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Abstract - SLIA; A, QR ( Susceptible — Latent - Infected — Antidotal -Antivirus — Quarantine — Antidotal - Recovered) is the
suggested model in this article, which is an extension of the SEIR model. In this model, we discussed the basic Reproduction
number for the MFE ( Malicious object Free Equilibrium) point. We talked about the reproduction number Ry in MFE and EE
point using the Hurwitz criterion. If Ry is less than 1, the MFE point is stable; if Ryis greater than 1, the VFE point is
unstable. Numerous parameter graphs are discussed in two and three dimensions.
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1. Introduction

In computer networks, hazardous items such as viruses, worms, and other malware are represented, and their behavior is
analyzed using a mathematical model. These models, which are frequently based on epidemiological models of transmission of
disease, help in understanding the distribution of hazardous code, evaluating its effects, and creating mitigation and control
plans. The two main ways by which the harmful items are spread within a computer network are through electronic mail and
the use of secondary devices[1]. Similar to biological epidemic infections, the spread of malicious objects in the cyber network
is epidemic in nature [2,3]. For predicting the spread of viruses, Richard and Mark suggested a better SEI[4] (Susceptible-
Exposed- Infected) model. Switched from the SIR model to the SAIR (Susceptible- Antidotal- Infected- Recovered) model,
which was investigated in [5-8]. Kaveri et.al. highlight different types of models [9-10]. In this article, we proposed
SLIA{A,QR ( Susceptible — Latent - Infected — Antidotal -Antivirus — Quarantine — Antidotal - Recovered), which is an
extension of the SAIR model.

2. Model Formulation

Here we use seven compartments, where S is the number of susceptible nodes, L is the number of latent nodes, I is the
number of infected nodes, A; is the number of antidotal nodes, SA, is the number of antivirus nodes, Q is the number os
quarantine nodes, and R is the number of recovered nodes. u is the natural death rate.
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When the virus is absent, i.e., I = 0.
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The next generation matrix can be written as,
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Theorem: The malicious object-free equilibrium point P, of the system (1) is locally asymptotically stable if Ry < 1.

Proof: We construct a jacobian for P,.
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The characteristic equation is
WHDU+n+DU+E+DU+ Y+ DB + 2+ A+ ¢3) =0
Where,¢c; =—{(1—-a)f+ay +caySo—¢p—b5—(1—-b)0 —u}>0
¢ ={(1-a)B +ay +u}(caySo — ¢ — ) — ay(1 = c)as,
—{1-a)p+ay+ca;So—dpHbS+ (1 —b)0+u} >0

c3={b6+ (1 -b)0 + {1 —a)B +ay + u}(carSo — ¢ — ) + ay(1 — )aS] — (1 —c)(1 — a)bafS, >0
|Jp0 — AI| = 0, it has four roots that are negative, i.e., 1; = —u, 4, = —(u +n),
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Az = —(u+ &) and 4, = —(u + ). But for the remaining three roots, we can’t so that they are all negative. So, we use the
Hurwitz condition ¢; > 0, ¢, > 0, ¢c3 > 0 and c,c; > c3. We observed that the system is stable by using the Hurwitz
criterion.

4. Endemic Equilibrium Point
An endemic equilibrium point means where infection exists and they attacks the system.
E.E. point is calculated by S = L = =4, =4, =Q =R =0
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This shows that the E E point exist.

5. Conclusion

In this article, the model is an extension of the SAIR model. We discussed about threshold number. R,. The malicious

object free equilibrium point P, of the system (1) is locally asymptotically stable if R, < 1. at last, we calculate the Endemic
equilibrium point.
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