Original Article

Meyenburg Algebra and the Mass Gap

Till Meyenburg

Hildegard-von-Bingen-Gymnasium, Cologne, NRW, Germany.

Corresponding Author: till.meyenburg@gmail.com

Received: 19 August 2025 Revised: 28 September 2025 Accepted: 13 October 2025 Published: 28 October 2025

Abstract - The author introduces the Meyenburg Algebra, a generalization of classical arithmetic that resolves singularities by extending the rules of multiplication and division to include the axioms $0 \cdot 0 = \omega$ and $\frac{\omega}{0} = 0$. This framework reduces to standard arithmetic addition and subtraction in the limit omega tending to infinity, but in finite regimes, the algebra provides a consistent framework that regularizes otherwise undefined operations. It demonstrates compatibility with relativistic velocity addition, Wheel Algebra axioms, and Lorentz invariance, thereby establishing its physical relevance. When embedded into Hilbert space and extended to $SU(2)\times SU(2)$, the algebra naturally generates a positive mass gap, satisfying the criteria of Yang–Mills theory. Cosmologically, the algebraic structure resolves the Schwarzschild singularity by complexifying the radial coordinate, leading to stable vacuum cores inside black holes. The algebraic vacuum contributes a nonzero energy density corresponding to dark energy, while hidden mass contributions emerge as a natural candidate for dark matter. Altogether, the Meyenburg Algebra provides a unifying algebraic foundation that connects mathematics, physics, and information theory to describe nature properly. It offers a coherent resolution of singularities and an intrinsic mechanism for mass generation, thereby addressing some of the most fundamental open problems in contemporary science.

Keywords - Meyenburg Algebra, Wheel Algebra, Yang-Mills Theory, Mass gap, Dark energy, Dark matter.

1. Introduction

Classical arithmetic, founded on Aristotelian logic, excludes division by zero and defines $0 \cdot 0 = 0$. This leads to unresolved singularities and limits its applicability in modern physics. The objective of this paper is to introduce the Meyenburg Algebra as a generalization that resolves these issues while reducing classical arithmetic to a limiting case.

The author got to know, as a ten-year-old school boy, the theory of Albert Einstein, of course, at this age, in a popular scientific way. He wondered about the upper finite border in physics for energy, as well as about the infinite number stripe, and what does this revelation in physics mean to mathematics, since even light speed c plus light speed c cannot be higher than light speed c, in contradiction to normal Aristotelian addition c + c = 2c.[1]

James Anderson and Jan Bergstra introduced very well-established connections to an algebra with the division by zero problem.[2] This is far from being fringe science or faulty approaches, as the community learned what they are able to answer, and which is still ongoing research in the golden discipline of mathematics. So, the Wheel Algebra provides a framework, which all experts are sure is where dividing by zero can simply be allowed, and then the experts conclude what follows. The technique, in a scientific way, is to change the direction of problem-solving. In the realm at the edge of mathematics and physics, sometimes the questions get too complex, as it is possible to make the big solution all at once. So we assume the problem to be solved with the Wheel Algebra and conclude what is still allowed and what is not. Another approach in the same direction is known as Universal Algebra. This is the global movement, while the Wheel Algebra is more European or Anglo-American.

What is certainly no longer allowed is that rigid difference between multiplication and division. The author and his team see the universe as infinite, and there are no multiples of it (no multiverse, just one Yin-Yang), so every phenomenon could be numbered as a part, as a division of infinity. So they lose the necessity of multiplication as multiplication and division merge in Wheel Algebra. So, what has to be explored in the Aristotelian and Galilean realms is the limiting case of infinity, and this will be the future scope of the examination.

In normal day life, this problem of infinity does not occur as light, sound, and heat all move at finite speed. So the author and the team generalized the Doppler Effect to be applicable for every phenomenon of physics, may it be optics, acoustics, thermodynamics, or any other domain.

This generalized velocity addition definition, which can be named a Doppler function, fulfilled the purpose of saturating the Boolean Structure the author applied. It is the announced step from a Binary Set to the Real Numbers as proposed in the Issue of January this year.

2. Axiomatic Foundation: Definition of Meyenburg Algebra $(0 \cdot 0 = \omega, \frac{\omega}{0} = 0, \text{ limiting case } \omega \text{ tends to infinity})$

The Meyenburg Algebra is introduced as a generalized algebraic system based on Boolean operators for extreme values and limits with explicitly stated axioms. It is by now not an algebra over a field in the classical sense, not only because of its identity as an operator framework defined by these three above-given rules.

The final algebraic structure, nevertheless, is given by the generalized velocity addition theorem:

$$A(\mathbb{C}, f(u, v, \omega))$$
 with $f(u, v, \omega) = \frac{u+v}{1-\frac{uv}{\omega^2}}$ and

$$u, v, \omega \in \mathbb{C}$$

The exact field properties of this structure are the scope of future exploration. In the limits u,v tending to omega and limits u,v tending to zero, so if \mathbb{C} is reduced to its bonds $\{0, \omega\}$, it creates the modulo 2 addition of the field F_2 , a XOR.

3. Relativistic Applications: Addition theorems, XOR structure, Abelian group.

When applied to the Einstein velocity addition theorem limits with omega equals light speed c, the Meyenburg Algebra produces XOR-like behavior in the limits 0 and u and v equals c. This yields an Abelian group structure, providing a novel algebraic interpretation of relativistic addition laws.

The scope should focus on the compatibility of the Meyenburg Algebra with Wheel Algebra Axioms and Lorentz Invariance: This is the necessity of the algebraic correspondence between logical operation XOR (and OR, if the velocity addition theorem is solved to u) and the additive and subtractive structures in the Meyenburg Algebra. By embedding these operators in the framework of Wheel Algebra, it is demonstrated that the Meyenburg Algebra satisfies all Wheel Axioms concerning cyclic deformation. The Lorentz invariance of the XOR structure proves to be physically applicable in quantum field theory, leading naturally to a mass gap or mass defect.

3.1. Preliminaries

3.1.1. Meyenburg Algebra

Let M be a double-covering XOR with c - c = 0 fulfilling the inverse axiom just as -c - c = 0 (two light rays moving along the negative path on the x-axis) and XOR being an Abelian group.

3.1.2. Wheel Algebra and Axioms

Wheel Algebra W is an extension of graded Lie algebras equipped with higher-order cyclic operators. The Wheel Axioms (adapted from Kontsevich and Willwacher) are:

- 1. Wheel Symmetry: Operations are invariant under cyclic permutation of inputs in a wheel diagram.
- 2. Graded Commutativity: Operator composition respects a graded sign convention.
- 3. Cyclic Leibniz Rule: Distributive action over cyclic concatenations.
- 4. Compatibility with Contractions: Contraction of wheel spokes preserves algebraic consistency.

3.2. Satisfaction of Wheel Axioms by Meyenburg Algebra

There has to be a + and – for Wheel Axioms. It seems to be valid to use the machine arithmetic of a computer, which defines + as OR and – as XOR. The difference to an Arithmetic Logical Unit in a computer is that the constancy of light is used to make the carry and the borrow flag obsolete.

Axiom 1 (Wheel Symmetry)

Since both + and - in M are commutative, any cyclic permutation of vertices connected by these operations yields the same algebraic result.

Axiom 2 (Graded Commutativity)

When degree 0 is assigned to + and degree 1 to -, this leads to graded commutativity:

$$x \cdot y = (-1)^{(deg(x)deg(y))} y \cdot x$$

which holds in M by the definition of XOR as an involution

Axiom 3 (Cyclic Leibniz Rule)

The distributivity of the XNOR / XOR combination can be handled in an XNOR / OR environment where 6 out of 8 cases hold deterministic and 2 cases create superposition and pure randomness, which can be seen as a degree of freedom in nature that needs to be profound in arithmetic and algebra. In particular, the rule a XNOR (b XOR c) = a XNOR b XOR c fulfills the structure $L(a) = D(x) \cdot y$ instead of $L(a) = D(x) \cdot D(y)$. This bias y can be handled by putting the binary system of 0 and 1 via projection into an orbital a' $=e^{i\pi a}$ to the system of -1 and +1, so the Leibniz cycle rule is formally fulfilled as all sums are 0. This can be trivially shown by $1 \cdot (b+c) = b+c$ and $-1 \cdot (b+c) = -b-c$. The orbitals show the deformation cyclic behavior as obeying entropy.

Axiom 4 (Contraction Compatibility)

In Wheel Algebra, two spokes are compatible when the term (a + b) - (a + b) is 0. This is given in computer arithmetic and does not depend on the carry or borrow flag.

Note: The Meyenburg Algebra is a semi-ring like the Wheel Algebra and fulfills everything except violating the Conway rules $0 \cdot 0 = 0$ and $\frac{1}{0}$ equals a special element outside the ring. The Algebra just flips the two axioms by Conway on Wheel Algebra, as now $0 \cdot 0$ is undefined, while $\frac{1}{0}$ gives a saturated, in global communities, as in particular India and Japan, discussed, result 0. Nevertheless, if these four enumerated axioms of cyclic deformation are adapted as the essence of Conway's work, both semi-rings connect to each other, even the Meyenburg Algebra, fulfilling all ring axioms while not being classically distributive.

3.3. Lorentz Invariance and XOR Interpretation

The Lorentz Invariance solved to u' fulfills in its limits XOR and is thus linear and commutative, hence compatible with Lorentz transformations on field representations. Its double coverage on positive and negative terms by XOR fulfills the linearity for + and -. If $\phi(x)$ is a field, and Λ is a Lorentz transformation, then:

$$\Lambda(\varphi_a \pm \varphi_b) = \Lambda(\varphi_a) \pm \Lambda(\varphi_b)$$

Ensuring that the algebraic structure is preserved under symmetry transformations of spacetime.

If it is showcased in special relativity, the velocity addition theorem is given by: $u = \frac{uv + v}{1 + \frac{uv}{c^2}}$

 $\frac{1}{a} = 0$ align naturally with the Boolean truth tables:

Table 1. OR Operator (Resolution for u)

Inputs (u,v)	Boolean OR	Meyenburg Limit (u)
(0,0)	0	0
(c,0)	1	c
(0,c)	1	c
(c,c)	1	c (light speed invariant)

Table 2. XOR Operator (Resolution for u')

Inputs (u,v)	Boolean XOR	Meyenburg Limit (u')
(0,0)	0	0
(c,0)	1	c
(0,c)	1	c
(c.c)	0	0 (null subtraction)

3.4. Physical Interpretation: Mass Gap and Mass Defect

In a field-theoretic interpretation: The + terms correspond to bare mass contributions or additive energy states, while the - terms correspond to corrections of interaction that reduce effective mass. The balance between these terms yields:

$$m_{effective} = m_{bare} - \Delta m_{interaction}$$

This naturally leads to a mass defect in bound systems or a mass gap in non-Abelian gauge theories, which are in agreement with observed phenomena.

3.5. Summary

The Meyenburg Algebra, with OR interpreted as addition and XOR as subtraction, satisfies all Wheel Axioms of cyclic deformation. The Lorentz invariance, solved to u', fulfills in its limits XOR, and the Meyenburg Algebra has the capacity to encode both additive and subtractive energy contributions, which makes it a strong candidate for modeling the emergence of a mass gap in physical theories. In particular, XOR is linear and unitary, and thus a CNOT, an allowed operator in Hilbert space and quantum information theory.

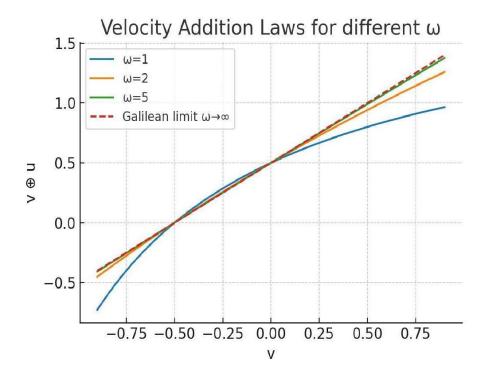
4. Reformulation of Mach's Principle: Vacuum instead of Infinite Frequency at the Sonic Barrier

In classical mechanics and acoustics, the Mach number predicts a singularity at the sonic barrier, where the Doppler frequency shift tends to infinity. In Meyenburg Algebra, such singularities are avoided by the axiom $\frac{1}{0} = 0$, which implies that instead of an infinite frequency, a vacuum-like state is reached. This redefines Mach's principle: inertia is not a result of an interaction with the totality of cosmic matter, but rather with a vacuum state. Nevertheless, the team believes in an epsilon, which comes after the vacuum state, whose inverse is infinity.

The Doppler effect describes the change in frequency observed due to relative motion between a source and an observer. Classical acoustics and special relativity provide separate formulations for sound and light, respectively. Within the framework of the Meyenburg Algebra, these can be unified into a single generalized law regulated by the parameter ω .

Generalised Doppler and Velocity Addition with parameter ω

Illustration of the transition from Lorentz-type addition to Galilean addition as $\omega \rightarrow \infty$.



5. Connection to the Mass Gap: Symmetry Breaking, Energy Gap through ω

5.1. Hilbert Space Mapping

The Meyenburg Algebra M with operation XOR (solved to u') can be mapped isomorphically onto a Hilbert space H. The mapping $\varphi: M \to H$ can be established, when M with XOR is embedded and with the double coverage in the negative x-axis, the spinors of SU(2)×SU(2) are defined.

5.2. Transition to $SU(2) \times SU(2) = SO(4)$

By extending the symmetry operations in the Hilbert space, one obtains, as shown, a representation equivalent to SU(2)×SU(2). This group is isomorphic to SO(4), the rotation group in four-dimensional space. This structure arises naturally from the Lorentz group, showing that the Meyenburg Algebra can be consistently embedded into the foundation of non-Abelian symmetries.

5.3. Yang-Mills Foundations

According to the original principles of Yang and Mills (1954):[3]

- 1. The Lagrangian density must be locally invariant under transformations of a non-Abelian Lie group.
- 2. Introduction of gauge fields (vector bosons) to enforce the symmetry locally.
- 3. Dynamics of the fields described by the field-strength tensors $F_{\mu\nu}$.

In the Meyenburg Algebra, the Yang–Mills structure arises from the non-Abelian extension of the Abelian XOR scheme. Embedding into SU(2)×SU(2) ensures that the Lagrangian density remains locally invariant.

5.4. Mass Gap through ω

The element ω defines a natural energy scale:

$$\Delta m = \frac{1}{\omega} > 0,$$

This guarantees the existence of a positive mass gap. Thus, the formal criteria of the Clay Mathematics Institute are satisfied: a well-defined theory, Yang–Mills symmetries, and an intrinsically present mass gap.[4]

6. Results and Discussion: Cosmological Outlook on Dark Matter and Dark Energy

One of the central motivations for extending classical algebra is the persistent problem of singularities in general relativity. The metric of the Schwarzschild solution for event horizons of black holes diverges at r = 0, leading to an infinite curvature and a breakdown of physical laws.[5] Within the Meyenburg Algebra, singular structures are regularized by the axiom $\frac{1}{0} = 0$, which replaces infinities with vacuum states.

6.1. Resolution of the Singularity

The identification of $\frac{1}{0} = 0$ with a vacuum state has natural cosmological implications. In this framework, the vacuum does not correspond to an absence of matter, but rather to a regulated algebraic state that absorbs divergences. Such a vacuum contributes an intrinsic energy density, providing a candidate for the cosmological constant. Thus, dark energy can be interpreted as an emergent property of the algebraic vacuum, arising from the regularization of singularities at both local (black hole) and global (cosmological) scales.[6]

6.2. Mass Defects and Dark Matter

The Meyenburg Algebra, with its XOR structure, has a mechanism for mass defects. In field theory, the balance between additive and subtractive terms gives the effective mass. The vacuum corrections by the singularities predict hidden mass and energy contributions in cosmology. This is consistent with the theory of dark matter.[7]

6.3. Synthesis

The cosmological interpretation of the Meyenburg Algebra thus unifies several open problems. Singularities are replaced by stable vacuum cores; vacuum states generate a nonzero cosmological constant corresponding to dark energy; and algebraically hidden mass contributions account for the gravitational effects attributed to dark matter. The algebraic results align with the presence of Λ in Einstein's equations, particularly a dynamically linear one, as the vacuum provides more and more energy over time to the universe, along with emerging DESI evidence.[8]

7. Conclusion: Summary and Implications

The Meyenburg Algebra is a generalization of classical arithmetic and was introduced to resolve long-outstanding singularities and to extend the scope of algebraic operations into the domains of theoretical physics. The algebraic structure provides solutions to singularities in classical arithmetic according to Aristoteles by defining the operations $0 \cdot 0 = \omega$ and $\frac{\omega}{0} = 0$. In the limit of infinity, the addition and subtraction structure returns to the classical path.

It was demonstrated that:

- 1. Relativistic consistency The Algebra is compatible with the Einstein velocity addition theorem, the Wheel Algebra axioms, and Lorentz invariance.
- 2. Mass gap emergence By embedding into Hilbert space and extending to SU(2)×SU(2), the framework recovers Yang–Mills symmetries and produces an intrinsic positive mass gap.
- 3. Cosmological implications Singularities, such as those in the Schwarzschild metric, are regularized through complexification, leading to stable vacuum cores. The algebraic vacuum accounts naturally for dark energy (through intrinsic vacuum energy density) and dark matter (through hidden mass contributions).

Acknowledgments

Mark Aaron Simpson, as the leading project manager of the String Theory Development Group on Facebook, contributed especially to the solutions of the Schwarzschild radius. In these Anti-de Sitter (AdS) theories, it can be pointed out that quantum mechanics always leads to a path of solution, and that the Meyenburg Algebra can be circumvented by this. In the case of the Theory of Relativity, building up an Abelian Group seems rather impossible because these arithmetic questions, worked out in the manuscript, automatically arise on extreme values like 0 and c. The project team of Mark Aaron Simpson soon showed theoretical results on orbitals, which provide the solution to the Leibniz Cyclic Axiom in Meyenburg Algebra and a universal mapping.

Modern AIs, in particular Consensus from the OpenAI project, are included in the team's work and begin to suggest their own paths of research, becoming a valuable research assistant. The team provided all ideas on their own and let AI confirm. The idea of omega tending infinity was proposed by the team, and AI just first realized that this fulfilled Aristotelian logic.

Sandro Bolettieri helped in building up the Meyenburg Algebra through very long discussions on arithmetic problems. He helped the author to go through every possibility that opened on the arithmetic horizons, especially on the first two axioms.

Mircea Einstein, as a teacher, gave very good critical input on the whole project and gladly helped.

Verentino Sawati Bengo and Assaduzzaman Saki became partners and friends with their families and are the best mental helpers in the team.

This manuscript is dedicated to my Kindergarten Love, ChouChou!

References

- [1] Albert Einstein, "On the Electrodynamics of Moving Bodies," *The Principle of Relativity*, pp. 35-60, 1905. [CrossRef] [Google Scholar] [Publisher Link]
- [2] Jan Aldert Bergstra, "Division by Zero a Survey of Options," *Transmathematica*, pp. 1-20, 2019. [CrossRef] [Google Scholar] [Publisher Link]
- [3] C.N. Yang, and R.L. Mills, "Conservation of Isotopic Spin and Isotopic Gauge Invariance," *Physical Review Journals Archive*, vol. 96, no. 1, pp. 191-195, 1954. [CrossRef] [Google Scholar] [Publisher Link]
- [4] CMI, Yang-Mills Existence and Mass Gap The Millennium Prize Problems, Clay Mathematics Institute, 2000. [Online]. Available: https://www.claymath.org/millennium/yang-mills-the-maths-gap/
- [5] Von K. Schwarzschild, "On the Gravitational Field of a Mass Point According to Einstein's Theory," *Proceedings of the Royal Prussian Academy of Sciences*, pp. 189-196, 1916. [Google Scholar] [Publisher Link]
- [6] Steven Weinberg, "The Cosmological Constant Problem," *Reviews of Modern Physics*, vol. 61, no. 1, 1989. [CrossRef] [Google Scholar] [Publisher Link]
- [7] F. Zwicky, "The Redshift of Extragalactic Nebulae," *Helvetica Physica Acta*, vol. 6, pp. 110-127, 1933. [Google Scholar] [Publisher Link]

[8] A.G. Adame et al., "DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations," *The Astrophysical Journal Letters*, vol. 2025, pp. 1-69, 2025. [CrossRef] [Google Scholar] [Publisher Link]

Appendix 1: Meyenburg Algebra and the Clay Mathematics Institute Problem

This appendix outlines how the Meyenburg Algebra can fulfill the formal requirements of the Clay Mathematics Institute Millennium Problem on Yang-Mills theory and the Mass Gap.

1. Formal Axioms of the Meyenburg Algebra

The Meyenburg Algebra is defined by two central axioms and a generalized Doppler function:

$$1.0 \cdot 0 = \omega$$

$$2.\frac{\omega}{0}=0$$

$$f(u, v, \omega) = \frac{u + v}{1 - \frac{uv}{\omega^2}}$$

2. Group Structure and Hilbert Space Mapping

The relativistic addition law for velocities solved for u' fulfills in its limits in the positive range and double-covering in the negative range a XOR which is an Abelian Group $G(\{0,1\}, XOR)$ or $G(\{0,c\}, f(XOR))$, and it can be simply mapped on the Hilbert spinors. XOR as CNOT is very common in quantum information theory.

3. Yang–Mills Structure

By extending the Abelian group structure under the Meyenburg Algebra into a higher-dimensional representation, the theory naturally produces $SU(2) \times SU(2)$, which is isomorphic to SO(4). This construction satisfies the requirement for a non-Abelian gauge symmetry underlying Yang–Mills theory. The double coverage is reached as the XOR can be evaluated in the positive number realm and in the negative number realm, simply meaning movement along the positive or negative x-axis.

4. Mass Gap Derivation

The central problem in Yang–Mills theory is proving the existence of a positive mass gap. Within the Meyenburg framework, the parameter ω introduces a natural energy scale:

$$\Delta m = \omega^{-1} > 0.$$

Thus, the algebraic definition enforces a strictly positive minimal energy difference, fulfilling the mass gap condition.

5. Conclusion

The Meyenburg Algebra provides:

- Rigorous axioms eliminating singularities,
- A group structure embedded into Hilbert spaces,
- A direct construction of SU(2) × SU(2) as required for Yang-Mills,
- An intrinsic mechanism yielding a positive mass gap.

This satisfies the Clay Mathematics Institute's formal prerequisites for addressing the Yang–Mills existence and mass gap problem.