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Abstract -  In this paper, we investigate the operator relation ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥⟶ 0, where 𝐴, 𝐵 ∈ 𝐵(ℋ) and 𝑈𝑛 ∈ 𝐵(ℋ) is a 

sequence of unitary operators, known as the approximate unitary equivalence between 𝐴 and 𝐵, which is an asymptotic version 

of the unitary equivalence of operators. We characterize operators in this relation and investigate other closely related relations. 

We give and prove conditions under which approximate unitary equivalence implies or is implied by or coincides with other 

equivalence relations.  

Keywords - Approximate unitary equivalence, Approximate similarity, Similar, rank, Rank-preserving, Metric equivalence.

1. Introduction  
In this paper ℋ denotes a separable complex Hilbert space and 𝐵(ℋ) denotes the Banach algebra of bounded linear operators 

equipped with the usual operator norm on ℋ and 𝒦(ℋ) denotes the set of all compact operators on ℋ. If 𝑇 ∈ 𝐵(ℋ), then 𝑇∗ 

denotes the adjoint of 𝑇, while 𝐾𝑒𝑟(𝑇), 𝑅𝑎𝑛(𝑇), ℳ and ℳ⊥ stands for the kernel of 𝑇, range of 𝑇, closure of ℳ and orthogonal 

complement of a closed subspace ℳ of ℋ, respectively. We denote by 𝜎(𝑇), ∥ 𝑇 ∥ and 𝑊(𝑇), the spectrum, norm and numerical 

range of 𝑇, respectively. 

Recall that an operator 𝑇 ∈ 𝐵(ℋ) is 

normal if  𝑇∗𝑇 = 𝑇𝑇∗; 

self-adjoint (or hermitian) if  𝑇∗ = 𝑇; 

skew-adjoint if  𝑇∗ = −𝑇; 

unitary if  𝑇∗𝑇 = 𝑇𝑇∗ = 𝐼; 

quasinormal if  𝑇(𝑇∗𝑇) = (𝑇∗𝑇)𝑇; 

binormal if  (𝑇∗𝑇)(𝑇𝑇∗) = (𝑇𝑇∗)(𝑇∗𝑇); 

hyponormal if  𝑇∗𝑇 ≥ 𝑇𝑇∗; 

co-hyponormal if  𝑇∗𝑇 ≤ 𝑇𝑇∗, that is, if 𝑇∗ is hyponormal; 

seminormal if it is either hyponormal or co-hyponormal; 

paranormal if  ∥ 𝑇𝑥 ∥2≤∥ 𝑇2𝑥 ∥∥ 𝑥 ∥, for every 𝑥 ∈ ℋ; 

a projection if  𝑇2 = 𝑇 and 𝑇∗ = 𝑇; 

an involution if  𝑇2 = 𝐼; 

a symmetry if  𝑇 = 𝑇∗ = 𝑇−1. That is, 𝑇 it is self-adjoint unitary; 

isometric if  𝑇∗𝑇 = 𝐼; 

a contraction if ∥ 𝑇 ∥≤ 1; 

normaloid if 𝑟(𝑇) =∥ 𝑇 ∥. 

compact if every bounded sequence {𝑥𝑛} in ℋthe sequence {𝑇𝑥𝑛} has a convergent subsequence. 

Remark: Note that  

{𝑁𝑜𝑟𝑚𝑎𝑙} ⊆ {𝑄𝑢𝑎𝑠𝑖𝑛𝑜𝑟𝑚𝑎𝑙} ⊆ {𝑆𝑒𝑚𝑖𝑛𝑜𝑟𝑚𝑎𝑙} ⊆ {𝐻𝑦𝑝𝑜𝑛𝑜𝑟𝑚𝑎𝑙} ⊆ {𝑃𝑎𝑟𝑎𝑛𝑜𝑟𝑚𝑎𝑙} ⊆ {𝑁𝑜𝑟𝑚𝑎𝑙𝑜𝑖𝑑}. 
 

In finite-dimensional Hilbert spaces, these higher classes of operators coincide with the class of normal operators. Let 𝑇 ∈
𝐵(ℋ). The numerical range of 𝑇 denoted by 𝑊(𝑇) is defined  , and the numerical radius of 𝑇 denoted by 𝜔(𝑇) is defined as 

𝜔(𝑇): = sup{|𝜆|: 𝜆 ∈ 𝑊(𝑇)}. Clearly, 𝜔(𝑇) ∈ [0, ∞). Two operators 𝐴 ∈ 𝐵(ℋ) and 𝐵 ∈ 𝐵(𝒦) are said to be similar (denoted 

𝐴 ∼ 𝐵) if there exists an invertible operator 𝑁 ∈ 𝐵(ℋ, 𝒦) such that 𝑁𝐴 = 𝐵𝑁 or equivalently 𝐴 = 𝑁−1𝐵𝑁, and are unitarily 
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equivalent (denoted by 𝐴 ≅ 𝐵) if there exists a unitary operator 𝑈 ∈ 𝐵+(ℋ, 𝒦) (Banach algebra of all invertible operators in 

𝐵(ℋ)) such that 𝑈𝐴 = 𝐵𝑈 (i.e. 𝐴 = 𝑈∗𝐵𝑈, equivalently, 𝐴 = 𝑈−1𝐵𝑈).  

Two operators 𝐴 ∈ 𝐵(ℋ) and 𝐵 ∈ 𝐵(𝒦) are said to be metrically equivalent (denoted by 𝐴 ∼𝑚 𝐵) if ∥ 𝐴𝑥 ∥=∥ 𝐵𝑥 ∥, 

(equivalently, 𝐴∗𝐴 = 𝐵∗𝐵 or |〈𝐴𝑥, 𝐴𝑥〉|
1

2 = |〈𝐵𝑥, 𝐵𝑥〉|
1

2 for all 𝑥 ∈ ℋ)(for more exposition, see [16]). Two operators 𝐴, 𝐵 ∈
𝐵(ℋ) are said to be almost similar if there is an invertible operator 𝑋 such that 𝐴∗𝐴 = 𝑋−1(𝐵∗𝐵)𝑋 and 𝐴∗ + 𝐴 = 𝑋−1(𝐵∗ +
𝐵)𝑋. The concept of almost-similarity was introduced by [10] and also studied by [17]. Two operators 𝐴 and 𝐵 in 𝐵(ℋ) are said 

to be almost unitarily equivalent (denoted by 𝐴 ∼
𝑎.𝑢.𝑒

𝐵) if there is a unitary operator 𝑈 such that 𝐴∗𝐴 = 𝑈∗(𝐵∗𝐵)𝑈 and 𝐴∗ + 𝐴 =
𝑈∗(𝐵∗ + 𝐵)𝑈( [9]). The proofs that unitary equivalence, similarity, quasi-similarity, metric equivalence and almost similarity 

are equivalence relations on 𝐵(ℋ) have appeared in [17],[14] and [22]. 

 

Two operators 𝑆, 𝑇 ∈ 𝐵(ℋ) are said to be unitarily quasi-equivalent (denoted by 𝑆 ≈
𝑢.𝑞.𝑒

𝑇) if there exists a unitary operator 

𝑈 such that 𝑇∗𝑇 = 𝑈𝑆∗𝑆𝑈∗ and 𝑇𝑇∗ = 𝑈𝑆𝑆∗𝑈∗( [16]). Clearly 𝑆, 𝑇 ∈ 𝐵(ℋ) are unitarily quasi-equivalent if 𝑆∗𝑆 and 𝑇∗𝑇 are 

unitarily equivalent and 𝑆𝑆∗ and 𝑇𝑇∗ are unitarily equivalent. Two operators 𝑆, 𝑇 ∈ 𝐵(ℋ) are said to be absolutely equivalent if 

both the absolute values of the operators are unitarily equivalent. That is, if |𝑆| = 𝑈|𝑇|𝑈∗. Two operators 𝑆, 𝑇 ∈ 𝐵(ℋ) are said 

to be nearly equivalent(see [19]) if there exists a unitary operator 𝑈 such that 𝑆∗𝑆 = 𝑈𝑇∗𝑇𝑈∗. Mahmoud introduced unitary 

quasi-equivalence in [13], which was also investigated by Othman in [19] under the near equivalence relation and by Nzimbi 

and Luketero in [16]. Several authors have demonstrated (see [19], [13] and [16]) that unitary quasi-equivalence, absolute 

equivalence and near equivalence are equivalence relations on 𝐵(ℋ). 

Remarks. We note that any two unitary operators and, in general, any two isometries are absolutely equivalent and metrically 

equivalent. It has been shown in [19] that absolute equivalence implies near equivalence of operators. We observe that near 

equivalence of operators is weaker than unitary quasi-equivalence. It has also been shown that unitary quasi-equivalence is 

weaker than unitary equivalence of operators([16], Theorem 2.2). Note that the set 𝒦(ℋ) of all compact operators on ℋ is a 

closed ideal in ℋ and so we can construct the quotient algebra 𝐵(ℋ)/𝒦(ℋ called the Calkin algebra. The corresponding map 

𝜋: 𝐵(ℋ) ⟶ 𝐵(ℋ)/𝒦(ℋ) defined by 𝜋(𝐴) = 𝐴 + 𝐾, where 𝐴 ∈ 𝐵(ℋ) and 𝐾 ∈ 𝒦(ℋ) is called the quotient or canonical map 

from 𝐵(ℋ) to 𝐵(ℋ)/𝒦(ℋ). Define the essential spectrum 𝜎𝑒(𝑇) as the spectrum of 𝜋(𝑇) in the Calkin algebra that is,  

𝜎𝑒(𝑇) = 𝜎(𝜋(𝑇)) = {𝜆 ∈ ℂ: (𝜋(𝑇) − 𝜆𝜋(𝐼)) 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒}. 
Let 𝐴 ∈ 𝐵(ℋ). The essential numerical range of 𝐴, denoted by 𝑊𝑒(𝐴) is the set  

 𝑊𝑒(𝐴): = ⋂𝐾∈𝒦(ℋ) 𝑊(𝐴 + 𝐾). 

2. Main Results  
Definition 2.1: ([11])Let {𝑇𝑛} be a sequence of bounded linear operators on a Hilbert space ℋ and let 𝑇 ∈ 𝐵(ℋ). 

(a). The sequence {𝑇𝑛} is said to converge uniformly or in operator norm to 𝑇 denoted by 𝑇𝑛 ⟶
𝑢

𝑇 if  lim𝑛→∞ ∥ 𝑇 − 𝑇𝑛 ∥= 0. In 

this case, we write 𝑇 = 𝑢 − lim𝑛→∞𝑇𝑛. This is also called convergence in operator topology or convergence in the uniform 

topology and 𝑇 is called the uniform or norm limit of {𝑇𝑛}. 

(b). The sequence {𝑇𝑛} is said to converge strongly to 𝑇 denoted by 𝑇𝑛 ⟶
𝑠

𝑇 if  lim𝑛→∞ ∥ 𝑇𝑥 − 𝑇𝑛𝑥 ∥= 0 for each 𝑥 ∈ ℋ. In this 

case, we write 𝑇 = 𝑠 − lim𝑛→∞𝑇𝑛. This is also called convergence in the strong (operator) topology and 𝑇 is called the strong 

limit of {𝑇𝑛} . 

(c). The sequence {𝑇𝑛} is said to converge weakly to 𝑇 denoted by 𝑇𝑛 ⟶
𝑤

𝑇 if  lim𝑛→∞〈𝑦, 𝑇𝑛𝑥〉 = 〈𝑦, 𝑇𝑥〉 for each 𝑥, 𝑦 ∈ ℋ. This 

is equivalent to lim𝑛→∞〈(𝑇𝑛 − 𝑇)𝑥, 𝑦〉 = 0 for each 𝑥, 𝑦 ∈ ℋ. If the Hilbert space is complex, then this is equivalent to 

lim𝑛→∞〈(𝑇𝑛 − 𝑇)𝑥, 𝑥〉 = 0 for each 𝑥 ∈ ℋ. 

In this case, we write 𝑇 = 𝑤 − lim𝑛→∞𝑇𝑛 and we say that  is the weak limit of {𝑇𝑛}. 

Remark: We note that  

𝑛𝑜𝑟𝑚 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ⟹ 𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ⟹ 𝑤𝑒𝑎𝑘 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ⟹ sup
𝑛

∥ 𝑇𝑛 ∥< ∞. 

It has been shown ([12], Proposition 4.46) that in finite dimensional Hilbert spaces, the concepts of strong and uniform 

convergence coincide. Two operators 𝐴, 𝐵 ∈ 𝐵(ℋ) are said to be approximately unitarily equivalent denoted by 𝐴 ≈
𝑎.𝑢.𝑒

𝐵 if there 
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exists a sequence {𝑈𝑛} of unitary operators such that ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥⟶ 0. This is equivalent to lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛

∗𝐵𝑈𝑛 ∥= 0. 

Clearly, 𝐴 ≈
𝑎.𝑢.𝑒

𝐵 if the sequence {𝑈𝑛
∗𝐵𝑈𝑛} converges to 𝐴 the norm, 

Remark: Note that two operators are approximately unitarily equivalent if each is a norm limit of operators that are unitarily 

equivalent to the other. A sequence {𝑉𝑛} of linear operators is said to be invertibly bounded if each 𝑉𝑛 is invertible that sup{∥

𝑉𝑛 ∥. ∥ 𝑉𝑛
−1 ∥} < ∞. Two operators 𝐴, 𝐵 ∈ 𝐵(ℋ) are said to be approximately similar, denoted by 𝐴 ≈

𝑎.𝑠
𝐵 if there exists a 

sequence {𝑉𝑛} of invertiblly bounded operators such that ∥ 𝐴 − 𝑉𝑛
−1𝐵𝑉𝑛 ∥⟶ 0. This is equivalent to lim𝑛→∞ ∥ 𝐴 − 𝑉𝑛

−1𝐵𝑉𝑛 ∥=

0. Clearly, 𝐴 ≈
𝑎.𝑠

𝐵 if the sequence {𝑉𝑛
−1𝐵𝑉𝑛} converges to 𝐴 in norm. Clearly, unitary equivalence implies approximate unitary 

equivalence, and similarity implies approximate similarity in 𝐵(ℋ). The study of approximate unitary equivalence was initiated 

in 1975 by D. H. Hadwin( [7]) and later investigated by several authors ( [8], [4], [5], [6] and [20]). Let 𝒜 ⊆ 𝐵(ℋ). A linear 

map 𝜋: 𝒜 ⟶ 𝐵(ℋ) is said to be rank-preserving if 𝑟𝑎𝑛𝑘(𝜋(𝑇)) = 𝑟𝑎𝑛𝑘(𝑇), for any 𝑇 ∈ 𝒜. Let {𝑈𝑛} be a sequence of unitary 

operators and {𝑉𝑛} be a sequence of invertibly bounded operators. We define by 𝔄𝑢(𝑇) = {𝑆 ∈ 𝐵(ℋ): lim𝑛→∞ ∥ 𝑆 − 𝑈𝑛
∗𝑇𝑈𝑛 ∥

= 0} and 𝔄𝑠(𝑇) = {𝑆 ∈ 𝐵(ℋ): lim𝑛→∞ ∥ 𝑆 − 𝑉𝑛
∗𝑇𝑉𝑛 ∥= 0} the approximate unitary equivalence orbit and the approximate 

similarity orbit of 𝑇 ∈ 𝐵(ℋ). 

Clearly 𝔄𝑢(𝑇) ⊂ 𝔄𝑠(𝑇). 

Theorem 2.3: ≈
𝑎.𝑢.𝑒

 is an equivalence relation on 𝐵(ℋ).  

Proof: Let 𝐴, 𝐵, 𝐶 ∈ 𝐵(ℋ). Clearly, 𝐴 ≈
𝑎.𝑢.𝑒

𝐴 since lim𝑛→∞ ∥ 𝐴 − 𝐼∗𝐴𝐼 ∥= 0, by taking 𝑈𝑛 = 𝐼 for 𝑛 ∈ ℕ. If 𝐴 ≈
𝑎.𝑢.𝑒

𝐵, then 

lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥= 0 and since convergence in norm implies strong convergence, this is equivalent to  

 〈 lim
𝑛→∞

(𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛)𝑥, 𝑥〉 = lim

𝑛→∞
〈(𝐴 − 𝑈𝑛

∗𝐵𝑈𝑛)𝑥, 𝑥〉 ≤ lim
𝑛→∞

∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥∥ 𝑥 ∥2= 0 

for all 𝑥 ∈ ℋ. Pre-multiplying the expression 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 by 𝑈𝑛 and post-multiplying it by 𝑈𝑛

∗  we have that lim𝑛→∞ ∥ 𝑈𝑛𝐴𝑈𝑛
∗ −

𝐵 ∥= lim𝑛→∞ ∥ 𝐵 − 𝑈𝑛𝐴𝑈𝑛
∗ ∥= 0 . This proves that 𝐵 ≈

𝑎.𝑢.𝑒
𝐴. We prove that if 𝐴 ≈

𝑎.𝑢.𝑒
𝐵 and 𝐵 ≈

𝑎.𝑢.𝑒
𝐶 then 𝐴 ≈

𝑎.𝑢.𝑒
𝐶. 𝐴 ≈

𝑎.𝑢.𝑒
𝐵 

and 𝐵 ≈
𝑎.𝑢.𝑒

𝐶 implies that lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥= 0 and lim𝑛→∞ ∥ 𝐵 − 𝑉𝑛

∗𝐶𝑉𝑛 ∥= 0 where 𝑈𝑛 , 𝑉𝑛 are unitary operators. 

Therefore 

lim
𝑛→∞

∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥ = lim

𝑛→∞
∥ 𝐴 − 𝑈𝑛

∗( lim
𝑛→∞

𝑉𝑛
∗𝐶𝑉𝑛)𝑈𝑛 ∥

� = lim
𝑛→∞

∥ 𝐴 − (𝑉𝑛𝑈𝑛)∗𝐶(𝑉𝑛𝑈𝑛) ∥

� = lim
𝑛→∞

∥ 𝐴 − 𝑊𝑛
∗𝐶𝑊𝑛 ∥

= 0,

 

where 𝑊𝑛 = 𝑉𝑛𝑈𝑛 is unitary. This proves that 𝐴 ≈
𝑎.𝑢.𝑒

𝐶. Thus ≈
𝑎.𝑢.𝑒

 , it is reflexive, symmetric and transitive, and hence, it is 

an equivalence relation on 𝐵(ℋ). 

2.1. Approximate Unitary Equivalence, Approximate Similarity and Other Equivalence Relations 

Theorem 2.3: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) such that that ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥⟶ 0, where {𝑈𝑛} is a unitary sequence of invertibly bounded 

positive operators. Then 𝐴 and 𝐵 are unitarily equivalent.  

Proof: Without loss of generality, suppose that each 𝑈𝑛 is positive( that is, self-adjoint and 〈𝑈𝑛𝑥, 𝑥〉 ≥ 0) for all 𝑥 ∈ ℋ. Since 

𝑈𝑛 it is invertible, it exists   0 < 𝑟 ≤ 𝑈𝑛 ≤ 𝑅 for all 𝑛 ∈ ℕ. Choose a subsequence {𝑈𝑛𝑘
} of {𝑈𝑛} such that 𝑈𝑛𝑘

⟶
𝑤

𝑈. That is 

lim𝑛→∞〈(𝑈𝑛𝑘
− 𝑈)𝑥, 𝑥〉 = 0 for all 𝑥 ∈ ℋ , and since 0 < 𝑟 ≤ 𝑈𝑛 ≤ 𝑅, the weak limit 𝑈 is unitary (since the group of unitary 

operators on ℋ is closed). So 𝐵𝑈𝑛 − 𝑈𝑛𝐴 ⟶ 0 in norm. That is ∥ 𝐵𝑈𝑛 − 𝑈𝑛𝐴 ∥⟶ 0. Therefore ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥⟶ 0 implies 

that ∥ 𝐵𝑈𝑛 − 𝑈𝑛𝐴 ∥⟶ 0 and so  

 ⟨((𝐵𝑈𝑛𝑘
− 𝑈𝑛𝑘

𝐴) − (𝐵𝑈 − 𝑈𝐴)) 𝑥, 𝑥⟩ ⟶ 0. 

This implies that 𝐵𝑈 − 𝑈𝐴 = 0. Equivalently 𝑈∗𝐵𝑈 − 𝐴 = 0 or 𝐴 = 𝑈∗𝐵𝑈. This proves the claim. 

Remark: Note that Theorem 2.3 gives a condition under which approximate unitary equivalence implies unitary equivalence. 

Theorem 2.4: (Weyl-von Neumann-Sikonia[1]). Let 𝐴 be normal. Then 𝐴 ≈
𝑎.𝑢.𝑒

𝐵 , if and only if  

(i). 𝐵 is normal. 

(ii). 𝜎(𝐴) = 𝜎(𝐵) including multiplicities of their isolated eigenvalues. 
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(iii) 𝜎𝑒(𝐴) = 𝜎𝑒(𝐵) 

We denote by 𝒰(𝑇) = {𝑆: 𝑆 = 𝑈∗𝑇𝑈, 𝑈 𝑢𝑛𝑖𝑡𝑎𝑟𝑦} the unitary orbit of 𝑇 and its norm-closure by 𝒰(𝑇) =

{𝑆: 𝑆 = 𝑈∗𝑇𝑈, 𝑈 𝑢𝑛𝑖𝑡𝑎𝑟𝑦} = {𝑈∗𝑇𝑈: 𝑈 𝑢𝑛𝑖𝑡𝑎𝑟𝑦}. In finite dimensional Hilbert spaces, unitary orbits are closed, but in infinite-

dimensional Hilbert spaces, they are typically not closed. 

Remark: For any pair of operators 𝐴 and 𝐵, 𝒰(𝐴) and 𝒰(𝐵) are either disjoint or equal. That is, no partial overlapping is 

possible. 

Theorem 2.5: Two operators A, B ∈ B(ℋ) are approximately unitarily equivalent if and only if A ∈ 𝒰(B) and B ∈ 𝒰(A).  

Corollary 2.6: Two operators A, B ∈ B(ℋ) are approximately unitarily equivalent if and only if 𝒰(A) = 𝒰(B). 

Remark: From Corollary 2.6, we can deduce that two operators are approximately unitarily equivalent if and only if they have 

the same norm-closed unitary orbit. That is if the norm closures of their unitary orbits(or equivalence classes) coincide. 

Example: Let 𝐴 = (
1 0
0 0

) and 𝐵 = (
1 0

0
1

𝑛

). Clearly, 𝐴 ∈ 𝒰(𝐵) but 𝐴 ∈ 𝒰(𝐵) Similarly,  but . Note that  and 𝐵 are neither 

unitarily equivalent nor similar, but they are approximately unitarily equivalent and hence approximately similar. In this case, 

we can let 𝑈𝑛 = 𝐼 = (
1 0
0 1

). Two projections 𝑃, 𝑄 ∈ 𝐵(ℋ) are said to be Murray-von Neumann equivalent if there exists a 

partial isometry 𝑉 ∈ 𝐵(ℋ) such that 𝑉∗𝑉 = 𝑃 and 𝑉𝑉∗ = 𝑄. ([15]) It is shown in ([15], Theorem 3.3) that if two projections 

𝑃, 𝑄 ∈ 𝐵(ℋ) are Murray-von Neumann equivalent and if the implementing partial isometry 𝑉 is invertible (that is, 𝑉 is unitary), 

then 𝑃 and 𝑄 are similar. But 𝑃 and 𝑄 , being projections, they are normal and therefore by ([18], Proposition 2.13), they are 

unitarily equivalent. 

Theorem 2.7: Let 𝑃, 𝑄 ∈ 𝐵(ℋ) be Murray-von Neumann equivalent projections with an invertible implementing partial 

isometry 𝑉. Then 𝑃 = 𝑄 = 𝐼.  

Proof: Since 𝑉 is invertible, it is unitary and hence 𝑃 = 𝑉∗𝑉 = 𝐼 = 𝑉𝑉∗ = 𝑄.  

Corollary 2.8: Let 𝑃, 𝑄 ∈ 𝐵(ℋ) be Murray-von Neumann equivalent projections with an invertible implementing partial 

isometry 𝑉. Then 𝑃 and 𝑄 are approximately unitarily equivalent.  

Proof: From Theorem 𝑃 = 𝑉∗𝑉 = 𝐼 = 𝑉𝑉∗ = 𝑄. Thus ∥ 𝑃 − 𝑈𝑛
∗𝑄𝑈𝑛 ∥=∥ 𝐼 − 𝑈𝑛

∗(𝐼)𝑈𝑛 ∥=∥ 𝐼 − 𝐼 ∥= 0, for unitary operators 

{𝑈𝑛}. The claim follows. 

Remark: From Theorem 2.7 and Corollary 2.8, we conclude that the intersection of the class of invertible Murray-von Neumann 

projections and the class of approximately unitarily equivalent projections consists of identity operators. In finite dimensional 

Hilbert spaces, Murray-von Neumann equivalence and unitary equivalence of projections coincide. However, this is not the case 

in infinite-dimensional Hilbert spaces. For instance, if ℳ is a proper infinite-dimensional subspace of a separable Hilbert space 

ℋ, then the projection 𝑃ℳ  mapping ℋ onto ℳ is Murray-von Neumann equivalent to the identity operator 𝐼 in 𝐵(ℋ) but 𝑃ℳ  is 

not unitarily equivalent to the identity operator 𝐼 in 𝐵(ℋ). It is known that two projections 𝑃 and 𝑄 are unitarily equivalent if 

and only if 𝑃 and 𝑄 are Murray-von Neumann equivalent and 𝐼 − 𝑃 and 𝐼 − 𝑄 are Murray-von Neumann equivalent. (see [21]) 

. Recall that 𝑆 ∈ 𝐵(ℋ) is a quasi-affine transform of and 𝑇 ∈ 𝐵(𝒦) if there exists a quasi-affinity 𝑋 ∈ 𝐵(ℋ, 𝒦) such that 𝑆𝑋 =
𝑋𝑇. 

Proposition 2.9: Let S ∈ B(ℋ) and T ∈ B(𝒦) be normal if S is a quasi-affine transform of T, then S and T are unitarily 

equivalent.  

Corollary 2.10: Let S ∈ B(ℋ) and T ∈ B(𝒦) be normal. If S is a quasi-affine transform of T, then S and T are approximately 

unitarily equivalent.  

Proof: The proof follows from Proposition 2.9. 

Theorem 2.11: Let S ∈ B(ℋ) and T ∈ B(𝒦) be normal. If S is similar T, then S and T are approximately unitarily equivalent.  
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Proof: From ([18], Proposition 2.13) 𝑆 and 𝑇 are unitarily equivalent and hence approximately unitarily equivalent. We note that 

in finite-dimensional Hilbert spaces ℋ, unitary equivalence and approximate unitary equivalence relations coincide since the 

unitary group 𝑈(ℋ) of 𝐵(ℋ) is compact. 

Theorem 2.12: Let T, S ∈ B(ℋ). If the unitary orbit 𝒰(T) is closed and T and S are approximately unitarily equivalent, then 

they are unitarily equivalent.  

We define a new operator relation. 

Two operators 𝐴 ∈ 𝐵(ℋ) and 𝐵 ∈ 𝐵(𝒦) are said to be approximately metrically equivalent (denoted by 𝐴 ≈
𝑎.𝑚.𝑒

𝐵) if there exists 

a sequence {𝑈𝑛} of unitary operators such that ∥ 𝐴∗𝐴 − 𝑈𝑛
∗𝐵∗𝐵𝑈𝑛 ∥⟶ 0. This is equivalent to lim𝑛→∞ ∥ 𝐴∗𝐴 − 𝑈𝑛

∗𝐵𝐵𝑈𝑛 ∥= 0. 

Clearly, 𝐴 ≈
𝑎.𝑚.𝑒

𝐵 if the sequence {𝑈𝑛
∗𝐵𝐵𝑈𝑛} converges to 𝐴∗𝐴 in norm, this is equivalent to ∥ 𝐴𝑥 ∥= lim𝑛→∞ ∥ 𝑈𝑛

∗𝐵𝑈𝑛𝑥 ∥ for 

every 𝑥 ∈ ℋ (equivalently, 𝐴∗𝐴 = lim𝑛→∞𝑈𝑛
∗𝐵∗𝐵𝑈𝑛. 

Theorem 2.13: Approximate Metric Equivalence is an Equivalence Relation on 𝐵(ℋ). Clearly, the approximate metric 

equivalence of operators is weaker than that of metric equivalence. In fact, metric equivalence, unitary quasi-equivalence and 

near equivalence all imply approximate metric equivalence. 

3. Approximate Unitary Equivalence and Some Classes of Operators 
When two operators are approximately unitarily equivalent, they have many common properties. This equivalence relation 

can be used to classify some operators ([23]). An operator 𝑇 ∈ 𝐵(ℋ) is said to be a von Neumann operator if and only if 𝑇 is 

approximately unitarily equivalent to an operator of the form 𝑁 ⊕ 𝐴, where 𝑁 is normal and ∥ 𝑓(𝐴) ∥≤∥ 𝑓(𝑁) ∥, for any rational 

function 𝑓 with poles off 𝜎(𝑇); and in addition 𝜎(𝑁) = 𝜕(𝜎(𝑇)), the topological boundary of 𝜎(𝑇). It is shown in [23] that every 

normaloid operator 𝑇 is approximately unitarily equivalent to an operator of the form 𝑁 ⊕ 𝐴, where 𝑁 is normal and ∥ 𝐴 ∥≤∥
𝑁 ∥, in addition 𝑁 can be required to satisfy 𝜎(𝑁) = {𝜆 ∈ 𝜎(𝑇): |𝜆| =∥ 𝑇 ∥}. From this definition, it is clear that every normaloid 

operator is a von Neumann operator. So, normal operators determine the approximate unitary equivalence of every normaloid 

operator. Recall that normal, quasinormal, seminormal, hyponormal and paranormal operators are normaloid. 

Remark: Note that 𝑇 ∈ 𝐵(ℋ) is normaloid if and only if 𝜔(𝑇) =∥ 𝑇 ∥. 

Theorem 3.1: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) be approximately unitarily equivalent. If 𝐴 is normaloid, then 𝐵 is also normaloid.  

Corollary 3.2: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) be approximately unitarily equivalent. If 𝐴 is paranormal, then 𝐵 is also paranormal. 

Proof: Since 𝐴 is paranormal, it is normaloid. The rest of the proof follows from Theorem 3.1. 

4. Approximate Unitary Equivalence and the Spectral Picture of Some Operators 
Theorem 4.1: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) be approximately unitarily equivalent. Then 𝜎(𝐴) = 𝜎(𝐵).  

Theorem 4.2: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) be approximately unitarily equivalent. Then ∥ 𝐴 ∥=∥ 𝐵 ∥. 

Proof: Suppose that lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥= 0 for some unitary operators {𝑈𝑛}. Then  

 0 ≤ | ∥ 𝐴 ∥ −∥ 𝐵 ∥ | = lim
𝑛→∞

| ∥ 𝐴 ∥ −∥ 𝑈𝑛
∗𝐵𝑈𝑛 ∥ | ≤ lim

𝑛→∞
∥ 𝐴 − 𝑈𝑛

∗𝐵𝑈𝑛 ∥= 0. 

This proves the claim. 

Recall that for any operator 𝑇 ∈ 𝐵(ℋ), we have that 𝑟(𝑇) ≤∥ 𝑇 ∥. 

Theorem 4.3: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) be approximately unitarily equivalent. Then 𝑟(𝐴) = 𝑟(𝐵).  

Proof: Suppose that lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥= 0 for some unitary operators {𝑈𝑛}. Then 

 0 ≤ |𝑟(𝐴) − 𝑟(𝐵)| = lim
𝑛→∞

|𝑟(𝐴) − 𝑟(𝑈𝑛
∗𝐵𝑈𝑛)| ≤ lim

𝑛→∞
| ∥ 𝐴 ∥ −∥ 𝑈𝑛

∗𝐵𝑈𝑛 ∥ | ≤ lim
𝑛→∞

∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥= 0. 

This proves the claim. 

Theorem 4.4: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) be approximately unitarily equivalent. Then 𝜔(𝐴) = 𝜔(𝐵).  

Proof: Suppose 𝐴 and 𝐵 are approximately unitarily equivalent. Then there exists a sequence {𝑈𝑛} of unitary operators such that 
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∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥⟶ 0 which is equivalent to lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛

∗𝐵𝑈𝑛 ∥= 0. 

Since the numerical radius is a norm and is invariant under unitary equivalence on 𝐵(ℋ) ( [2], [3]), we have  

𝜔(𝐴) = 𝜔(𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 + 𝑈𝑛

∗𝐵𝑈𝑛) ≤ 𝜔(𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛) + 𝜔(𝑈𝑛

∗𝐵𝑈𝑛) ≤ lim
𝑛→∞

∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥ +𝜔(𝐵) = 0 + 𝜔(𝐵) =

𝜔(𝐵) 

since lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥= 0. Thus, 𝜔(𝐴) ≤ 𝜔(𝐵). Since the group of unitary operators is closed-in 𝐵(ℋ), we also have a 

sequence of unitary operators lim𝑛→∞ ∥ 𝑈𝑛𝐴𝑈𝑛
∗ − 𝐵 ∥= 0. So, by symmetry, it follows that.  

𝜔(𝐵) = 𝜔(𝐵 − 𝑈𝑛𝐴𝑈𝑛
∗ + 𝑈𝑛𝐴𝑈𝑛

∗) ≤ 𝜔(𝐵 − 𝑈𝑛𝐴𝑈𝑛
∗) + 𝜔(𝑈𝑛𝐴𝑈𝑛

∗) ≤ lim
𝑛→∞

∥ 𝐵 − 𝑈𝑛𝐴𝑈𝑛
∗ ∥ +𝜔(𝐴) = 0 + 𝜔(𝐴) = 𝜔(𝐴) 

since lim𝑛→∞ ∥ 𝐵 − 𝑈𝑛𝐴𝑈𝑛
∗ ∥= 0. Thus, 𝜔(𝐵) ≤ 𝜔(𝐴). 

This completes the proof. 

Remark: Note that equality of numerical radii does not necessarily imply equality of numerical range. For instance, consider 

𝐴 = 𝑑𝑖𝑎𝑔(1,
1

2
,

1

3
, . . . ) and 𝐵 = 𝑑𝑖𝑎𝑔(0,1,

1

2
,

1

3
, . . . ) which are two diagonal operators acting on the Hilbert space ℋ = ℓ2(ℕ). 

Clearly, 𝑊(𝐴) = (0,1] ≠ [0,1] = 𝑊(𝐵) although 𝜔(𝐴) = 𝜔(𝐵). 

Theorem 4.5: Let 𝐴, 𝐵 ∈ 𝐵(ℋ) be approximately unitarily equivalent. Then 𝑊(𝐴) = 𝑊(𝐵).  

 

Proof: Suppose 𝐴 and 𝐵 are approximately unitarily equivalent. Then there exists a sequence {𝑈𝑛} of unitary operators such that 

lim𝑛→∞ ∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥= 0. Fix an arbitrary 𝜆 ∈ 𝑊(𝐴). Then, there exists a unit vector 𝑥 ∈ ℋ such that 𝜆 = 〈𝐴𝑥, 𝑥〉. Therefore 

lim
𝑛→∞

|𝜆 − 〈𝐵𝑈𝑛𝑥, 𝑈𝑛𝑥〉| = lim
𝑛→∞

|〈𝐴𝑥, 𝑥〉 − 〈𝐵𝑈𝑛𝑥, 𝑈𝑛𝑥〉|

� = lim
𝑛→∞

|〈(𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛)𝑥, 𝑥〉|

� ≤ lim
𝑛→∞

∥ 𝐴 − 𝑈𝑛
∗𝐵𝑈𝑛 ∥∥ 𝑥 ∥2

= 0.

 

Since 𝑈𝑛𝑥 is a unit vector for all 𝑛 ∈ ℕ, we have that 〈𝐵𝑈𝑛𝑥, 𝑈𝑛𝑥〉 ∈ 𝑊(𝐵) for all 𝑛 ∈ ℕ and so 𝜆 = lim𝑛→∞〈𝐵𝑈𝑛𝑥, 𝑈𝑛𝑥〉 ∈

𝑊(𝐵). That is 𝜆 ∈ 𝑊(𝐵). Since 𝜆 ∈ 𝑊(𝐴) it was arbitrary, we conclude that 𝑊(𝐴) ⊆ 𝑊(𝐵). The reverse inclusion is then 

followed by symmetry. This completes the proof. 

Remark: Clearly, 𝑊𝑒(𝑇) ⊆ 𝑊(𝑇) for every 𝑇 ∈ 𝐵(ℋ). 

5. Conclusion  
The notion of approximate similarity, approximate unitary equivalence and closely related operator equivalence relations is 

applicable in quantifying how two systems approximate each other. 
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