = 0$.

then S is termed a Γ -semiring.

Let S be a Γ - semi-ring. S is said to be a semiprime if $u\Gamma S\Gamma u = 0$ implies $u = 0, \forall u \in S$. A Γ -semiring S is said to be 2 torsion free if 2u = 0, then $u = 0, \forall u \in S$. A Γ -semiring S is said to be commutative if $u\alpha v = v\alpha u, \forall u, v \in S, \alpha \in \Gamma$.

A Γ -semiring S is said to have a zero element if there exists an element $0 \in S$ such that 0 + u = u = u + 0, $\forall u \in S$. An additive mapping $d_1: S \to S$ is called a derivation if $d_1(u\alpha v) = d_1(u)\alpha v + ud_1(v)$, $\forall u, v \in S$. An additive mapping $d_1: S \to S$ is called a derivation if $d_1(u\alpha v) = d_1(u)\alpha\sigma(v) + \tau(u)\alpha d_1(v)$, $\forall u, v \in S$, $\alpha \in \Gamma$. Two (σ, τ) -derivations d_1 and d_2 on S are deemed orthogonal if $d_1(u)\Gamma S \Gamma d_2(v) = 0 = d_2(u)\Gamma S \Gamma d_1(v)$, $\forall u, v \in S$.

This paper explores the concept of orthogonal (σ, τ) -derivations within semiprime Γ -semirings. We identify various characterizations of semiprime Γ -semirings using orthogonal (σ, τ) -derivations and provide the necessary and sufficient conditions for two (σ, τ) -derivations to be orthogonal.

In this paper, we work under the assumption that S is a 2-torsion-free semiprime Γ -semiring. Here, σ and τ are automorphisms of S, and d_1 , d_2 are are (σ, τ) -derivations on S such that $d_1\tau = \tau d_1$, $d_2\tau = \tau d_2$, $\sigma d_1 = d_1\sigma$, $\sigma d_2 = d_2\sigma$.

Lemma 1:[Lemma 3.1, [2]] Let a and b be two elements of a 2 torsion –free semiprime Γ -semiring S. Then the following statements are equivalent: (i) $a\Gamma u\Gamma b = 0$.

(i) $b \Gamma u \Gamma a = 0.$ (ii) $b \Gamma u \Gamma a = 0.$ (iii) $a \Gamma u \Gamma b + b \Gamma u \Gamma a = 0, \forall u \in S.$

If one of these conditions is fulfilled then $a\Gamma b = b\Gamma a = 0$.

Lemma 2: [Lemma 3.2, [2]] Let S be a 2-torsion free semiprime Γ -semiring. If additive mappings d_1 and d_2 of S into itself satisfy $d_1(u)\Gamma S\Gamma d_2(u) = 0$, $\forall u \in S$, then $d_1(u)\Gamma S\Gamma d_2(v) = 0$, $\forall u, v \in S$.

3. Main Results

Theorem 1: Given S is a 2-torsion-free semiprime Γ -semiring and d_1, d_2 are (σ, τ) -derivations on S, then d_1 and d_2 are orthogonal if and only if $d_1(u)\alpha d_2(v) + d_2(u)\alpha d_1(v) = 0, \forall u, v \in S, \alpha \in \Gamma$. Proof: Suppose that $d_1(u)\alpha d_2(v) + d_2(u)\alpha d_1(v) = 0, \forall u, v \in S, \alpha \in \Gamma$. (3.1)Replacing v by $v\beta u$, $\forall u \in S$. $\beta \in \Gamma$ in (3.1) and using (3.1) we obtain $d_1(\mathbf{u})\alpha\tau(\mathbf{v})\beta d_2(\mathbf{u}) + d_2(\mathbf{u})\alpha\tau(\mathbf{v})\beta d_1(\mathbf{u}) = 0.$ Since τ is an automorphism on S and using Lemma 1 $d_1(\mathbf{u})\alpha\tau(\mathbf{v})\beta d_2(\mathbf{u}) = 0 = d_2(\mathbf{u})\alpha\tau(\mathbf{v})\beta d_1(\mathbf{u}).$ Since τ is an automorphism on S and using Lemma 2, $d_1(\mathbf{u})\alpha\tau(\mathbf{v})\beta d_2(\mathbf{v}) = 0 = d_2(\mathbf{u})\alpha\tau(\mathbf{v})\beta d_1(\mathbf{v}).$ Using Lemma 1, we get $d_1(u)\alpha d_2(u) = 0 = d_2(u)\alpha d_1(v)$, $\forall u, v \in S, \alpha \in \Gamma$. Thus d_1 and d_2 are orthogonal. Conversely, Suppose that d_1 and d_2 are orthogonal. Then, $d_1(u)\Gamma S\Gamma d_2(v) = 0$, $\forall u, v \in S$. By Lemma 1, we can write $d_1(u) \Gamma d_2(v) = 0 = d_2(u) \Gamma d_1(v), \forall u, v \in S$. Hence proved.

Theorem 2: Suppose S is a 2-torsion-free semiprime Γ -semiring and d_1, d_2 be (σ, τ) derivations on S. Then the necessary and sufficient condition that d_1 and d_2 are orthogonal is $d_1d_2 = 0$. Proof: Suppose $d_1d_2 = 0$. Then $d_1 d_2(u\alpha v) = 0$ Using the fact that σ, τ are automorphism of S and $\tau d_2 = d_2 \tau, \sigma d_2 = d_2 \sigma, \tau d_1 = d_1 \tau, \sigma d_1 = d_1 \sigma$, we obtain $d_2(u)\alpha d_1(v) + d_1(u)\alpha d_2(v) = 0$, $\forall u, v \in S, \alpha \in \Gamma$. (since $d_1d_2 = 0$) Therefore d_1 and d_2 are orthogonal. (By Theorem 1) Conversely, Suppose that d_1 and d_2 are orthogonal. Then $d_1(\mathbf{u})\Gamma S\Gamma d_2(\mathbf{v}) = 0, \forall \mathbf{u}, \mathbf{v} \in S$. $d_1(\mathbf{u})\alpha\mathbf{w}\beta d_2(\mathbf{v}) = 0, \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in S, \alpha, \beta \in \Gamma.$ Then, we have $d_1(d_1(u)\alpha w\beta d_2(v)) = 0, \forall u, v, w \in S, \alpha, \beta \in \Gamma$. $d_1(d_1(\mathbf{u}))\alpha\sigma(\mathbf{w})\beta\sigma(d_2(v)) + \tau(d_1(\mathbf{u}))\alpha(d_1(\mathbf{w})\beta\sigma(d_2(v)) + \tau(w)\beta d_1d_2(v)) = 0.$ Since σ , τ are automorphism of S and using $\sigma d_2 = d_2 \sigma$, $\tau d_1 = d_1 \tau$, we get $d_1(d_1(\mathbf{u}))\alpha\sigma(\mathbf{w})\beta d_2(v) + d_1(\mathbf{u})\alpha d_1(\mathbf{w})\beta d_2(v) + d_1(\mathbf{u})\alpha\tau(w)\beta d_1d_2(v) = 0.$ The first and second summands are zeros as d_1 and d_2 are orthogonal. Hence, we get $d_1(u)\beta\tau(w)\alpha d_1d_2(v) = 0$.

Replace u by $d_2(v)$ in the above equation, we get $d_1d_2(v)\alpha\tau(w)\beta d_1d_2(v) = 0$. Since τ is an automorphism of a semiprime Γ -semiring S, $d_1d_2(v)=0$. Hence the result.

Corollary 1: Given that S is a 2-torsion-free semiprime Γ -semiring, and d_1 , d_2 are (σ, τ) -derivations on S, then the necessary and sufficient condition that d_1 and d_2 are orthogonal is $d_2d_1 = 0$.

Theorem 3: In a 2-torsion-free semiprime Γ -semiring S, let d_1 and d_2 be (σ, τ) -derivations of S into S. Then the necessary and sufficient condition that d_1 and d_2 are orthogonal is that $d_1d_2 + d_2d_1 = 0$. Proof: Suppose that $d_1d_2 + d_2d_1 = 0$ (3.2) $(d_1d_2 + d_2d_1)(u\alpha v) = 0$ $d_1(d_2(u))\alpha\sigma^2(v) + \tau(d_2(u)\alpha d_1(\sigma(v)) + d_1(\tau(u))\alpha\sigma(d_2(v)) + \tau^2(u)\alpha d_1d_2(v) + d_2(d_1(u)\alpha\sigma^2(v) + \tau(d_1(u))\alpha d_2(\sigma(v)))$ $+ d_2(\tau(u))\alpha\sigma(d_1(v)) + \tau^2(u)\alpha d_2 d_1(v) = 0$ Since σ, τ are automorphisms of S, $\tau d_2 = d_2 \tau$, $\sigma d_1 = d_1 \sigma$, $\tau d_1 = d_1 \tau$, $\sigma d_2 = d_2 \sigma$, we get $(d_1d_2 + d_2d_1)(u)\alpha\sigma(v) + \tau(u)\alpha(d_1d_2 + d_2d_1)(v) + 2(d_2(u)\alpha d_1(v) + d_1(u)\alpha d_2(v)) = 0.$ Since S is 2 torsion free and using (3.2) $d_2(u)\alpha d_1(v) + d_1(u)\alpha d_2(v) = 0.$ Hence, d_1 and d_2 are orthogonal. (By Theorem 1). Conversely, suppose that d_1 and d_2 are orthogonal, then by Theorem 2 and corollary 3, it is evident that $d_1d_2 + d_2d_1 = 0$. **Theorem 4:** Given S is a 2-torsion-free semiprime Γ -semiring and d_1, d_2 are (σ, τ) -derivations on S, then the necessary and sufficient condition that d_1 and d_2 are orthogonal is d_1d_2 is a (σ, τ) -derivation. Proof: Assume that d_1 and d_2 are orthogonal. We have $d_1d_2 = 0$ (By Theorem 2) and can be written as $d_1d_2(\mathbf{u}\alpha\mathbf{v}) = d_1d_2(\mathbf{u})\alpha\sigma(\mathbf{v}) + \tau(\mathbf{u})\alpha d_1d_2(\mathbf{v}) = 0.$ Therefore d_1d_2 is a (σ, τ) -derivation. Conversely, Suppose that d_1d_2 is a (σ, τ) -derivation. Now, $d_1d_2(u\alpha v) = d_1(d_2(u\alpha v))$ Since σ, τ are automorphisms of M, $\tau d_2 = d_2 \tau$, $\sigma d_1 = d_1 \sigma$, $\tau d_1 = d_1 \tau$, $\sigma d_2 = d_2 \sigma$ we get $d_1d_2(u\alpha v) = d_1d_2(u)\alpha\sigma(v) + d_2(u)\alpha d_1(v) + d_1(u)\alpha d_2(v) + \tau(u)\alpha d_1d_2(v).$ (3.3)But $d_1d_2(u\alpha v) = d_1d_2(u)\alpha\sigma(v) + \tau(u)\alpha d_1d_2$ (v) as d_1d_2 is a (σ, τ) derivation. (3.4)Comparing the equations (3.3) and (3.4), we get $d_2(u)\alpha d_1(v) + d_1(u)\alpha d_2(v) = 0.$ By Theorem 1, we can conclude that d_1 and d_2 are orthogonal.

Corollary 2: Given S is a 2-torsion-free semiprime Γ -semiring and d_1 , d_2 are (σ, τ) -derivations on S, then necessary and sufficient condition that d_1 and d_2 are orthogonal is that d_2d_1 is a (σ, τ) -derivation.

Corollary 3 : Assume that S is a semiprime Γ -semiring free from 2-torsion. Let d_1, d_2 be (σ, τ) -derivations of on S. Then, the under mentioned conclusions are identical:

(i) d₁ and d₂ are orthogonal.
(ii) d₁d₂ = 0.
(iii) d₂d₁ = 0.
(iv) d₁d₂ + d₂d₁ = 0.
(v) d₁d₂ is a (σ, τ)-derivation.
(vi) d₂d₁ is a (σ, τ)-derivation.
The proof the above corollary is evident from the Theorems 2,3,4 and corollaries 1,2.

Corollary 4: Consider S as a 2-torsion-free semiprime Γ -semiring. If d_1 and d_2 are orthogonal (σ, τ) -derivations on S, it follows that either d_1 is zero or d_2 is zero.

Theorem 5: In the context of a 2-torsion-free semiprime Γ -semiring **S**, suppose d_1 is a (σ, τ) -derivations on **S** and d_1^2 is also a (σ, τ) -derivation, then d_1 is necessarily zero. Proof: Suppose that d_1^2 is a (σ, τ) -derivation. Then, we can have

(3.5)

(3.6)

 $\begin{aligned} d_1^2(u\alpha v) &= d_1(d_1(u\alpha v)) \\ &= d_1(d_1(u))\alpha\sigma^2(v)) + \tau(d_1(u))\alpha d_1(\sigma(v)) + d_1(\tau(u))\alpha\sigma(d_1(v)) + \tau^2(u)\alpha d_1(d_1(v)). \\ \text{Since } \sigma, \tau \text{ are automorphisms of } S, \sigma d_1 &= d_1\sigma, \ \tau d_1 &= d_1\tau, \text{ we get} \\ &= d_1^2(u)\alpha\sigma(v) + \tau(u)\alpha d_1^2(v) + d_1(u)\alpha d_1(v) + d_1(u)\alpha d_1(v) \\ &= d_1^2(u\alpha v)) + d_1(u)\alpha d_1(v) + d_1(u)\alpha d_1(v) \end{aligned}$

Therefore, $d_1^2(u\alpha v) = d_1^2(u\alpha v) + d_1(u)\alpha d_1(v) + d_1(u)\alpha d_1(v)$. Since S is 2 torsion free, we get $d_1(u)\alpha d_1(v) = 0$.

Replacing u by $u\beta w, \forall w \in S, \beta \in \Gamma$ in (3.5) and using the same equation, we get $d_1(u)\beta\sigma(w)\alpha d_1(v) = 0$.

Replace v by u + v in the equation (3.6) and using the same equation, we get $d_1(u)\beta\sigma(w)\alpha d_1(u) = 0$.

Since σ is an automorphism on a semiprime Γ -semiring M, we get $d_1 = 0$. Hence Proved.

Theorem 6: Assume S is a 2-torsion-free semiprime Γ -semiring and d_1, d_2 are (σ, τ) -derivations on S. Then, the necessary and sufficient condition that d_1 and d_2 are orthogonal is $d_1d_2(u) = s\alpha u + u\alpha t$, $\forall u \in S, \alpha \in \Gamma$ for $s, t \in S$. **Proof:** Suppose that $d_1d_2(u) = s\alpha u + u\alpha t, \forall u \in S, \alpha \in \Gamma$. (3.7)Replace u by $u\beta v$, $\forall v \in M$, $\beta \in \Gamma$ in (3.7), we get $d_1d_2(u\beta v) = s\alpha(u\beta v) + (u\beta v)\alpha t, \forall s, t \in M, \alpha, \beta \in \Gamma$ $d_1(d_2(u)\beta\sigma(v) + \tau(u)\beta d_2(v)) = s\alpha(u\beta v) + (u\beta v)\alpha t$ $d_{1}(d_{2}(u))\beta\sigma^{2}(v) + \tau(d_{2}(u)\beta d_{1}(\sigma(v)) + d_{1}(\tau(u))\beta\sigma(d_{2}(v)) + \tau^{2}(u)\beta d_{1}(d_{2}(v)) = s\alpha(u\beta v) + (u\beta v)\alpha t.$ Since σ, τ are automorphisms of S, $d_1\sigma = \sigma d_1, \tau d_1 = d_1\tau, \tau d_2 = d_2\tau, \sigma d_2 = d_2\sigma$, we get $d_1d_2(\mathbf{u})\beta\mathbf{v} + d_2(\mathbf{u})\beta\mathbf{d}_1(\mathbf{v}) + d_1(\mathbf{u})\beta d_2(\mathbf{v}) + \mathbf{u}\beta\mathbf{d}_1\mathbf{d}_2(\mathbf{v}) = \mathbf{s}\alpha(u\beta v) + (u\beta v)\alpha t.$ Using (3.7), we get $s\alpha u\beta v + u\alpha t\beta v + d_2(u)\beta d_1(v) + d_1(u)\beta d_2(v) + u\beta s\alpha v + u\beta v\alpha t = s\alpha(u\beta v) + (u\beta v)\alpha t$ $\operatorname{u}\alpha t \beta v + d_2(u)\beta d_1(v) + d_1(u)\beta d_2(v) + u\beta s\alpha v = 0.$ (3.8)Replacing v by $v\gamma u$, $\forall u \in S$, $\gamma \in \Gamma$ in the equation (3.8), we get $u\alpha t \beta v\gamma u + d_2(u)\beta d_1(v\gamma u) + d_1(u)\beta d_2(v\gamma u) + u\beta s\alpha v\gamma u = 0$ $u\alpha t \beta v\gamma u + u\beta s\alpha v\gamma u + d_2(u)\beta(d_1(v)\gamma\sigma(u) + \tau(v)\gamma d_1(u)) + d_1(u)\beta(d_2(v)\gamma\sigma(u) + \tau(v)\gamma d_2(u) = 0.$ Since σ, τ are automorphisms of S and using the equation (3.8), we get $(u\alpha t \beta v + u\beta s\alpha v + d_2(u)\beta d_1(v) + d_1(u)\beta d_2(v))\gamma u + d_2(u)\beta \tau(v)\gamma d_1(u) + d_1(u)\beta \tau(v)\gamma d_2(u) = 0$ $d_2(\mathbf{u})\beta\tau(\mathbf{v})\gamma d_1(\mathbf{u}) + +d_1(\mathbf{u})\beta\tau(\mathbf{v})\gamma d_2(\mathbf{u}) = 0, \forall \mathbf{u} \in \mathbf{S}, \beta \in \Gamma.$ Since σ , τ are automorphisms of S and using Lemma 1, we get $d_2(\mathbf{u})\beta\tau(\mathbf{v})\gamma d_1(\mathbf{u}) = 0 = d_1(\mathbf{u})\beta\tau(\mathbf{v})\gamma d_2(\mathbf{u}).$ By Lemma 2, we can have $d_2(u)\beta\tau(v)\gamma d_1(v) = 0 = d_1(u)\beta\tau(v)\gamma d_2(v)$. By Lemma 1, we can have $d_2(u)\beta d_1(v) = 0 = d_1(u)\beta d_2(v)$ and so $d_1(u)\beta d_2(v) + d_2(u)\beta d_1(v) = 0$ and so the conclusion is arrived. Conversely, suppose that d_1 and d_2 are orthogonal, then $d_1d_2 = 0$. (By Theorem 2) Then we can choose s = 0, t = 0, so that $d_1d_2(u) = s\alpha u + u\alpha t$, $\forall u \in S, \alpha \in \Gamma$.

Theorem 7: If S is a 2-torsion-free semiprime Γ -semiring and d_1, d_2 are (σ, τ) -derivations of S such that $d_1^2 = d_2^2$, then the subsequent assertions are true: (i) $(d_1 + d_2)$ and $(d_1 - d_2)$ are orthogonal. (ii) either $d_1 = -d_2$ or $d_1 = d_2$.

(i) $(u_1 + u_2)$ and $(u_1 - u_2)$ are offinited in (ii) efficient $u_1 = -u_2$ of $u_1 = u_2$. Proof: Suppose $d_1^2 = d_2^2$ To Prove (i): Consider $[(d_1 + d_2) (d_1 - d_2) + (d_1 - d_2)(d_1 + d_2)](u)$ $= d_1^2(u) + d_2d_1(u) - d_1d_2(u) - d_2^2(u) + d_1^2(u) - d_2d_1(u) + d_1d_2(u) - d_2^2(u)$ = 0 (Since $d_1^2 = d_2^2$) Therefore $[(d_1 + d_2) (d_1 - d_2) + (d_1 - d_2)(d_1 + d_2) = 0$. Hence, by the Theorem 3, we can conclude that $(d_1 + d_2)$ and $(d_1 - d_2)$ are orthogonal. To Prove (ii):

From the result (i), we have $(d_1 + d_2)$ and $(d_1 - d_2)$ are orthogonal.

Then by the corollary 4, we have $(d_1 + d_2) = 0$ or $(d_1 - d_2) = 0$ and hence $d_1 = -d_2$ or $d_1 = d_2$. Hence Proved.

4. Conclusion

This paper mainly deals with the study of (σ, τ) - derivations within the framework of semiprime Γ -semirings by introducing the concept of orthogonal (σ, τ) - derivations. During this work, we proved some necessary and sufficient conditions for the orthogonality of two (σ, τ) - derivations in semiprime Γ -semirings which gives an advanced theoretical approach to this area of algebra. These results enhances the theory of (σ, τ) - derivations which have many applications in algebraic geometry

References

- Abdulrahman H. Majeed, and Shahed Ali Hamil, "Orthogonal Generalized Derivations on Γ-Semirings," Journal of Physics: Conference Series: Imam Al-Kadhum International Conference for Modern Applications of Information and Communication Technology (MAICT), Baghdad, Iraq, vol. 1530, 2020. [CrossRef] [Google Scholar] [Publisher Link]
- [2] B. Venkateswarlu, M. Murali Krishna Rao, and Y. Adi Narayana, "Orthogonal Derivations on Γ Semirings," Bulletin of the International Mathematical Virtual Institute, vol. 8, no. 3, pp. 543-552, 2018. [Google Scholar]
- [3] B. Venkateswarlu, M. Murali Krishna Rao, and Y. Adi Narayana, "Orthogonal Reverse Derivations on Semiprime Γ-Semirings," Mathematical Sciences and Applications E-Notes, vol. 7, no. 1, pp. 71-77, 2019. [CrossRef] [Google Scholar] [Publisher Link]
- [4] C. Jaya Subba Reddy, and V.S.V. Krishna Murty, "Orthogonal Symmetric Reverse Bi-(σ, τ)- Derivations in Semiprime Rings," *Tuijin Jishu/Journal of Propulsion Technology*, vol. 45, no. 1, pp. 5133-5138, 2024. [Google Scholar] [Publisher Link]
- [5] C. Jaya Subba Reddy, and V.S.V. Krishna Murty, "Orthogonality of Generalized Reverse(σ, τ)- Derivations in Semiprime Γ -Rings," *Journal of Nonlinear Analysis and Optimization*, vol. 15, no. 4, pp. 20-28, 2024. [Google Scholar] [Publisher Link]
- [6] C. Jaya Subba Reddy, K. Chennakesavulu, and V.S.V. Krishna Murty, "Orthogonal Generalized Symmetric Reverse Bi-(σ, τ)-Derivations in Semi Prime Rings," *Communications on Applied Nonlinear Analysis*, vol. 31, no. 3s, 2024. [CrossRef] [Google Scholar] [Publisher Link]
- [7] C. Jaya Subba Reddy, and V.S.V. Krishna Murty, "Orthogonal generalized Symmetric Reverse Biderivations in Semiprime Rings," *Journal of Applied and Pure Mathematics*, vol. 6, no. 3-4, pp. 155-165, 2024, in press. [Publisher Link]
- [8] Harry S. Vandiver, "Note on a Simple Type of Algebra in Which the Cancellation Law of Addition does not Hold," *Bulletin of the American Mathematical Society*, vol. 40, no. 12, pp. 914-920, 1934. [Google Scholar] [Publisher Link]
- [9] Kalyan Kumar Dey, Akhil Chandra Paul, and Isamiddin S. Rakhimov, "Orthogonal Generalized Derivations in Semiprime Gamma Near-Rings," *International Journal of Algebra*, vol. 6, no. 23, pp. 1127-1134, 2012. [Google Scholar] [Publisher Link]
- [10] M.K. Sen, "On Γ-Semigroups," Proceeding of International Conference on Algebra and its Applications, New Delhi, pp.301-308, 1981. [Google Scholar]
- [11] M.A. Javed, M. Aslam, and M. Hussain, "On Derivations of Prime Γ-Semirings," Southeast Asian Bulletin of Mathematics, vol. 37, no.
 6, 2013. [Google Scholar]
- [12] M. Murali Krishna Rao, "T-Semirings-I," Southeast Asian Bulletin of Mathematics, vol. 19, no. 1, pp. 49-54, 1995. [Google Scholar] [Publisher Link]
- [13] M. Murali Krishna Rao, "Γ-Semirings-II," Southeast Asian Bulletin of Mathematics, vol. 21, no. 3, pp. 281-287, 1997. [Publisher Link]
- [14] Nobuo Nobusawa, "On a Generalization of the Ring Theory," Osaka Journal of Mathematics, vol. 1, no. 1, pp. 81-89, 1964. [Google Scholar] [Publisher Link]
- [15] N. Suganthameena, and M. Chandramouleeswaran, "Orthogonal Derivations on Semirings," International Journal of Contemporary Mathematical Science, vol. 9, no. 13, pp. 645-651, 2014. [CrossRef] [Google Scholar] [Publisher Link]
- [16] Shuliang Huang, "On Orthogonal Generalized (σ, τ)-Derivations of Semiprime Near-Rings," *Kyungpook Mathematical Journal*, vol. 50, no. 3, pp. 379-387, 2010. [CrossRef] [Google Scholar] [Publisher Link]