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Abstract - The Fokker-Planck-Kolmogorov (FPK) equation generated by the jump-diffusion model is represented as a Partial 

Integro-Differential Equation (PIDE). Traditional numerical methods for solving PIDEs are often constrained by dimensionality 

and the complexity of mesh generation. To address these limitations, this paper proposes a novel deep-learning approach for 

solving PIDEs. Building upon the existing  Physics-Informed Neural Network (PINN) framework for solving Partial Differential 

Equations (PDEs), we incorporate additional deep neural networks (DNNs) and construct a novel loss function to 

simultaneously optimize the integral terms and the solution for approximating the PIDE. The results demonstrate that our 

approach accurately captures the system's dynamic behaviour, highlighting its effectiveness and potential for solving complex 

PIDEs.  

Keywords - Deep learning, Partial integro-differential equation, Jump-diffusion model, Fokker-Planck-Kolmogorov  equation, 

Gaussian and Poisson white noises.

1. Introduction  
In scenarios where jumps occur, models driven solely by continuous noise are insufficient to accurately capture the dynamics. 

The jump-diffusion model has been proposed to address this limitation, extending the traditional framework. As a result, the FPK 

equation, used to describe the evolution of probability density functions, transitions from a PDE to a PIDE. 

Traditionally, solving such PIDEs has relied on numerical methods, including finite difference methods (FDM) [6], the path 

integral (PI) method [11], and the Lyapunov function method [12]. However, these classical approaches often face challenges 

such as mesh generation, convergence issues, and high computational costs [2]. These limitations highlight the need for more 

efficient and robust solution methods to tackle PIDEs in complex systems. Deep learning methods have demonstrated significant 

potential for solving differential equations. Take the PINN algorithm [1] using deep learning to solve PDE as an example; in 

recent years, more and more people have applied the PINN algorithm in engineering, finance, medicine and other fields. So in 

this article, we extend the algorithm so that it can solve PIDEs. 

In recent years, deep learning has emerged as a powerful tool for solving differential equations. For instance, the PINN 

algorithm has demonstrated remarkable success in solving PDEs and has found applications in diverse fields, such as engineering, 

finance, and healthcare. Building on this foundation, we extend the PINN framework to solve PIDEs. 

A key advantage of deep learning over traditional numerical methods, such as FDM, lies in the differentiability of solutions 

fitted by neural networks. Leveraging this feature, we propose an approach that employs additional neural networks to handle 

the integral terms in PIDEs. Specifically, the neural network approximates the antiderivative of the integrand in the integral term, 

enabling efficient computation of the integral using Newton-Leibniz's formula. 

This paper is organized as follows: Section 2 introduces the mathematical formulation of the PIDE. Section 3 describes our 

deep learning-based method for solving PIDEs. Section 4 evaluates the predictive accuracy and convergence performance of the 

proposed method using the Ornstein-Uhlenbeck (OU) process as a case study. Finally, Section 5 concludes the paper and outlines 

directions for future research. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. The Basic Equations 
 A one-dimensional jump-diffusion stochastic differential equation (SDE) influenced by the combined effects of Gaussian 

and Poisson white noise is described as follows: 

𝑑𝑋𝑡 = 𝑓(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝑔(𝑋𝑡 , 𝑡)𝑑𝑊(𝑡) + 𝐽(𝑋𝑡)𝑑𝑃(𝑡)           (2.1) 

Here,𝑓(𝑋𝑡 , 𝑡) represents the drift coefficient, 𝑔(𝑋𝑡 , 𝑡) denotes the diffusion coefficient, and 𝑊(𝑡) is an increment of a 

standard Brownian motion with intensity 𝑞. Moreover 𝑃(𝑡) represents the Poisson white noise with an arrival intensity 𝜆  and 

random variable 𝐽(𝑋𝑡) is an impulse function that introduces jumps, with its probability density function (PDF) given by ℎ(𝑥). 

Thus, the forward FPK equation corresponding to the SDE (2.1) is given as: 

𝐿𝑝(𝑥, 𝑡) = 𝐿1𝑝(𝑥, 𝑡) + 𝜆𝐼(𝑥, 𝑡) =
∂

∂𝑡
𝑝(𝑥, 𝑡)             (2.2) 

𝐿1𝑝(𝑥, 𝑡) = −
∂(𝑓(𝑥)𝑝(𝑥,𝑡))

∂𝑥
+

𝑞

2

∂2(𝑔2(𝑥),𝑝(𝑥,𝑡))

∂𝑥2 − 𝜆𝑝(𝑥, 𝑡)             (2.3) 

𝐼(𝑥, 𝑡) = ∫ ℎ(𝑥 − 𝑦)𝑝(𝑥)𝑑𝑦
∞

−∞
             (2.4) 

Here,𝑝(𝑥) denotes the PDF of the SDE (2.1). The initial, boundary, and normalization conditions are specified as follows: 

𝑝(𝑥, 0) = 𝑝0(𝑥)            (2.5) 

𝑝(∞, 𝑡) = 𝑝(−∞, 𝑡) = 0            (2.6) 

∫ 𝑝(𝑥, 𝑡
∧
)𝑑𝑥 = 1

∞

−∞
, ∀𝑡

∧
∈ [0, 𝑇]               (2.7) 

3. Methodology 
In this section, we will describe the numerical scheme for solving the PIDE associated with the FPK equation. 

3.1. A brief of using Deep Learning to Solve Differential Equations 

We assume that the predicted solution is𝑝𝜃(𝑥, 𝑡), which represents the output of the neural network, expressed as: 

𝑝𝜃(𝑥, 𝑡) = 𝑁𝑁1(𝑥, 𝑡; 𝜃)             (3.1) 

Here, the parameter vector 𝜃in the neural network represents the weights and biases. 

Infinite boundaries are impractical for computational purposes. Generally, it is sufficient to truncate 𝑥 to the range [𝑥𝑚𝑎𝑥𝑚𝑖𝑛 . 

Based on the differential equation (2.2) and the necessary conditions (2.5)-(2.6), we can construct the loss function as follows: 

𝐿𝑜𝑠𝑠1(𝜃) = ∑ 𝑎𝑖 ⋅ 𝐸𝑖
3
𝑖=1          (3.2) 

𝐸1 =
1

𝑁𝐷
⋅ ∑ [𝐿1(𝑝𝜃(𝑥𝑖 , 𝑡𝑖)) − 𝜆𝐼(𝑥𝑖 , 𝑡𝑖)]2𝑁𝐷

𝑖=1          (3.3) 

𝐸2 =
1

𝑁𝐵
⋅ ∑ [𝑝𝜃(𝑥𝑖 , 𝑡𝑖)]2𝑁𝐵

𝑖=1             (3.4) 

𝐸3 =
1

𝑁𝑖
⋅ ∑ [𝑝𝜃(𝑥𝑖 , 0) − 𝑝0(𝑥𝑖)]2𝑁𝑖

𝑖=1              (3.5) 

Here, 𝑎𝑖 , 𝑖 = 1,2,3 represents the weight parameter, which is adjusted according to an empirical method {(𝑥𝑖 , 𝑡𝑖)} ⊂
[𝑥𝑚𝑎𝑥𝑚𝑖𝑛 . In this article, we typically set all weight parameters to 1. 
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Fig. 1 Schematic of two DNNs for solving PIDEs 
 

3.2. Existing Problems and Solutions  

The main challenge lies in the integral term in equation (3.3), which is not straightforward to handle. The most classical 

approach to addressing integral terms is the Gauss-Legendre (GL) quadrature. However, this method is memory-intensive and 

significantly increases computational time. We propose using an additional deep neural network (DNN) to overcome these 

difficulties to compute the integral terms. In general, the cutoff value of the integrated variable𝑦 is set to be the same as that of 

the variable 𝑥 [2]. Consequently, the integral function 𝐼(𝑥, 𝑡) can be reformulated as follows: 

𝑝(𝑥, 𝑡) = 0, 𝑥 ∈ [−∞, 𝑥𝑚𝑎𝑥𝑚𝑖𝑛         (3.6) 

𝐼(𝑥, 𝑡) = ∫ ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡)𝑑𝑦
∞

−∞
= ∫ ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡)𝑑𝑦

𝑥𝑚𝑎𝑥∫ .

𝑥𝑚𝑖𝑛
        (3.7) 

It is now evident that the integrand ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡) is continuous. If we assume that  𝐹(𝑥, 𝑦, 𝑡) is the antiderivative of the 

integrand, the integral can be directly evaluated using the Newton-Leibniz formula. Based on this idea, we use the output of the 

DNN as 𝐹𝛽(𝑥, 𝑦, 𝑡) denoted as 𝐹𝛽(𝑥, 𝑦, 𝑡) = 𝑁𝑁2(𝑥, 𝑦, 𝑡; 𝛽). In other words, we only need to ensure that the derivative of 

𝐹𝛽(𝑥, 𝑦, 𝑡) with respect to y equals the integrand ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡). Accordingly, we can construct additional residuals as follows: 

  𝐿𝑜𝑠𝑠2(𝛽) = 𝐿𝑜𝑠𝑠2(𝛽; 𝜃) =
1

𝑁𝑓
∑ [

∂

∂𝑦
𝐹𝛽(𝑥𝑖

𝑓
, 𝑦𝑖

𝑓
, 𝑡𝑖

𝑓
) − ℎ(𝑥𝑖

𝑓
, 𝑦𝑖

𝑓
)𝑝𝜃(𝑥𝑖

𝑓
, 𝑡𝑖

𝑓
)]2𝑁𝑓

𝑖−1
         (3.8) 

Meanwhile, Equation (3.3) can be rewritten as follows: 
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𝐸1(𝜃) = 𝐸1(𝜃; 𝛽) =
1

𝑁𝐷
⋅ ∑ [𝐿1(𝑝𝜃(𝑥𝑖 , 𝑡𝑖)) − 𝜆𝐹𝛽(𝑥𝑖 , 𝑦, 𝑡𝑖)|

𝑦𝑚𝑎𝑥]2
𝑖=1
𝑁𝐷 .

𝑦𝑚𝑖𝑛
           (3.9) 

Here 𝑁is batch size and{𝑥𝑖
𝑓

, 𝑦𝑖
𝑓

, 𝑡𝑖
𝑓

} ⊂ (𝑥𝑚𝑎𝑥𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛 . It should be noted that𝐿𝑜𝑠𝑠1(𝜃) and 𝐿𝑜𝑠𝑠2(𝛽) are minimized 

separately during each iterative optimization. In other words, when optimizing 𝜃 or 𝛽, the other set of optimization parameters 

is treated as constant. Furthermore, it is not necessary for 𝐹𝛽(𝑥𝑖 , 𝑦, 𝑡𝑖)|𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥to precisely approximate𝐼(𝑥𝑖 , 𝑡𝑖) at every step. This 

is because, during the initial stages of training, the discrepancy between the predicted solution 𝑝𝜃(𝑥, 𝑡) and the exact solution 

𝑝(𝑥, 𝑡) is significant, making such accuracy less critical at the outset. 

Figure 1 illustrates the main structural form of solving a PIDE using two DNNs. The pseudo-code in Table 1 illustrates the 

process of our method for computing the numerical solution of the PIDE, with more details already described in the preceding 

text. 

Table. 1 The pseudo-code of our deep learning method for solving PIDE. 

Algorithm: Deep Learning for Solving PIDEs.  

Input: The training set and the hyperparameters of the DNNs, the parameters of the question.  

Output: The predicted solutions.  

1: Initialize the weights and biases of the𝑁𝑁1(𝑥, 𝑡; 𝜃) and 𝑁𝑁2(𝑥, 𝑦, 𝑡; 𝛽). 

2: Repeat for epochs times  

3: Construct neural network and get the output 𝑝𝜃(𝑥, 𝑡) and 𝐹𝛽(𝑥, 𝑦, 𝑡). 

4: 

The predicted solution𝑝𝜃(𝑥, 𝑡)  is combined with the initial and boundary conditions,as 

well as the PIDE, to construct the loss function𝐿𝑜𝑠𝑠1(𝜃; 𝛽). Similarly, the 𝐹𝛽(𝑥, 𝑦, 𝑡) is used 

to approximate the integrand by constructing the loss function 𝐿𝑜𝑠𝑠2(𝛽; 𝜃). 

5: 
Update the parameters 𝜃and 𝛽by minimizing the loss function𝐿𝑜𝑠𝑠1(𝜃; 𝛽) and 𝐿𝑜𝑠𝑠2(𝛽; 𝜃), 

respectively. 

 

4. Examples 
The primary objective of this section is to evaluate the effectiveness of our algorithm. To achieve this, the solution obtained 

using the Monte Carlo method will be treated as the standard solution for comparison. 

Consider a nonlinear function in Equation (2.3): 

𝑓(𝑥) = 𝑎𝑥 + 𝑏𝑥3, 𝑔(𝑥) = 1      (4.1) 

Combining the above formula with the SDE (2.1) describes the OU process, where 𝑥is defined within the range [𝑥𝑚𝑎𝑥𝑚𝑖𝑛 . 

We assume that the random variable 𝐽(𝑋𝑡) in Equation (2.3) follows a normal distribution 𝑁(𝜇𝑅, 𝜎𝑅
2). Consequently, the PIDE 

associated with the Fokker-Planck (FP) equation is described as follows: 

−（𝑎 + 3𝑏𝑥2 + 𝜆）𝑝(𝑥, 𝑡) − (𝑎𝑥 + 𝑏𝑥3)
∂

∂𝑥
𝑝(𝑥, 𝑡) +

𝑞

2

∂2

∂𝑥2
𝑝(𝑥, 𝑡) 

                   +
𝜆

√2𝜋𝜎𝑅
2

× ∫ 𝑒𝑥𝑝( −
(𝑥−𝑦−𝜇𝑅

2 )

2𝜎𝑅
2 )

∞

−∞
𝑝(𝑥, 𝑡)𝑑𝑥 =

∂

∂𝑡
𝑝(𝑥, 𝑡)     (4.2) 

The initial condition is defined as follows: 

𝑝0(𝑥) =
1

√2𝜋
𝑒𝑥𝑝( −

𝑥2

2
)        (4.3) 

For the PIDE (4.2), the Monte Carlo results are obtained by fitting 500,000 paths. In our deep learning algorithm, the learning 

rate is reduced to 75% every 5000 iterations. The initial learning rate is set to 0.005, and the training process is conducted over 

30,000 epochs using the Adam optimizer. During training, both 𝑁𝑁1(𝑥, 𝑡; 𝜃) and 𝑁𝑁2(𝑥, 𝑦, 𝑡; 𝛽) consist of 8 hidden layers, each 

with 40 neurons, and the activation function is set to Sigmoid. Unless otherwise specified, the parameters are defined as follows: 

𝑎 = 0.5, 𝑏 = −0.5, 𝜆 = 0.5, 𝑞 = 0.25, 𝜇𝑅 = 0. , 𝜎𝑅 = 0.1, 𝑥𝑚𝑎𝑥𝑚𝑖𝑛       (4.4) 
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Fig. 2 The predictive solutions 𝒑𝜽(𝒙, 𝒕) of the PIDE (4.2) of the PIDE (4.2) were obtained using our deep learning method, which employs a 

feedforward neural network (FNN) to compute the integral term. (a1)The density plot is generated over the truncated space-time range. (b1)The 

three-dimensional pattern is visualized within the corresponding truncated space-time range. (c1)-(c3)These figures compare 𝒑𝜽(𝒙, 𝒕) with the results 

obtained by the Monte Carlo method. Specifically, (c1)-(c3) correspond to three temporal snapshots from (a1), at𝒕 = 𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟖 , respectively. And 

the solid red line represents the prediction solution obtained by our deep learning method, and the dashed black line represents the comparison 

solution obtained by Monte Carlo method. 

Moreover, 𝑁𝐵, 𝑁𝑖, 𝑁𝐷and 𝑁𝑓 in formulas (3.4), (3.5), (3.8) and (3.9) are set to300, 300, 6000 and 5000, respectively. 

The Figure 2 illustrates the predicted solutions 𝑝𝜃(𝑥, 𝑡) of the PIDE (4.2) obtained by our deep learning method, including 

the density plot, the 3D plot and the the comparison with the MC reference solutions at three temporal snapshots in (a1):𝑡 =
0.2,0.5,0.8, respectively. The results show that the solution of our method can capture the solution of PIDE (4.2) . 

 

5. Conclusion 
In this paper, we propose a novel deep learning method that leverages DNNs to compute the integral terms in equations and 

provide numerical solutions to the PIDE. Furthermore, we validate the effectiveness of this method by applying it to solve the 

FP equation for the OU process. The results demonstrate that the proposed method successfully captures the solution of the PIDE. 

However, our current work has limitations, and several challenges remain unaddressed, such as handling cases where the 

integrand function is discontinuous. In future work, we aim to extend our approach to tackle such models and explore additional 

applications. 
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