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Abstract - Many real-life optimization problems consist of multiple well known problems which are interconnected with each 

other. A recent example of such a problem is the Travelling Thief Problem (TTP) or Packing While Travelling Problem (PWTP), 

which combines the classical Travelling Salesman problem and the Knapsack problem. In this paper, heuristics for a variant of 

PWTP, namely the PWTP with dropping rate (PWTP_DR), are examined. In PWTP_DR, a vehicle with a fixed-capacity 

container visits several cities exactly once. These cities contain various items that have specific profits and weights assigned to 

them. The vehicle has to pick up the items from the cities while meeting the container capacity constraint. In the process, the 

vehicle's speed decreases as the weight of the container increases, while the profit associated with an item drops by a factor 

called dropping rate, which depends on the duration of the article in the container. The problem is to maximize the total profit 

while minimizing the tour time. So far, this problem has not received much attention, with the only exception of the well-known 

NSGAII based metaheuristic (NSGAII_PWTP_DR) that utilizes a construction heuristic to create a population of initial solutions, 

which then evolves through an iterative process. In this work, three heuristics tailored to the problem are designed, and their 

various combinations are investigated with an aim to achieve a well-diversified population. Comprehensive experiments 

supported by statistical tests provide the best combination of heuristics to generate a population of solutions as it yields results 

that are significantly better than those obtained by the previously proposed NSGAII_PWTP_DR. 

Keywords - Bi-objective optimization problem, NSGAII, Heuristic, Travelling thief problem, Dropping rate, Packing While 

Trravelling Problem. 

1. Introduction  
Goods with short shelf life, such as fruits, vegetables, flower cuttings, and medicines, are time and/or temperature-sensitive 

items. They require fast and safe delivery to maintain quality and effectiveness. Delivering items with a short shelf life by road 

poses a significant challenge due to the increasing traffic congestion. As the travel time increases, the profit associated with such 

items decreases; hence, it is crucial to minimize the travel time, which in turn requires good planning of the tour. Further, as 

more items are picked, the profit increases. Nevertheless, the velocity of the vehicle comes down. Consequently, this leads to a 

rise in the duration of travel, resulting in a decrease in the overall value of the items over time. Motivated by such complex 

problems in real life, a hybridization of standard optimization problems, namely the Travelling Thief Problem (TTP), was 

introduced by Bonyadi et al. [1] in 2013. This problem is a combination of classical optimization problems - Knapsack Problem 

(KP) [2] and Travelling Salesman Problem (TSP) [3], in which objective functions of both the problems are connected by 

velocity, rent or dropping rate. Two variants of TTP, namely- TTP1 (Single objective optimization problem) and TTP2 (Bi-

Objective Optimization Problem (BOOP)), are proposed in [1]. We refer to TTP2 as PWTP with dropping rate (PWTP_DR) as 

this nomenclature signifies the motivation behind the problem and the dropping rate as the interconnecting component of the two 

subproblems. In fact, Polyakovskiy et al. [4] used the name Packing while Travelling Problem (PWTP) for the TTP with the 

fixed tour. After the formulation of PWTP and PWTP_DR, Polyakovskiy et al. [5] came up with a test suit consisting of 9720 

benchmark instances for PWTP and Bi-objective PWTP [6] which is an important contribution for the researchers working on 

this problem and its subsequent variants. The single objective PWTP, i.e. TTP1, is dealt with by many researchers using socially 

inspired algorithm [7], memetic algorithm [8], branch and bound [9], fitness landscape analysis using hill climbing [10], Efficient 

hybrid-local search [11], Hyper heuristic approach [12], and a study of the influence of subproblem on the quality of TTP [13].  

Rodriguez et al. [12] used a sequence-based hyper-heuristic approach for TTP1, which utilizes a simulated annealing algorithm 

and some local search. They also generated several sets of TTP1 instances. Junfeng et al. [13] studied the influence of subproblem 

solutions on the quality of PWTP solutions.  Blank et al. [6] proposed a Bi-objective variant of TTP1 (Bi_PWTP) by removing 

the rent of the container. They also implemented the well-known metaheuristic NSGAII [6]  for Bi_PWTP. This version of PWTP 

received a lot of attention from other researchers too.  

http://www.internationaljournalssrg.org/
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Good quality solutions of Bi_PWTP were obtained by using dynamic programming [14], Non-Dominated Tournament 

Genetic Algorithm (NTGA) [15], Variable neighbourhood Search [16], Non-Dominated Sorting Biased Random-Key Genetic 

Algorithm (NDS-BRKGA) [17] and weighted sum method [18]. NDS-BRKGA [17] proved to be best for smaller instances, 

whereas the weighted sum method [18] performs better for larger ones, even though it relies heavily on the weights assigned to 

each objective function.The original bi-objective variant TTP2 or PWTP_DR has not received much attention from the 

researchers despite its real-life applications. The only effort made towards solving this problem is a recent work by Kumari and 

Srivastava [19] in which NSGAII is adapted and implemented for this problem. NSGA II, being a population-based metaheuristic, 

requires a diverse population of solutions.  

Thus, in [19], three construction heuristics are proposed and tested, and the best one is used to create the initial population. 

This leads to a set of solutions having the same tour but different packing plans. Besides, it does not consider the impact of taking 

multiple heuristics together in the population. The incorporation of multiple heuristics simultaneously has the potential to yield 

improved results by allowing for the exploration of solution space using multiple tours, which may contribute to getting better 

solutions. The lack of comparative analysis on the significance of using a combination of heuristics to generate an initial 

population of solutions for PWTP_DR motivates us to investigate whether different combinations of heuristics could improve 

the quality of solutions in NSGAII. The remaining part of the paper is organised as follows: Section 2 presents the relevant 

preliminaries and definitions pertaining to a BOOP. A detailed description and mathematical model of PWTP_DR is given in 

Section 3. The three construction heuristics are explained in Section 4.  Section 5 is dedicated to the experiments and discussion 

of the results. The concluding remarks summarize the paper. 

2. Preliminaries and Notations  
Given that PWTP_DR represents a bi-objective optimization problem, it involves two objective functions, 𝜙 and 𝜓, with 

the goal of minimizing ∅ while maximizing  𝜓. Let Ɓ ⊆ {V: V is a solution vector with q coordinates (decision variables)}. A 

solution 𝑉(𝑖) ∈ Ɓ is said to be a nondominated solution (NDS) in Ɓ if there does not exist 𝑉 ∈ Ɓ  such that ∅(𝑉) > ∅(𝑉(𝑖)) and 

𝜓(𝑉) < 𝜓(𝑉(𝑖)).  The Pareto front (PF) of Ɓ is the set of all NDS, as shown in Figure 1(a). In multi-objective optimization 

problems, comparison between the PFs obtained for a problem by two distinct runs of the same metaheuristic or by different 

techniques is usually compared using a metric, namely- the hypervolume (HV) of the pareto front [2].  HV measures the area 

covered by the PF with respect to Nadir point, which is the vector containing the worst values of both the objective functions, 

i.e. (max
 

∅, min
 

𝜓), in the case of the min-max type of objective functions. Besides, a vector consisting of the best value of both 

the objective functions is known as the Ideal point or Perfect point. Since PWTP_DR is a min-max type problem, the Ideal point 

is computed as (min
 

∅, max
 

𝜓).  

 It is obvious that all the values of the objective functions need to be normalized between 0 and 1 using the Perfect point and 

Nadir point before computing the HV. Nadir point and the Ideal point are also normalized to (0, 1) and (1, 0) respectively.  The 

area of the shaded region shown in Figure 1(b) is the hypervolume of the pareto front. Nadir point, shown in Figure 1 (a), is (0, 

1), which corresponds to the normalized lowest and highest values (worst values) of ∅ and 𝜓 respectively.  Hence, if normalized 

PF = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,2,…,𝑛 where (𝑥𝑖 , 𝑦𝑖)’s are arranged in ascending order of 𝑥𝑖′𝑠,  then 

 𝐻𝑉 = ∑(𝑥𝑖 − 𝑥𝑖−1)(𝑦0 − 𝑦1)

𝑛−1

𝑖=1

                                       (1) 

Where (𝑥0, 𝑦0) is the Nadir Point 

  
(a) Nondominated solution, dominated solution and pareto front 

(normalized) 

(b) Hypervolume obtained by Min, Max pair of objective functions 

Fig. 1 Nondominated solutions, dominated solutions, pareto front, Ideal and Nadir vectors of Normalized pareto front and hypervolume of min-max 

type bi-objective optimization problem 
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3. Packing While Travelling Problem with Dropping Rate 
In PWTP_DR a vehicle having a container with capacity (𝐶) has to visit a set of cities 𝑁 = {1, 2, … , 𝑛} exactly once and 

return back to the initial city. The distance between cities is given by the distance matrix 𝐷𝑀 = [𝑑𝑖𝑗]
𝑖,𝑗=1,2,..,𝑛

 where 𝑑𝑖𝑗  is the 

distance between city 𝑖 and city 𝑗. The set 𝑀 = {1, 2, … , 𝑚} contains items available at these n cities. The weight and initial profit 

of 𝑖𝑡ℎ item is given by 𝑤𝑖  and 𝑝𝑖 , 𝑖 = 1, 2, … , 𝑚 respectively. The total weight of items picked from the city 𝑥𝑖, is denoted by 

𝑤𝑡𝑥𝑖
. In this problem, items are to be chosen within their container capacity 𝐶 during the tour, which is a sequence of cities 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛}. Also, whenever the weight in the container increases, the velocity of the vehicle in the city 𝑥𝑘 reduces to 

𝑣𝑥𝑘
= 𝑣𝑚𝑎𝑥 −

∑ 𝑤𝑡𝑥𝑗
 𝑘

𝑗=1

𝐶
(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)                          (2) 

 where maximum and minimum velocities of the vehicle are given by 𝑣𝑚𝑎𝑥  and 𝑣𝑚𝑖𝑛  respectively. The time needed to travel 

between two consecutive cities is  

𝑡𝑥𝑖,𝑥𝑖+1
=

𝑑𝑥𝑖,(𝑥𝑖+1)

𝑣𝑥𝑖

                                                                 (3) 

If 𝑇𝑖  represents the duration for which 𝑖𝑡ℎ item is kept in the container, the final reduced profit (𝑝𝑖
𝐹) of item 𝑖 depends on  𝑇𝑖 , 

a constant 𝛼, dropping rate 𝐷𝑟 and is calculated by  

𝑝𝑖
𝐹 = 𝑝𝑖 × 𝐷𝑟⌊

𝑇𝑖
𝛼

⌋                                                                    (4) 

Let the packing plan be denoted by 𝑌 = (𝑦1, 𝑦2 , … , 𝑦𝑚), where 𝑦𝑖  denotes the city from where 𝑖𝑡ℎ item is picked. If 𝑖𝑡ℎ item 

is not picked, then 𝑦𝑖 = 0. The objective is to find a solution 𝑆 = (𝑋, 𝑌) which  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 𝑓(𝑋, 𝑌) = ∑(𝑡𝑥𝑖,𝑥𝑖+1
) + (𝑡𝑥𝑛,𝑥1

)

𝑛−1

𝑖=1

               (5) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑠 𝑔(𝑋, 𝑌)  = ∑ (𝑝𝑖𝜒𝑖 × 𝐷𝑟⌊
𝑇𝑖
𝛼

⌋)

𝑚

𝑖=1

                    (6) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡     ∑ 𝑤𝑖𝜒𝑖

𝑚

𝑖=1

≤ 𝐶                   (7) 

where 𝜒𝑖 = {
1 𝑖𝑓 𝑦𝑖 ≠ 0
0 𝑖𝑓 𝑦𝑖 = 0

 

It is worth noting that for a given problem instance, the first city is always fixed, and items from the first city can be picked 

only at the beginning of the tour. They cannot be picked up while returning. Further, it is permitted to collect more than one item 

from a city, while the same item cannot be picked from multiple cities. 

4. Heuristics for Packing While Travelling Problem with Dropping Rate 
PWTP_DR is an NP-hard, bi-objective optimization problem. The application of exact algorithms for solving such problems 

is often impractical. Furthermore, in real-world optimization scenarios, exact results are rarely required. In such cases, heuristic 

algorithms that find approximate or near-optimal solutions but an acceptable time play an indispensable role. This paper aims to 

determine the optimal heuristic combination for generating the initial population of solutions used in the NSGAII metaheuristic 

for PWTP_DR. To commence, we outline the construction heuristics presented in [19].  

4.1. Construction Heuristic1 (Cons_1) 

Tour for the TSP part of PWTP_DR is generated by the Chained Lin Kernighan heuristic [3]. Once the tour is fixed, adding 

even a single item to the container results in a new solution with different profit and tour time. The objective is to maximize the 

sum of the final profit (∑ 𝑝𝑖
𝐹𝑚

𝑖=1 ), while satisfying inequality (7), which serves as a motivation for the next phase of the heuristic. 

Consequently, the efficiency of each item is determined by dividing its profit by its weight. The items are then arranged in 

descending order based on their efficiencies. Placing the first item from this sorted list into the container offers a feasible solution 
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for PWTP_DR. However, the selection of the city from which this item is taken is done randomly, keeping in view that an item 

may be available in multiple cities. Similarly, including the next item from the list in the container leads to another solution. 

Continuing this process with the remaining items from the list until inequality (7) is satisfied results in subsequent feasible 

solutions.  

4.2. Construction Heuristic2 (Cons_2) 

The first step is to find the tour, which is generated as in Cons_1. same way. For the items picking the part of the solution, 

the associated factor with minimum distance (𝐴𝐹_𝑀𝑖𝑛𝐷 =
𝑝𝑟𝑜𝑓𝑖𝑡

𝑤𝑒𝑖𝑔ℎ𝑡×𝑀𝐷𝑇𝑇
) for each item is computed where MDTT refers to the 

minimum distance to be travelled by the vehicle while it is carrying this item in the container.  Items are selected in descending 

order of 𝐴𝐹_𝑀𝑖𝑛𝐷.  

In other words, it is the total distance travelled by the vehicle from the last city of availability of this item to the city positioned 

at the end of the tour. Items are then sorted in the descending order of their AF_MinD values. The first item in the list is picked 

and placed in the container. This provides one feasible solution to the problem. Now next item from the sorted list is picked and 

added to the container, resulting in another feasible solution. This process is repeated for the remaining items in the list till 

inequality (7) is satisfied, resulting in a set of solutions which are all feasible. It is worth noting that the total number of feasible 

solutions thus created can differ for each instance. In other words, this quantity is specific to both the instance and the heuristic 

employed. 

4.3. Construction Heuristic 3 (Cons_3) 

In Cons_3, the cities are first chosen on the basis of minimum distance criteria, and the final tour sequence is obtained by 

reversing the sequence. The next city to be visited after the current city 𝑥𝑖 is chosen using the minimum distance criteria. Let 

the sequence of cities thus obtained is 𝑥1, 𝑥2, … , 𝑥𝑛 .  As the vehicle traverses the cities, the weight in the container increases. 

Thus, it is desirable that towards the end of the trip, the vehicle travels shorter distances. Hence, the tour for the solution is 

taken in the reverse order, i.e., 𝑥1, 𝑥𝑛 , 𝑥𝑛−1, … , 𝑥3, 𝑥2, 𝑥1 = 𝑋 (say). Item selection procedure in Cons_3 after generating the tour 

is the same as discussed in Cons_2. 

5. Experiments and Results 
Implementation of the heuristics for PWTP_DR is done in C++, Intel core i7 laptop running at 1.80 GHz, 8GB RAM. The 

test suite of 100 instances (listed in Table 1) used in this work for the experiments is available at 

https://cs.adelaide.edu.au/~optlog/research/combinatorial.php. As already mentioned in Section 2 for a BOOP, the comparison 

of heuristics is done using the values of HV of the pareto fronts (PF) obtained by each run of the heuristics. Thus, corresponding 

to each instance, HV is computed using (3), which requires Ideal and Nadir Vectors for the instance. For obtaining these values, 

the tour for each instance is obtained using the LK heuristic [3] (the algorithm code used is available on 

https://github.com/lingz/LK-Heuristic), which provides the distance of the tour (Dis).  

Nadir tour time is calculated by the distance of the tour with minimum velocity. (
𝐷𝑖𝑠

𝑣𝑚𝑖𝑛
 )  and  Ideal tour time is 0. Ideal profit 

is taken as the sum of profits of all items whereas Nadir profit is 0. These values are taken from [19]. For the purpose of 

investigating the best-case scenario for employing the construction heuristics to generate an initial set of solutions in a 

metaheuristic, for each test instance, the HV of the set of solutions obtained by each of the three construction heuristics is noted. 

These values are listed in the respective columns of Table 1.  

Column Cons_1_2 contains the HV computed for the NDS of the solutions provided by both Cons_1 and Cons_2 taken 

together. Similarly, the HV values are reported for the pairs Cons_2, Cons_3 (Cons_2_3) and Cons_1, Cons_3 (Cons_1_3). 

Experiments also include the case when solutions are generated by all the three heuristics indicated by Cons_1_2_3.  A significant 

observation from these results is that the combination heuristics Cons_2_3 and Cons_1_2_3 yield identical HV values across all 

test instances; hence, they are reported in the single column under the heading ‘Cons_2_3 / Cons_1_2_3’. This indicates that the 

solutions produced by Cons_1 are either dominated by those generated by Cons_2 and Cons_3 or are identical to them. The best 

value of each row is highlighted by showing it in bold. The mean of HV overall test instances corresponding to each heuristic is 

in the last row of Table 1. Another important observation is that the highest HV values are obtained by the combination Cons_2_3 

in all instances, with the rest attaining these peaks in only a few instances. Consequently, the best average value of HV is achieved 

by the combination of Cons_2 and Cons_3. Therefore, there is no justification for utilizing Cons_1 in population generation, as 

incorporating additional heuristics necessitates increased computational time. 
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Table 1. Hypervolume (HV) obtained by heuristics. 

 Cons_1 Cons_2 Cons_3 Cons_1_2 Cons_1_3 Cons_2_3 / Cons_1_2_3 NSGAII_PWTP_DR 

10_3_2_25.txt 0.095558 0.122754 0.156563 0.122754 0.156563 0.156563 0.156563 

10_3_2_50.txt 0.177782 0.300793 0.287729 0.300793 0.287729 0.300793 0.287729 

10_3_2_75.txt 0.036294 0.267623 0.265721 0.267623 0.265721 0.267623 0.265721 

10_3_3_50.txt 0.360747 0.360747 0.357551 0.360747 0.360747 0.360747 0.350633 

10_3_3_75.txt 0.424959 0.426623 0.496007 0.426623 0.496106 0.49771 0.492106 

10_3_4_50.txt 0.255851 0.391196 0.394256 0.391196 0.394256 0.394256 0.386705 

10_5_1_50.txt 0.352114 0.371346 0.392162 0.371346 0.392531 0.39327 0.392162 

10_5_1_75.txt 0.12158 0.517304 0.523981 0.517304 0.523981 0.523981 0.524423 

10_5_2_50.txt 0.1602 0.236914 0.284675 0.236914 0.284739 0.285103 0.284675 

10_5_2_75.txt 0.130439 0.294334 0.629687 0.294334 0.629687 0.629687 0.630316 

10_5_3_25.txt 0.190386 0.210879 0.221768 0.210879 0.221768 0.221768 0.221768 

10_5_3_50.txt 0.118766 0.358015 0.35327 0.358015 0.353591 0.358015 0.35327 

10_10_1_25.txt 0.166429 0.250109 0.265015 0.250109 0.265141 0.268651 0.265015 

10_10_4_75.txt 0.354925 0.399244 0.531199 0.399244 0.535585 0.539912 0.531345 

10_10_5_25.txt 0.119683 0.14036 0.139217 0.14036 0.142556 0.143473 0.139217 

10_10_5_50.txt 0.092857 0.210228 0.321668 0.210228 0.321668 0.321668 0.321677 

10_10_5_75.txt 0.203493 0.329206 0.332346 0.329206 0.332468 0.332839 0.332508 

10_10_6_25.txt 0.098743 0.173222 0.272959 0.173222 0.272959 0.272959 0.272979 

10_15_2_50.txt 0.217051 0.31251 0.315127 0.31251 0.315127 0.315127 0.315354 

10_15_2_75.txt 0.099499 0.278531 0.418339 0.278531 0.418363 0.418451 0.418361 

10_15_3_25.txt 0.083197 0.160469 0.233549 0.160469 0.233549 0.233549 0.234274 

10_15_3_50.txt 0.147742 0.225177 0.31435 0.225177 0.314543 0.315111 0.314487 

10_15_3_75.txt 0.289047 0.606359 0.613393 0.606359 0.613393 0.613393 0.613329 

10_15_4_25.txt 0.092311 0.269568 0.298877 0.269568 0.298877 0.298877 0.299011 

10_15_4_50.txt 0.140151 0.295491 0.374401 0.295491 0.374401 0.374401 0.374482 

20_5_1_25.txt 0.13762 0.231292 0.230877 0.231292 0.230893 0.231292 0.230877 

20_5_1_50.txt 0.253846 0.326069 0.429221 0.326069 0.429789 0.431041 0.429221 

20_5_1_75.txt 0.156379 0.410918 0.482369 0.410918 0.484147 0.487408 0.482612 

20_5_2_25.txt 0.174567 0.113042 0.113748 0.113042 0.177479 0.113748 0.113748 

20_5_2_50.txt 0.044747 0.19364 0.235923 0.19364 0.236715 0.242715 0.235923 

20_10_2_25.txt 0.060449 0.174183 0.207745 0.174183 0.208322 0.20869 0.217448 

20_10_2_50.txt 0.090825 0.347258 0.391484 0.347258 0.391801 0.394934 0.391712 

20_10_2_75.txt 0.228254 0.603021 0.709654 0.603021 0.709654 0.709654 0.709994 

20_10_3_25.txt 0.038801 0.232944 0.245218 0.232944 0.245708 0.252111 0.24528 

20_10_3_50.txt 0.138731 0.368473 0.348825 0.368473 0.349509 0.368473 0.349236 

20_10_3_75.txt 0.076516 0.318409 0.357214 0.318409 0.357214 0.357214 0.360602 

20_10_4_25.txt 0.083174 0.226395 0.241156 0.226395 0.241156 0.241156 0.241176 

20_20_1_75.txt 0.322979 0.551638 0.654114 0.551638 0.654543 0.655996 0.654226 

20_20_2_25.txt 0.09353 0.207141 0.23963 0.207141 0.239643 0.240067 0.242285 

20_20_2_50.txt 0.062989 0.306526 0.322696 0.306526 0.322881 0.324928 0.322757 

20_20_2_75.txt 0.237011 0.613393 0.596888 0.613393 0.603534 0.620404 0.601581 
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20_20_3_25.txt 0.061715 0.236274 0.234283 0.236274 0.234305 0.236274 0.234406 

20_20_3_50.txt 0.222748 0.443646 0.430934 0.443646 0.434333 0.443646 0.443801 

20_25_1_25.txt 0.055155 0.134404 0.194718 0.134404 0.195188 0.196248 0.194821 

20_25_1_50.txt 0.18073 0.364055 0.361712 0.364055 0.363181 0.368298 0.381227 

20_25_2_25.txt 0.049422 0.268709 0.269502 0.268709 0.269502 0.269502 0.269657 

20_25_2_50.txt 0.147354 0.404766 0.4075 0.404766 0.4075 0.4075 0.407548 

20_25_2_75.txt 0.075402 0.319235 0.418303 0.319235 0.418303 0.418303 0.418309 

20_25_1_75.txt 0.13501 0.3157 0.335892 0.3157 0.335959 0.336881 0.335991 

20_25_3_25.txt 0.053339 0.246232 0.260944 0.246232 0.261137 0.262937 0.261007 

50_15_1_25.txt 0.122553 0.248431 0.249871 0.248431 0.250758 0.253826 0.249912 

50_15_1_50.txt 0.041883 0.413807 0.409267 0.413807 0.40989 0.425423 0.409339 

50_15_1_75.txt 0.122908 0.369256 0.434581 0.369256 0.436172 0.441324 0.434631 

50_15_2_25.txt 0.033961 0.223408 0.216363 0.223408 0.216733 0.223408 0.219333 

50_15_2_50.txt 0.043205 0.364625 0.382943 0.364625 0.383695 0.389443 0.38307 

50_15_2_75.txt 0.093516 0.407224 0.517674 0.407224 0.517729 0.518372 0.532821 

50_25_8_50.txt 0.054865 0.300225 0.314872 0.300225 0.314872 0.314872 0.314919 

50_25_8_75.txt 0.157273 0.553167 0.615084 0.553167 0.616053 0.62323 0.615104 

50_25_9_25.txt 0.014195 0.146624 0.181992 0.146624 0.181994 0.182301 0.21346 

50_25_9_50.txt 0.100835 0.425374 0.446436 0.425374 0.448479 0.459665 0.4466 

50_25_9_75.txt 0.110345 0.554235 0.572333 0.554235 0.572358 0.572977 0.57568 

50_25_10_25.txt 0.087516 0.263294 0.273513 0.263294 0.274889 0.280236 0.273581 

50_50_1_25.txt 0.045002 0.218102 0.262683 0.218102 0.262696 0.26277 0.263377 

50_50_1_50.txt 0.11384 0.462158 0.393074 0.462158 0.395405 0.462158 0.393165 

50_50_1_75.txt 0.15256 0.542078 0.625482 0.542078 0.625487 0.625851 0.625772 

50_50_2_25.txt 0.039201 0.18082 0.236153 0.18082 0.236329 0.237342 0.249788 

50_50_2_50.txt 0.079669 0.432493 0.453516 0.432493 0.453637 0.455125 0.453552 

50_50_2_75.txt 0.083961 0.520995 0.632598 0.520995 0.63328 0.638795 0.632647 

50_75_1_25.txt 0.022438 0.171533 0.232156 0.171533 0.232157 0.232243 0.23252 

50_75_8_50.txt 0.123408 0.393265 0.388738 0.393265 0.389265 0.393265 0.390982 

50_75_9_50.txt 0.127251 0.468877 0.479131 0.468877 0.480449 0.486948 0.479331 

50_75_9_75.txt 0.092509 0.538556 0.530985 0.538556 0.532009 0.539932 0.531002 

50_75_10_25.txt 0.04134 0.17413 0.160275 0.17413 0.160776 0.17413 0.174394 

50_75_10_50.txt 0.06563 0.384094 0.375332 0.384094 0.376458 0.384094 0.376007 

50_75_10_75.txt 0.091932 0.648469 0.638459 0.648469 0.639568 0.649275 0.638478 

100_3_9_50.txt 0.058633 0.462953 0.458478 0.462953 0.458478 0.464005 0.455942 

100_3_9_75.txt 0.368213 0.603445 0.600899 0.603445 0.601016 0.603445 0.598878 

100_5_10_25.txt 0.00405 0.032368 0.050306 0.032368 0.050342 0.050752 0.101217 

100_5_10_50.txt 0.022983 0.225337 0.33251 0.225337 0.332512 0.333508 0.33251 

100_25_9_75.txt 0.032987 0.495753 0.508332 0.495753 0.508615 0.517292 0.508332 

100_25_10_25.txt 0.009198 0.211757 0.209848 0.211757 0.209913 0.211757 0.219493 

100_25_10_50.txt 0.171252 0.4627 0.473659 0.4627 0.473693 0.474702 0.473719 

100_50_1_25.txt 0.01587 0.203439 0.199989 0.203439 0.200126 0.203439 0.215536 

100_50_1_50.txt 0.102754 0.404421 0.448393 0.404421 0.448533 0.451313 0.448577 
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100_50_10_25.txt 0.035391 0.212731 0.230376 0.212731 0.230376 0.230376 0.230386 

100_50_10_50.txt 0.135988 0.458861 0.450596 0.458861 0.451173 0.460441 0.450929 

100_50_10_75.txt 0.000033 0.040088 0.474201 0.040088 0.474201 0.474201 0.474223 

100_100_8_25.txt 0.07637 0.272944 0.263156 0.272944 0.264592 0.272944 0.263166 

100_100_8_50.txt 0.03828 0.420832 0.421887 0.420832 0.422439 0.432367 0.421896 

100_100_9_75.txt 0.029793 0.394586 0.532936 0.394586 0.532936 0.532936 0.533151 

100_100_10_50.txt 0.026899 0.433721 0.426672 0.433721 0.426766 0.433721 0.431498 

100_100_10_75.txt 0.000389 0.080498 0.437045 0.080498 0.437045 0.437045 0.443893 

100_150_1_25.txt 0.010453 0.118999 0.159682 0.118999 0.159684 0.159995 0.161091 

100_150_3_75.txt 0.025138 0.374676 0.371426 0.374676 0.371613 0.377208 0.371431 

100_150_4_25.txt 0.073498 0.462794 0.582336 0.462794 0.583059 0.590208 0.58235 

100_150_10_25.txt 0.045609 0.259097 0.264577 0.259097 0.264773 0.266795 0.264588 

100_150_10_50.txt 0.026217 0.192994 0.229307 0.192994 0.229519 0.232024 0.229961 

100_150_10_75.txt 0.014404 0.390673 0.401244 0.390673 0.401267 0.402626 0.40281 

100_25_8_50.txt 0.079496 0.454793 0.44522 0.454793 0.44649 0.455142 0.445266 

100_150_1_50.txt 0.031647 0.342426 0.549945 0.342426 0.550033 0.552579 0.554902 

Average 0.112084 0.328845 0.370609 0.328845 0.371788 0.375052 0.372788 

# Best      64 39 

As already mentioned, PWTP_DR has not been studied so far since it was proposed in [1] with the exception of a 

metaheuristic NSGAII_PWTP_DR [19] . The initial population for NSGAII_PWTP_DR [19] is generated using a single 

construction heuristic, namely Cons_3 and the test suite used for the experimentation contains only 20 instances. Therefore, for 

a fair and better comparative analysis, in this work, the test suite is extended to 100 instances, and NSGAII_PWTP_DR is 

executed with the same configuration as in [19] . The average hypervolume (HV) achieved over ten runs is documented in the 

last column, “NASGAII_PWTP_DR”, of Table 1. In this table, the best HV values obtained from both Cons_2_3 and 

NSGAII_PWTP_DR are recorded in their respective columns, with the values obtained by NSGAII highlighted in bold italics if 

they are best in that row. Based on the data presented in Table 1, it is evident that Cons_2_3 outperformed NSGAII_PWTP_DR 

in 61 cases, while NSGAII_PWTP_DR surpassed Cons_2_3 in only 36 cases, and their performance was the same in three 

instances (10_3_2_15, 10_5_3_25, and 20_5_2_25). It is interesting to note that here the performance of a heuristic is being 

compared with that of a metaheuristic. The former is usually employed to create an initial set of solutions.  

In contrast, the latter is a step-by-step procedure through which the population evolves using a variety of operators such as 

crossover, mutation, and local search, to name a few. It is further noted that as the number of cities and items increases, 

NSGAII_PWTP_DR tends to deliver superior outcomes, which is quite obvious. To further substantiate, a t-test for paired two 

sample mean is applied to the results obtained by Cons_2_3 and NSGAII_PWTP_DR at 5% (𝛼 = 0.05) level of significance to 

justify our claim. The calculated P value for two two-tailed t-tests is 0.0401, which is less the 𝛼. Therefore, we can infer that 

Cons_2_3 is the preferred choice for obtaining an initial set of solutions to be employed in a metaheuristic. At the same time, it 

alone is able to provide a good solution for smaller instances. The reason behind obtaining higher HV values by the proposed 

construction heuristics as compared to the metaheuristic NSGAII_PWTP_DR can be summarized as follows: In the latter case, 

three different heuristics are tested, and only the best one is employed to generate the initial population. However, this population 

is based on a single tour; therefore, it is not as diverse as desired. Even the crossover or mutation operators fail to improve its 

quality significantly. On the other hand, when three different heuristics are providing solutions to the population together, it is 

bound to be of good quality. The diversity of such a population is obviously high as the solutions are constructed using distinct 

tours. Even though one of the heuristics fails to provide non-dominated solutions to the pool, it helps maintain the diversity of 

the population. Both these factors together are responsible for the population with higher HV value without even being improved 

further by the evolutionary operators. Clearly thus, it is a cost-effective strategy to be used for finding good solutions of 

PWTP_DR. It is worth noting that the outcome of our experiments could also prove beneficial for other metaheuristics that may 

be developed for this problem in future. 
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6. Conclusion 
In this paper, we have done a comparative study of state-of-the-art heuristics for the Packing While Travelling Problem with 

dropping rate. This work not only explores three known construction heuristics for PWTP_DR but also explores the outcomes 

of the heuristics through extensive experiments when they are utilized simultaneously to pump in the solutions to an initial 

population. For this comparison, three construction heuristics and their combinations are experimented with to choose the best 

among heuristics and the combination heuristics. It is also seen that a combination of heuristics (Cons_1_2_3 and Cons_2_3) 

serves a better purpose instead of using a standalone heuristic in a population because this combination surpasses the performance 

of the only available metaheuristic NSGAII_PWTP_DR.  

It is evident that for larger instances, using metaheuristics is necessary to address such problems. However, employing a 

combination of construction heuristics is beneficial in generating a diverse initial population, which plays an important role in 

preventing premature convergence in the metaheuristic process. For future work, we intend to extend our study by designing 

more construction heuristics/metaheuristics and improving the Nadir and Ideal vectors. The comparative study may be extended 

to the metaheuristics, where the combination of heuristics will be used for the initial population.  
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