Original Article

Analysis of SLIA₁A₂QR Model in Cyber Space

Kaveri Kanchan Kumari¹, Ashish Kumar Jha²

^{1,2}University Department of Mathematics, Ranchi University, Ranchi, India.

¹Corresponding Author: kanchan kaveri4@yahoo.in

Received: 22 August 2025 Revised: 29 September 2025 Accepted: 17 October 2025 Published: 29 October 2025

Abstract - $SLIA_1A_2QR$ (Susceptible – Latent - Infected – Antidotal -Antivirus – Quarantine – Antidotal - Recovered) is the suggested model in this article, which is an extension of the SEIR model. In this model, we discussed the basic Reproduction number for the MFE (Malicious object Free Equilibrium) point. We talked about the reproduction number R_0 in MFE and EE point using the Hurwitz criterion. If R_0 is less than 1, the MFE point is stable; if R_0 is greater than 1, the VFE point is unstable. Numerous parameter graphs are discussed in two and three dimensions.

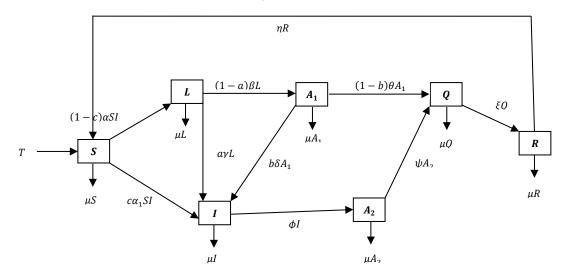
Keywords - Antivirus, Endemic Equilibrium, Latent, Malicious Object Free Equilibrium, Threshold Number.

1. Introduction

In computer networks, hazardous items such as viruses, worms, and other malware are represented, and their behavior is analyzed using a mathematical model. These models, which are frequently based on epidemiological models of transmission of disease, help in understanding the distribution of hazardous code, evaluating its effects, and creating mitigation and control plans. The two main ways by which the harmful items are spread within a computer network are through electronic mail and the use of secondary devices[1]. Similar to biological epidemic infections, the spread of malicious objects in the cyber network is epidemic in nature [2,3]. For predicting the spread of viruses, Richard and Mark suggested a better SEI[4] (Susceptible-Exposed-Infected) model. Switched from the SIR model to the SAIR (Susceptible- Antidotal- Infected- Recovered) model, which was investigated in [5-8]. Kaveri et.al. highlight different types of models [9-10]. In this article, we proposed $SLIA_1A_2QR$ (Susceptible – Latent - Infected – Antidotal -Antivirus – Quarantine – Antidotal - Recovered), which is an extension of the SAIR model.

2. Model Formulation

Here we use seven compartments, where S is the number of susceptible nodes, L is the number of latent nodes, I is the number of infected nodes, A_1 is the number of antidotal nodes, SA_2 is the number of antivirus nodes, Q is the number os quarantine nodes, and R is the number of recovered nodes. μ is the natural death rate.



SLIA₁A₂QR Mathematic Model

$$\dot{S} = T - (1 - c)\alpha SI - c\alpha_{1}SI + \eta R - \mu S
\dot{L} = (1 - c)\alpha SI - \{(1 - a)\beta + a\gamma + \mu\}E
\dot{I} = a\gamma E + c\alpha_{1}SI + b\delta A_{1} - (\phi + \mu)I
\dot{A}_{1} = (1 - a)\beta E - \{b\delta + (1 - b)\theta + \mu\}A_{1}
\dot{A}_{2} = \phi I - (\psi + \mu)A_{2}
\dot{Q} = (1 - b)\theta A_{1} + \psi A_{2} - (\xi + \mu)Q
\dot{R} = \xi Q - (\mu + \eta)R$$
(1)

With S, L, I, A_1 , A_2 , Q, $R \ge 0$. All the parameters are taken as positive.

Here
$$N=S+L+I+A_1+A_2+Q+R$$

$$\dot{N}=\dot{S}+\dot{L}+\dot{I}+\dot{A}_1+\dot{A}_2+\dot{Q}+\dot{R}$$

$$\dot{N}=T-\mu N$$
 As $t\to\infty$, $N\to\frac{T}{\mu}$

3. Malicious Free Equilibrium Point

The region

$$\Lambda = \left\{ (S, L , I , A_1, A_2 , Q , R) \epsilon \ \mathbb{R_+}^7 : S \geq 0, L \geq 0 \ , I \geq 0 \ , A_1 \geq 0, A_2 \ \geq 0, Q \geq 0 \ , R \geq 0 \right\}$$

When the virus is absent, i.e., I = 0.

There exist an equilibrium point $P_0 = (S_0, L_0, I_0, A_{10}, A_{20}, Q_0, R_0)$.

i.e.,
$$P_0 = \left(\frac{T}{\mu}, 0, 0, 0, 0, 0, 0, 0\right)$$

The next generation matrix can be written as,

$$\frac{d\mathbf{U}}{dt} = \mathcal{F} - \vartheta$$

Where,
$$\mathcal{F} = \begin{bmatrix} (1-c)\alpha SI \\ c\alpha_1 SI + b\delta A_1 \end{bmatrix}$$
 and $\vartheta = \begin{bmatrix} \{(1-a)\beta + a\gamma + \mu\}E \\ -a\gamma E + (\phi + \mu)I \end{bmatrix}$

$$\therefore \text{ f is jacobian of } \mathcal{F} = \begin{bmatrix} 0 & (1-c)\alpha S \\ 0 & c\alpha_1 S \end{bmatrix}$$

and
$$\mathbb{V}$$
 is jacobian of $\vartheta = \begin{bmatrix} (1-a)\beta + a\gamma + \mu & 0 \\ -a\gamma & (\phi + \mu) \end{bmatrix}$

$$\text{ if } \mathbb{V}^{-1} = \begin{bmatrix} \frac{(1-c)\alpha^2\gamma S}{\{(1-a)\beta + a\gamma + \mu\}(\phi + \mu)} & \frac{(1-c)\alpha S}{(\phi + \mu)} \\ \frac{ca\alpha_1\gamma S}{\{(1-a)\beta + a\gamma + \mu\}(\phi + \mu)} & \frac{c\alpha_1S}{(\phi + \mu)} \end{bmatrix}$$

Then the threshold number $R_0 = \rho(\mathbb{fV}^{-1})$

$$R_0 = \frac{(1-c)\alpha^2 \gamma S + c\alpha_1 S\{(1-a)\beta + a\gamma + \mu\}}{\{(1-a)\beta + a\gamma + \mu\}(\phi + \mu)} > 0$$

Theorem: The malicious object-free equilibrium point P_0 of the system (1) is locally asymptotically stable if $R_0 < 1$.

Proof: We construct a jacobian for P_0 .

$$\mathcal{J}_{P_0} = \begin{bmatrix} -\mu & 0 & a_{13} & 0 & 0 & 0 & \eta \\ 0 & a_{22} & a_{23} & 0 & 0 & 0 & 0 \\ 0 & \alpha\gamma & a_{33} & \beta\delta & 0 & 0 & 0 \\ 0 & a_{42} & 0 & a_{44} & 0 & 0 & 0 \\ 0 & 0 & \phi & 0 & a_{55} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \xi & a_{77} \end{bmatrix}$$

$$\begin{aligned} a_{13} &= \{ (1-c)\alpha + c\alpha_1 \} S_0 \ , \quad a_{22} &= \{ (1-a)\beta + a\gamma + \mu \} \\ a_{23} &= (1-c)\alpha S_0 \ &, a_{33} &= c\alpha_1 S_0 - (\phi + \mu) \\ a_{42} &= (1-a)\beta \ &, a_{44} &= -\{ b\delta + (1-b)\theta + \mu \} \\ a_{55} &= -(\psi + \mu) \ &, a_{64} &= (1-b)\theta \end{aligned}$$

 $a_{77} = -(\eta + \mu)$

The characteristic equation is $|\mathcal{J}_{P_0} - \lambda I| = 0$

$$\left|\mathcal{J}_{P_0}-\lambda I\right| = \begin{vmatrix} -\mu - \lambda & 0 & a_{13} & 0 & 0 & 0 & \eta \\ 0 & a_{22} - \lambda & a_{23} & 0 & 0 & 0 & 0 \\ 0 & \alpha \gamma & a_{33} - \lambda & \beta \delta & 0 & 0 & 0 \\ 0 & a_{42} & 0 & a_{44} - \lambda & 0 & 0 & 0 \\ 0 & 0 & \phi & 0 & a_{55} - \lambda & 0 & 0 \\ 0 & 0 & 0 & 0 & \alpha_{64} & \psi & a_{66} - \lambda & 0 \\ 0 & 0 & 0 & 0 & 0 & \xi & a_{77} - \lambda \end{vmatrix} = 0$$

The characteristic equation is

 $a_{66} = -(\xi + \mu)$

$$\begin{split} (\mu + \lambda)(\mu + \eta + \lambda)(\mu + \xi + \lambda)(\mu + \psi + \lambda)(\lambda^3 + c_1\lambda^2 + c_2\lambda + c_3) &= 0 \\ \text{Where }, c_1 &= -\{(1-a)\beta + a\gamma + c\alpha_1S_0 - \phi - b\delta - (1-b)\theta - \mu\} > 0 \\ c_2 &= \{(1-a)\beta + a\gamma + \mu\}(c\alpha_1S_0 - \phi - \mu) - \alpha\gamma(1-c)\alpha S_0 \\ &- \{(1-a)\beta + a\gamma + c\alpha_1S_0 - \phi\}\{b\delta + (1-b)\theta + \mu\} > 0 \\ c_3 &= \{b\delta + (1-b)\theta + \mu\}[\{(1-a)\beta + a\gamma + \mu\}(c\alpha_1S_0 - \phi - \mu) + \alpha\gamma(1-c)\alpha S_0] - (1-c)(1-a)b\alpha\beta S_0 > 0 \\ |\mathcal{J}_{P_0} - \lambda I| &= 0, \text{ it has four roots that are negative, i.e., } \lambda_1 &= -\mu, \ \lambda_2 &= -(\mu + \eta), \end{split}$$

 $\lambda_3 = -(\mu + \xi)$ and $\lambda_4 = -(\mu + \psi)$. But for the remaining three roots, we can't so that they are all negative. So, we use the Hurwitz condition $c_1 > 0$, $c_2 > 0$, $c_3 > 0$ and $c_2 c_1 > c_3$. We observed that the system is stable by using the Hurwitz criterion.

4. Endemic Equilibrium Point

An endemic equilibrium point means where infection exists and they attacks the system.

E.E. point is calculated by
$$\dot{S} = \dot{L} = \dot{I} = \dot{A}_1 = \dot{A}_2 = \dot{Q} = \dot{R} = 0$$

$$T - (1 - c)\alpha SI - c\alpha_1 SI + \eta R - \mu S = 0$$

$$(1 - c)\alpha SI - \{(1 - a)\beta + a\gamma + \mu\}E = 0$$

$$a\gamma E + c\alpha_1 SI + b\delta A_1 - (\phi + \mu)I = 0$$

$$(1 - a)\beta E - \{b\delta + (1 - b)\theta + \mu\}A_1 = 0$$

$$\phi I - (\psi + \mu)A_2 = 0$$

$$(1 - b)\theta A_1 + \psi A_2 - (\xi + \mu)Q = 0$$

$$\xi Q - (\mu + \eta)R = 0$$
We get e e point $P_1 = (S_1, L_1, I_1, A_{1_1}, A_{2_1}, Q_1, R_1)$

$$S_1 = \frac{T + \eta R_1}{\mu + \{(1 - c)\alpha + c\alpha_1\}I_1}$$

$$L_1 = \frac{(1 - c)\alpha S_1 I_1}{\{(1 - a)\beta + a\gamma + \mu\}}$$

$$I_1 = \frac{\alpha\gamma\{b\delta + (1 - b)\theta + \mu\} + b(1 - a)\delta\beta}{(\phi + \mu - c\alpha_1 S_1)}E_1$$

$$A_{1_1} = \frac{(1 - a)\beta E_1}{b\delta + (1 - b)\theta + \mu}$$

$$A_{2_1} = \frac{\phi I_1}{\psi + \mu}$$

$$Q_1 = \frac{(1 - b)\theta(1 - a)\beta(\psi + \mu)E_1 + \psi\phi I_1\{b\delta + (1 - b)\theta + \mu\}}{\{b\delta + (1 - b)\theta + \mu\}(\psi + \mu)(\xi + \mu)}$$

This shows that the E E point exist.

5. Conclusion

In this article, the model is an extension of the SAIR model. We discussed about threshold number. R_0 . The malicious object free equilibrium point P_0 of the system (1) is locally asymptotically stable if $R_0 < 1$. at last, we calculate the Endemic equilibrium point.

References

- [1] Benjamin DoeRr, Mahmoud Fouz, and Tobias Friedrich, "Why Rumors Spread So Quickly in Social Networks," *Communications of the ACM*, vol. 55, no. 6, pp. 70-75, 2012. [CrossRef] [Google Scholar] [Publisher Link]
- [2] W.O. Kermack, and A.G. McKendrick, "A Contribution to the Mathematical Theory of Epidemics in Classics of Theoretical Biology (Part Two)," *Bulletin of Mathematical Biology*, vol. 53, pp. 33-55, 1991. [CrossRef] [Google Scholar] [Publisher Link]
- [3] William Ogilvy Kermack, and A.G. McKendrick, "Contributions to the Mathematical Theory of Epidemics-II," *Proceedings of the Royal Society A*, vol. 138, no. 834, pp. 55-83, 1932. [CrossRef] [Google Scholar] [Publisher Link]
- [4] Bimal Kumar Mishra, and Dinesh Kumar Saini, "SEIRS Epidemic Model with Time Delay for Transmission of Malicious Objects in Computer Network," *Applied Mathematics and Computation*, vol. 188, pp. 1476-1482, 2007. [CrossRef] [Google Scholar] [Publisher Link]
- [5] M. Karsai et al., "Small But Slow World: How Network Topology and Burstiness Slow Down Spreading," *Physical Review E*, vol. 83, no. 2, 2011. [CrossRef] [Google Scholar] [Publisher Link]
- [6] Romualdo Pastor-Satorras, and Alessandro Vespignani, "Epidemic Spreading in Scale-Free Networks," *Physical Review Letters*, vol. 86, no. 14, pp. 3200-3203, 2001. [CrossRef] [Google Scholar] [Publisher Link]

- [7] William Ogilvy Kermack, and A.G. McKendrick, "A Contribution to the Mathematical Theory of Epidemics," *The Royal Society A*, vol. 115, no. 772, pp. 700-721, 1927. [CrossRef] [Google Scholar] [Publisher Link]
- [8] Vladimir A. Skormin et al., "BASIS: A Biological Approach to System Information Security," *International Workshop on Mathematical Methods, Models, and Architectures for Network Security*, pp. 127-142, 2001. [CrossRef] [Google Scholar] [Publisher Link]
- [9] Kaveri Kanchan Kumari, Aditya Kumar Singh, and Sahdeo Mahto, "Mathematical Models for Stability in Computer Network," *Journal of Computer and Mathematical Sciences*, vol.10, no. 1, pp. 92-98, 2019. [Google Scholar]
- [10] Kaveri Kanchan Kumari, Aditya Kumar Singh, and Sahdeo Mahto, "Time Delay Seirs E-Epidemic Model for Computer Network," *International Journal of Mathematical Archive*, vol. 9, no. 2, pp. 265-273, 2018. [Publisher Link]