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Abstract - The PDS problem in graphs mathematically models the difficulty of monitoring electrical networks, which is inspired 

by the deployment of Phasor Measuring Units (PMUs) in power systems. This paper introduces a novel algebraic framework 

for studying power domination based on graph-derived monomial algebras. By encoding propagation rules as algebraic 

saturation operations, the power domination number is described in terms of minimal generating sets of monomial ideals. 

Examples of standard graph families are presented. The relationships with algebraic invariants, such as regularity and 

projective dimension, are investigated. Algebraic methods for computing and finding bounds for the power domination number 

are proposed. This paper connects commutative algebra and practical graph theory, with implications for electrical network 

research. 
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1. Introduction  
Efficient monitoring of electrical power networks is critical for fault identification and stability. Placing Phasor Measurement 

Units (PMUs) at certain nodes in the network is a well-studied strategy for monitoring the entire system using direct measurement 

and propagation rules. A PMU situated at a bus vertex observes the bus and its gearbox lines, while Kirchhoff's principles allow 

for indirect observation of more buses without the need for additional PMUs. The aim is to identify the minimum number of 

phase measurement units needed to monitor the whole network. 

 

The electrical network monitoring problem is mathematically modelled by the power domination problem in graphs [10]. 

Here, the electrical network is represented as a graph H= (N, L), where nodes correspond to buses and lines correspond to 

transmission lines.   A set P⊆N of chosen vertices represents PMU placements. Initially, the closed neighbourhood V[P] (the 

chosen vertices and their neighbours) is observed, reflecting direct monitoring by PMUs. Then a propagation rule is applied: if a 

monitored vertex has exactly one unmonitored neighbour, that neighbour is forced to become monitored. This model shows how 

electrical laws allow indirect monitoring of additional buses. If all vertices are monitored during this process, then S is a Power 

Dominating Set (PDS). The power domination number, γP(H), is the minimum cardinality of such a set. Thus, the electrical 

network monitoring problem is equivalent to finding the minimum PMUs. The PD problem involves identifying a set of nodes 

with minimum cardinality from which all nodes may be monitored using the particular propagation rules. The power domination 

number (γP(H)) refers to the smallest size of a given set.  

Graph invariants frequently admit elegant algebraic interpretations. The classic example is the study of independence and 

vertex coverings using graph edge ideals. Similarly, the least rank problem and the zero forcing number connect combinatorial 

propagation processes with linear algebra [2], [6]. The PD problem, presented in the context of monitoring power grids, 

generalises the domination problem by incorporating a propagation rule similar to zero force. The power domination number, 

γP(G), represents the smallest size of a vertex set from which all vertices may be observed using these rules. 

Although power domination has been explored extensively from combinatorial and computational viewpoints, little attention 

has been paid to its algebraic structure. On the other hand, algebraic graph theory, particularly through edge ideals and monomial 

algebras, has yielded profound insights into graph parameters such as domination, independence, and vertex coverage [1], [5]. 
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In this paper, an algebraic framework that encodes the electrical network monitoring problem in terms of monomial algebras 

is proposed. It is shown that power domination can be interpreted as a problem of generating sets in monomial ideals, and that 

algebraic invariants can serve as tools for bounding or computing γP(G). 

2. Preliminaries 
Power Dominating Set in graphs :  

Suppose H = (N, L) is a finite simple graph with vertex set N={n1, …,nv}. A dominating set is a subset D⊆N such that 

every vertex is either in D or adjacent to a vertex of D. A Power Dominating Set (PDS) is defined as follows:  

 

Initially, all nodes in N[D]  are monitored.  

Propagation rule: If a monitored node has exactly one unmonitored neighbour, then that neighbour becomes observed. 

If eventually all vertices are observed, then D is a PDS.  

 

The PD number γP(H)  is the minimum size of a PDS. 

 

Monomial Algebras from Graphs:  

Given H=(N,L) with N={x1,…,xv}, the edge ideal is I(H)=⟨xixj:{i,j}∈E⟩⊆ k[x1,…,xv]. The monomial algebra associated 

with H is A(H)=k[x1,…, xv]/I(H). Vertex covers, independent sets, and domination sets have been studied via primary 

decompositions and algebraic invariants of  I(H). This idea is extended to power domination sets. 

 

Power Domination via Monomial Ideals: 

For each vertex vi, define a monomial representing its closed neighborhood: mi =∏vj∈V[xv] xj. 

Define the power domination ideal as J(H)=⟨mi: vi ∈ V⟩ ⊆ k[x1, … ,xv]. 

 

If a variable xj divides exactly one generator in the chosen set, propagation forces xj into the algebraic closure. Thus, the 

propagation rule corresponds to saturation in monomial ideals. 

 

3. The Main Theorem 
Theorem 1.   

For a graph H, the PD number γP(H) equals the minimal cardinality of a generating set of     monomials in   J(H) whose 

saturation covers all variables. 

 

Proof:  

Each generator mi corresponds to choosing a vertex with its closed neighbourhood. Propagation corresponds to saturation: once 

a variable xj is uniquely divisible by a chosen generator, it is forced into the product. Iterating this  recovers the propagation 

closure. Thus, the minimal generating set corresponds to a minimal PDS. 

       

Example 1: Path Graph  Pn: We know that γP(Pn)=1. Also, J(Pn)=⟨x1x2, x2x3, …, xn−1xn⟩. A single generator suffices under 

saturation, confirming the algebraic characterization. 

 

Example 2: Cycle Cn: We know that γP(Cn)=1. Also ,J(Cn)=⟨x1x2, x2x3, …, xn−1xn, xnx1⟩. One generator saturates all 

variables for all n. 

 

Let M be a finitely generated graded module over the polynomial ring R=k[x1,…,xn]. The Castelnuovo–Mumford regularity 

(denoted reg(M)) is an invariant that measures the “complexity” of the minimal free resolution of M. 

 
If     0→⨁R(−dp)βp→⋯→⨁R(−d1)β1→Rβ0→M→0  is the minimal graded free resolution of M, then reg(M)=max{di−i: 

βi≠0}. Intuitively, the shifts di, tell us where generators appear in degree. Subtracting the homological step i corrects for 

resolution length. The regularity is the largest such corrected degree. It measures how complicated the syzygies (relations among 

generators) are. 

 

When M=R/I  for a monomial ideal I (like the edge ideal of a graph H), the regularity becomes a combinatorial invariant 

that reflects structural properties of the graph. For example, if  I(H) is the edge ideal of H: I(H)=⟨xixj:{i,j}∈E(H)⟩, then 

reg(R/I(H))  is tied to matching numbers, induced subgraphs, and projective dimension.  
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For forests H: reg(R/I(H))=induced matching number(H)+1. For general graphs: regularity provides bounds on domination 

and independence parameters. 

 

If a power domination ideal is defined as J(H), then reg(R/J(H)) gives an upper bound on the number of propagation steps 

needed to observe the whole graph. Since γP(H) is the minimum number of PMUs (generators), and regularity reflects the “depth” 

of relations, studying reg(R/J(H)) may give inequalities of the form: γP(H) ≤ f(reg(R/J(H))), or vice versa. 

 

Example: Take the path graph Pn. Then, the edge ideal, I(Pn)=⟨x1x2, x2x3, …, xn−1xn⟩ ,  reg(R/I(Pn)) =⌈n/3⌉ and PD 

number is γP(Pn)=1. This shows regularity captures propagation complexity (roughly, how many steps are needed to color all 

vertices), while power domination number captures initial seed size. 

 

In short, Castelnuovo–Mumford regularity is an algebraic invariant from free resolutions. For monomial ideals from graphs, 

it encodes the combinatorial structure. It can serve as a bridge parameter between algebra (complexity of generators/relations) 

and power domination (complexity of propagation in networks). 

 

4. Castelnuovo–Mumford Regularity and Power Domination 
The Castelnuovo–Mumford regularity of a graded module provides a powerful tool for measuring the algebraic complexity 

of ideals associated with graphs. Let  H = (V, E)  be a finite simple graph, and let  R = k[x_v: v \in V] be the polynomial ring 

over a field ( k ) with one variable corresponding to each vertex of G . If  I(G) ⊆ R denotes a monomial ideal encoding a graph 

parameter (for example, the edge ideal or a power domination ideal), then the Castelnuovo–Mumford regularity of  R/I(H), 

denoted reg(R/I(H)), captures the structural and combinatorial complexity of  H [3,4,7]. 

 

In the context of network monitoring, the power domination number (γP(H)) measures the minimum number of vertices that 

must be chosen to observe the entire graph under the propagation rules of power domination. While γP(H) counts initial resources, 

the propagation process itself reflects the complexity of dependencies among vertices, which can be naturally encoded by the 

syzygies of the corresponding monomial ideal. Thus, reg(R/I(H))) can be interpreted as an algebraic measure of the “propagation 

depth” of H [8,9]. 

 

5. Applications  
The algebraic perspective on power domination has numerous applications in computational, practical, and theoretical 

realms. Gröbner basis techniques in software like Macaulay2 can compute the ideal's minimal generating sets J(H), providing a 

new algebraic strategy for obtaining the power domination number γP(H). In practice, electrical networks modelled as graphs 

can be transformed into monomial algebras, where algebraic methods supplement combinatorial algorithms for optimal phasor 

measurement unit (PMU) positioning. From a theoretical approach, this framework bridges the gap between commutative algebra 

and graph theory, allowing structural results and invariants to be transferred between the two areas while also furthering the study 

of monitoring problems in complex networks. 

 

6. Open Problems 
Future research can expand the monomial algebra framework in several promising directions. One natural extension is to 

consider directed and weighted networks, where orientations and edge weights play a critical role in monitoring dynamics; this 

would require adapting the definition of J(H) to encode directional influence and weighted propagation costs. Another avenue is 

the investigation of binomial edge ideals and toric ideals, which may capture richer propagation behaviors compared to monomial 

ideals by reflecting pairwise dependencies and algebraic relations inherent in the network. Additionally, the study of Betti 

numbers of (J(H)) offers a potential algebraic analogue to the stages of propagation in power domination, with higher syzygies 

possibly corresponding to deeper layers of monitoring complexity. Finally, for large-scale electrical networks where exact 

computation is infeasible, the development of algebraic approximation techniques could provide scalable methods for estimating 

power domination parameters, thereby integrating algebraic insights with applied network optimization. 

 

7. Conclusion 
This paper presents an algebraic framework for addressing the power domination problem. It involves associating graphs 

with monomial ideals and analyzing their Castelnuovo-Mumford regularity and invariants. This viewpoint emphasizes how 

algebraic structures can encode both initial monitoring requirements and propagation dynamics in network observability. By 

combining Gröbner basis computations, Betti numbers, and regularity to power domination parameters, we create new avenues 

for analyzing network monitoring problems using commutative algebra techniques. 
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