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Abstract - This paper investigates the optimization of reliability and availability using the Regenerative Point Graphical 

Technique (RPGT). The study mainly focuses on system performance by systematically analyzing failure and repair rates 

through nature-inspired algorithms using Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Cuckoo Search 

Algorithm (CSA). A Markovian state model is developed to represent transitions between operational and failed states to 

compute reliability metrics such as Mean Time to System Failure (MTSF) and the system’s availability. Mean sojourn times and 

transition probabilities are derived to solve state distributions.  The methodology set a dataset comprising parameters such as 

workload, failure rate, and repair rate. Sensor index, which collectively determines maintenance priority, enables predictive 

maintenance strategies. The optimization framework employing GA, PSO, and  CSA can effectively optimize failure and repair 

parameters, improving system reliability and operational continuity. Comparative analysis highlights the efficiency and 

behavior of each algorithm, as well as the trade-offs between exploration and exploitation in the optimization process.   

Keywords - Availability Analysis, Cuckoo Search Algorithm, Genetic Algorithm, Particle Swarm Optimization, System 

performance optimization. 

 

1. Introduction  
In modern engineering times, systems are designed to maintain high reliability and operational continuity to minimize 

downtime and reduce operating costs. This can be achieved via embedding redundancy and repair mechanisms to navigate 

component failures. Accurate modeling and optimization of a system enable proactive maintenance strategies and overall 

performance. Regenerative point Graphical Technique (RPGT) provides an approach to model system behavior, considering 

both failure and repair rates. By processing key parameters such as failure rates and repair rates, it is possible to maximize Mean 

Time to System Failure (MTSF) and enhance availability.  

 

Ravi [1] has extended the great deluge algorithm into a modified great deluge algorithm for optimization of complex system 

reliability under cost.  The algorithm is applied to redundancy allocation problems and reliability optimization, implemented in 

ANSIC, and compared with simulated annealing variants and other methods. Results show the Modified Great Deluge Algorithm 

(MGDA) achieves superior accuracy and speed, performing comparably to Ant Colony Optimization (ACO), making it an 

efficient alternative for reliability optimization. Zuo et al. [2] calculated the interpretation of a series-parallel system under different 

operating policy conditions. Haggag [3] discussed the 2-unit cold standby system with common cause failure and preventive 

maintenance using Kolmogorov’s forward equations method.  Kovalev et al. [4] presented an extensive review of different models 

and methods used for the optimization of electric power reliability. Yusuf et al. [5] studied the various measures of system 

performance using Kolmogorov’s forward equations method. Khorshidi et al. [6] focused on optimizing the reliability of multistate 

weighted k-out-of-n systems using a dynamic modeling approach and compared the performance of genetic and imperialist 

competitive algorithms. Mirjalili [7] highlighted the effectiveness of Motth-Flame Optimization in handling complex constrained 

and unknown search spaces. The time-dependent behavior of a single-server queuing model was studied by Kumar et al. [8]. The 

Modified Gray Wolf Optimization algorithm was introduced by Sharma et al. [9] by integrating feature selection with classifiers 
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such as Random Forest and decision trees. Gandhi et al. [10] solved a nonlinear noncomplex problem using the Shuffled Frog 

Leaping Algorithm. Zhang et al. [11] suggested a k-out-of-n model: G sub-system using active cold-standby or mixed redundancy 

strategy. Nath & Muhuri [13] introduced a novel formulation for the Reliability Redundancy Allocation Problem (RRAP). A 

hybrid evolutionary algorithm is recommended for various RRAP structures and achieves better performance over existing 

methods. With the help of a Machine Learning Algorithm using the Internet of Things, Muniandi et al. [14] developed a blueprint 

for condition-based monitoring and proactive maintenance of electronics systems. Gorji [12] examined the supply chain of green 

hydrogen for many stages. Key challenges were identified, and the use of metaheuristic optimization techniques to improve 

efficiency and sustainability was investigated. This paper provides a systematic approach to integrate maintenance with 

reliability-based optimization, using the application of Metaheuristic algorithms like GA, PSO, and CSA. The suggested strategy 

provides guidance and practical insights for the management to achieve enhanced operational reliability and high availability for 

the working model.  

 

2. Notations and Nomenclature 
Si: System’s states, where i=0, 1, …, 6    

 : Respective constant transition rate of the main unit going under preventive maintenance. 

j: Respective constant transition rate causing the main unit to go into reduced state while the reserved unit is in standby/in 

operation  (j = 1/2) 

k: Failure constant transition rate of the reserved unit in standby mode / in operational mode  (k=3/5) 

4: Failure constant transition rate of the main unit 

4: Constant transition rate of preventive maintenance/ repair rate of the main unit 

 j: Minor/ Major maintenance rate of the main unit (j = 1/2) 

 k: repair rate of the reserved unit in standby mode /in operational mode (k = 3/5) 

 

3. System Transition Diagram and Model Description 
          

                             
Fig. 1 Transition diagram 

 
The model employed in this study (Figure 1) has been adopted from Yusuf et al. [5]. The transition diagram shows all possible 

states of the system, viz., transitions between the operational and non-operational states. The considered system contains two 

different units, namely, a main unit and a warm standby unit (reserve unit). Repairing of failed units is given a higher priority 

than major or minor maintenance by a repairman. The main unit is operational, and the reserve unit is on standby when the 

temperature is high. When the temperature changes from high to low, the main unit shifts to a reduced capacity, while the 

operation of the reserve unit depends upon the condition of the main unit. If both the main and the reserve system fail, the 

complete system goes into a failed state. 
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In Figure 1, each transition, labeled with a rate β for failure and α for repair, shows the corresponding transition probability. 

The system shows from S0 to S6, covering all operational and non-operational states. The Transition diagram is used for the 

calculation of mean sojourn times and probabilities for each state performance.  

 

4. Mathematical Modelling 

4.1. Transition Probabilities  𝑞𝑖,𝑗(𝑡) and Mean Sojourn Time 

 

Table 1. Transition Probabilities 

From (State) To (State) Rate (label) Transition probability (𝑞𝑖,𝑗(𝑡)) 

S0 S1 𝛽1   
𝛽1

β +  𝛽1 + 𝛽2
 

S0 S2   𝛽2 
𝛽2

β +  𝛽1 + 𝛽2
 

S0 S6 β 
β

β +  𝛽1 + 𝛽2
 

S1 S0 𝛼1 
𝛼1

𝛼1 + 𝛽3
 

S2 S0 𝛼2 
𝛼2

𝛼2 + 𝛽4
 

S1 S3 𝛽3 
𝛽3

𝛼1 + 𝛽3
 

S3 S1      𝛼3 
𝛼3

𝛼3 + 𝛽4
 

S3 S5   𝛽4 
𝛽4

𝛼3 + 𝛽4
 

S2   S4    𝛽4   
𝛽4

𝛼2 + 𝛽4
 

S6   S0 α 1 

S4 S5      𝛽5 
𝛽5

𝛼4 + 𝛽5
 

 
Table 2. Mean sojourn time 

Outgoing rates Mean sojourn time 𝛕𝐢 
β1 + β2 τ0=

1

β1+β2
 

α1 τ1=
1

α1
 

α2 + β3 1

α2 + β3
 

α3 + β4 1

α3 + β4
 

α4 + α5 1

α4 + α5
 

β5 1

β5
 

                                           
Table 1 shows the transition probability for moving from state 0 to state 6, whereas Table 2 represents the mean sojourn 

times after finding the reliability for various states. 

 

4.2. Mean Time to System Failure (MTSF) (𝑇0) 

The Mean Time to System Failure (MTSF, T0) is the expected time the system operates before reaching complete failure, 

computed from state transition probabilities, repair rates, and visit probabilities of all system states. 
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MTSF (𝑇0) =[∑ {
{pr(ξ

sr(sff)
→      i)}μi

Πm1≠ξ
{1-Vm1m1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}i,sr ] / [1- ∑ {
{pr(ξ

sr(sff)
→      ξ)}

Πm2≠ξ
{1-Vm2m2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}sr ]  (1) 

 

𝑇0 =

1

𝛼1
+

1

𝛼3+𝛽4
+

𝛼3
(𝛼3+𝛽4) (𝛼4+𝛼5)

+
1+
𝛼2
𝛼1 
𝛽3

+
1

𝛽2
+

1

𝛼+𝛽
(𝐴+

𝛽1
𝛽2
)

1−𝐴
  (2) 

 

 where A=
β4

α3+β4
+

𝛼3𝛼5

(𝛼3+𝛽4)(𝛼4+𝛼5)
 

 

4.3. Availability of System (𝐴0) 

The system availability shows the time a system remains available and is calculated using repair rate, failure rate, and state 

transition probability.    

 

A0 = [∑ {
{pr(ξsr→j)}fj,μj

Πm1≠ξ
{1-Vm1m1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}j,sr ] / [∑ {
{pr(ξsr→i)}μi

1

Πm2≠ξ
{1-Vm2m2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}i,sr ]   (3) 

 

A0 = 1 − 𝑉6     (4) 

  

                                                 𝑉6 =
𝛽1

𝛽1+𝛽2
+

𝛽4
𝛼3+𝛽4

𝛼5
𝛼4+𝛼5

+ 1 ⋅ (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑆5) 

 

5. Methodology for Optimizing the Parameters 
The dataset used in this study includes ten records. The four normalized features are 1). Workload (W) indicates usage (0-

100), 2) Failure rate (α) reflects likelihood (0-100), 3) Sensor index (S) reflects unit health, a higher value shows more wear, and 

4) Maintenance Priority (P), which ranges from 0-75 and indicates when maintenance is needed.  The target is to train a supervised 

model to forecast P from W, α, and S for maintenance decisions.  

 
Table 3. Range of parameters 

Parameter W α S P 

Range 0-100 0-100 0-100 0-75 

 

The Optimization of RPGT-based reliability Metrics Using CSA, PSO, and GA is worked out below. 

 

5.1. Mean Time to System Failure (T₀) with Optimized Parameter Values 

The optimized value of MTSF and the related optimized failure and repair rates using the three algorithms: - Cuckoo search 

algorithm, Particle Swarn Optimization, and Genetic Algorithm, is computed as below 

 
Table 4. Optimized Parameters and MTSF Value (T₀) 

Algorithm α₁ α₂ α₃ α₄ β₁ T₀ 

CSA 1.2413 2.7539 0.9261 1.5427 3.1186 0.456714 

PSO 1.1852 2.6891 0.9987 1.4723 3.0432 0.453109 

GA 1.3794 2.8476 0.8742 1.6389 3.1954 0.443973 

Table 4 shows the effectiveness of the algorithms to maximize MTSF to improve the reliability of the system. 

 

5.2. Availability Optimization 

The Optimized Failure and Repair rates to maximize the system availability using  CSA, PSO, and GA are shown in Table 

5 below. 
Table 5. Optimized Parameters and Availability Value (T₀) 

Algorithm α₁ α₂ α₃ α₄ β₁ A₀ 

CSA 1.2413 2.7539 0.9261 1.5427 3.1186 0.593937 

PSO 1.3786 2.9874 0.9142 1.6349 3.0562 0.592282 

GA 1.1842 2.6645 0.8963 1.5217 3.1325 0.595922 
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From above, we notice that GA computed the highest availability, followed by CSA, and the lowest value by PSO.   

 

Using the three Metaheuristic algorithms, namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Cuckoo 

Search Algorithm (CSA) on a redundant system, the optimization of reliability indices was carried out using the RPGT technique. 

The relative results regarding MTSF optimisation show that CSA achieved the best performance (MTSF- .4567), showing its 

strong ability to maximize system lifetime, GA provided moderate results (MTSF- 0.4439), but PSO yielded the lowest MTSF 

(- 0.4531). In contrast, the results of the Steady state optimisation demonstrate that GA achieved the highest availability (-0.5959), 

CSA performed moderately (- 0.5939), and PSO resulted in the lowest availability (0.5922). 

 
Fig. 2 Optimized Parameters and MTSF Value (To) 

 

 
Fig. 3 Optimized Parameters and Availability Value (A₀) 
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 6. Conclusion  
The comparative analysis suggests that different algorithms demonstrate different results for varying conditions. In MTSF 

optimisation, the CSA is best suited, whereas the results of the steady state optimisation conclude GA as the effective technique. 

Furthermore, it also highlights the benefits of using the RTGP technique to optimize system availability, along with stochastic 

modeling and Metaheuristic optimization algorithms. Future work may focus on extending the approach to multi-component 

systems and real-time behavior. The methodology used in this work can be combined with another algorithm to enhance the 

overall reliability for the benefit of the industries. 
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