
International Journal of Mathematics Trends and Technology Volume 71 Issue 2, 1-6, February 2025

ISSN: 2231-5373/ https://doi.org/10.14445/22315373/IJMTT-V71I2P101 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Deep Learning for solving Fokker-Planck-Kolmogorov

Equation Arising from Jump-Diffusion Model

Xingyu Zhang1, Jianguo Tan2

1Department of Mathematics, Tiangong University, Tianjin, PR China.

1Corresponding Author : 18822372286@163.com

Received: 17 December 2024 Revised: 20 January 2025 Accepted: 04 February 2025 Published: 18 February 2025

Abstract - The Fokker-Planck-Kolmogorov (FPK) equation generated by the jump-diffusion model is represented as a Partial

Integro-Differential Equation (PIDE). Traditional numerical methods for solving PIDEs are often constrained by dimensionality

and the complexity of mesh generation. To address these limitations, this paper proposes a novel deep-learning approach for

solving PIDEs. Building upon the existing Physics-Informed Neural Network (PINN) framework for solving Partial Differential

Equations (PDEs), we incorporate additional deep neural networks (DNNs) and construct a novel loss function to

simultaneously optimize the integral terms and the solution for approximating the PIDE. The results demonstrate that our

approach accurately captures the system's dynamic behaviour, highlighting its effectiveness and potential for solving complex

PIDEs.

Keywords - Deep learning, Partial integro-differential equation, Jump-diffusion model, Fokker-Planck-Kolmogorov equation,

Gaussian and Poisson white noises.

1. Introduction
In scenarios where jumps occur, models driven solely by continuous noise are insufficient to accurately capture the dynamics.

The jump-diffusion model has been proposed to address this limitation, extending the traditional framework. As a result, the FPK

equation, used to describe the evolution of probability density functions, transitions from a PDE to a PIDE.

Traditionally, solving such PIDEs has relied on numerical methods, including finite difference methods (FDM) [6], the path

integral (PI) method [11], and the Lyapunov function method [12]. However, these classical approaches often face challenges

such as mesh generation, convergence issues, and high computational costs [2]. These limitations highlight the need for more

efficient and robust solution methods to tackle PIDEs in complex systems. Deep learning methods have demonstrated significant

potential for solving differential equations. Take the PINN algorithm [1] using deep learning to solve PDE as an example; in

recent years, more and more people have applied the PINN algorithm in engineering, finance, medicine and other fields. So in

this article, we extend the algorithm so that it can solve PIDEs.

In recent years, deep learning has emerged as a powerful tool for solving differential equations. For instance, the PINN

algorithm has demonstrated remarkable success in solving PDEs and has found applications in diverse fields, such as engineering,

finance, and healthcare. Building on this foundation, we extend the PINN framework to solve PIDEs.

A key advantage of deep learning over traditional numerical methods, such as FDM, lies in the differentiability of solutions

fitted by neural networks. Leveraging this feature, we propose an approach that employs additional neural networks to handle

the integral terms in PIDEs. Specifically, the neural network approximates the antiderivative of the integrand in the integral term,

enabling efficient computation of the integral using Newton-Leibniz's formula.

This paper is organized as follows: Section 2 introduces the mathematical formulation of the PIDE. Section 3 describes our

deep learning-based method for solving PIDEs. Section 4 evaluates the predictive accuracy and convergence performance of the

proposed method using the Ornstein-Uhlenbeck (OU) process as a case study. Finally, Section 5 concludes the paper and outlines

directions for future research.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Xingyu Zhang & Jianguo Tan / IJMTT, 71(2), 1-6, 2025

2

2. The Basic Equations
 A one-dimensional jump-diffusion stochastic differential equation (SDE) influenced by the combined effects of Gaussian

and Poisson white noise is described as follows:

𝑑𝑋𝑡 = 𝑓(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝑔(𝑋𝑡 , 𝑡)𝑑𝑊(𝑡) + 𝐽(𝑋𝑡)𝑑𝑃(𝑡) (2.1)

Here,𝑓(𝑋𝑡 , 𝑡) represents the drift coefficient, 𝑔(𝑋𝑡 , 𝑡) denotes the diffusion coefficient, and 𝑊(𝑡) is an increment of a

standard Brownian motion with intensity 𝑞. Moreover 𝑃(𝑡) represents the Poisson white noise with an arrival intensity 𝜆 and

random variable 𝐽(𝑋𝑡) is an impulse function that introduces jumps, with its probability density function (PDF) given by ℎ(𝑥).

Thus, the forward FPK equation corresponding to the SDE (2.1) is given as:

𝐿𝑝(𝑥, 𝑡) = 𝐿1𝑝(𝑥, 𝑡) + 𝜆𝐼(𝑥, 𝑡) =
∂

∂𝑡
𝑝(𝑥, 𝑡) (2.2)

𝐿1𝑝(𝑥, 𝑡) = −
∂(𝑓(𝑥)𝑝(𝑥,𝑡))

∂𝑥
+

𝑞

2

∂2(𝑔2(𝑥),𝑝(𝑥,𝑡))

∂𝑥2 − 𝜆𝑝(𝑥, 𝑡) (2.3)

𝐼(𝑥, 𝑡) = ∫ ℎ(𝑥 − 𝑦)𝑝(𝑥)𝑑𝑦
∞

−∞
 (2.4)

Here,𝑝(𝑥) denotes the PDF of the SDE (2.1). The initial, boundary, and normalization conditions are specified as follows:

𝑝(𝑥, 0) = 𝑝0(𝑥) (2.5)

𝑝(∞, 𝑡) = 𝑝(−∞, 𝑡) = 0 (2.6)

∫ 𝑝(𝑥, 𝑡
∧
)𝑑𝑥 = 1

∞

−∞
, ∀𝑡

∧
∈ [0, 𝑇] (2.7)

3. Methodology
In this section, we will describe the numerical scheme for solving the PIDE associated with the FPK equation.

3.1. A brief of using Deep Learning to Solve Differential Equations

We assume that the predicted solution is𝑝𝜃(𝑥, 𝑡), which represents the output of the neural network, expressed as:

𝑝𝜃(𝑥, 𝑡) = 𝑁𝑁1(𝑥, 𝑡; 𝜃) (3.1)

Here, the parameter vector 𝜃in the neural network represents the weights and biases.

Infinite boundaries are impractical for computational purposes. Generally, it is sufficient to truncate 𝑥 to the range [𝑥𝑚𝑎𝑥𝑚𝑖𝑛 .

Based on the differential equation (2.2) and the necessary conditions (2.5)-(2.6), we can construct the loss function as follows:

𝐿𝑜𝑠𝑠1(𝜃) = ∑ 𝑎𝑖 ⋅ 𝐸𝑖
3
𝑖=1 (3.2)

𝐸1 =
1

𝑁𝐷
⋅ ∑ [𝐿1(𝑝𝜃(𝑥𝑖 , 𝑡𝑖)) − 𝜆𝐼(𝑥𝑖 , 𝑡𝑖)]2𝑁𝐷

𝑖=1 (3.3)

𝐸2 =
1

𝑁𝐵
⋅ ∑ [𝑝𝜃(𝑥𝑖 , 𝑡𝑖)]2𝑁𝐵

𝑖=1 (3.4)

𝐸3 =
1

𝑁𝑖
⋅ ∑ [𝑝𝜃(𝑥𝑖 , 0) − 𝑝0(𝑥𝑖)]2𝑁𝑖

𝑖=1 (3.5)

Here, 𝑎𝑖 , 𝑖 = 1,2,3 represents the weight parameter, which is adjusted according to an empirical method {(𝑥𝑖 , 𝑡𝑖)} ⊂
[𝑥𝑚𝑎𝑥𝑚𝑖𝑛 . In this article, we typically set all weight parameters to 1.

Xingyu Zhang & Jianguo Tan / IJMTT, 71(2), 1-6, 2025

3

Fig. 1 Schematic of two DNNs for solving PIDEs

3.2. Existing Problems and Solutions

The main challenge lies in the integral term in equation (3.3), which is not straightforward to handle. The most classical

approach to addressing integral terms is the Gauss-Legendre (GL) quadrature. However, this method is memory-intensive and

significantly increases computational time. We propose using an additional deep neural network (DNN) to overcome these

difficulties to compute the integral terms. In general, the cutoff value of the integrated variable𝑦 is set to be the same as that of

the variable 𝑥 [2]. Consequently, the integral function 𝐼(𝑥, 𝑡) can be reformulated as follows:

𝑝(𝑥, 𝑡) = 0, 𝑥 ∈ [−∞, 𝑥𝑚𝑎𝑥𝑚𝑖𝑛 (3.6)

𝐼(𝑥, 𝑡) = ∫ ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡)𝑑𝑦
∞

−∞
= ∫ ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡)𝑑𝑦

𝑥𝑚𝑎𝑥∫ .

𝑥𝑚𝑖𝑛
 (3.7)

It is now evident that the integrand ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡) is continuous. If we assume that 𝐹(𝑥, 𝑦, 𝑡) is the antiderivative of the

integrand, the integral can be directly evaluated using the Newton-Leibniz formula. Based on this idea, we use the output of the

DNN as 𝐹𝛽(𝑥, 𝑦, 𝑡) denoted as 𝐹𝛽(𝑥, 𝑦, 𝑡) = 𝑁𝑁2(𝑥, 𝑦, 𝑡; 𝛽). In other words, we only need to ensure that the derivative of

𝐹𝛽(𝑥, 𝑦, 𝑡) with respect to y equals the integrand ℎ(𝑥 − 𝑦)𝑝(𝑥, 𝑡). Accordingly, we can construct additional residuals as follows:

 𝐿𝑜𝑠𝑠2(𝛽) = 𝐿𝑜𝑠𝑠2(𝛽; 𝜃) =
1

𝑁𝑓
∑ [

∂

∂𝑦
𝐹𝛽(𝑥𝑖

𝑓
, 𝑦𝑖

𝑓
, 𝑡𝑖

𝑓
) − ℎ(𝑥𝑖

𝑓
, 𝑦𝑖

𝑓
)𝑝𝜃(𝑥𝑖

𝑓
, 𝑡𝑖

𝑓
)]2𝑁𝑓

𝑖−1
 (3.8)

Meanwhile, Equation (3.3) can be rewritten as follows:

x

σ1

1

σ1

σ1

σ1

1

σ1

σ1 t

σ2

σ2

σ2

σ2

1

σ2

σ2

z

pθ

Fβ

𝜕𝑝𝜃

𝜕𝑥
,
𝜕𝑝𝜃

𝜕𝑡
,
𝜕2𝑝𝜃

𝜕𝑥2
, 𝑝𝜃

𝜕𝐹𝛽

𝜕𝑧
, 𝐹𝛽

𝐿𝑜𝑠𝑠1(𝜃; 𝛽)

𝐿𝑜𝑠𝑠2(𝛽; 𝜃)

DNNs
Physical

Information

Loss

function

Xingyu Zhang & Jianguo Tan / IJMTT, 71(2), 1-6, 2025

4

𝐸1(𝜃) = 𝐸1(𝜃; 𝛽) =
1

𝑁𝐷
⋅ ∑ [𝐿1(𝑝𝜃(𝑥𝑖 , 𝑡𝑖)) − 𝜆𝐹𝛽(𝑥𝑖 , 𝑦, 𝑡𝑖)|

𝑦𝑚𝑎𝑥]2
𝑖=1
𝑁𝐷 .

𝑦𝑚𝑖𝑛
 (3.9)

Here 𝑁is batch size and{𝑥𝑖
𝑓

, 𝑦𝑖
𝑓

, 𝑡𝑖
𝑓

} ⊂ (𝑥𝑚𝑎𝑥𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛 . It should be noted that𝐿𝑜𝑠𝑠1(𝜃) and 𝐿𝑜𝑠𝑠2(𝛽) are minimized

separately during each iterative optimization. In other words, when optimizing 𝜃 or 𝛽, the other set of optimization parameters

is treated as constant. Furthermore, it is not necessary for 𝐹𝛽(𝑥𝑖 , 𝑦, 𝑡𝑖)|𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥to precisely approximate𝐼(𝑥𝑖 , 𝑡𝑖) at every step. This

is because, during the initial stages of training, the discrepancy between the predicted solution 𝑝𝜃(𝑥, 𝑡) and the exact solution

𝑝(𝑥, 𝑡) is significant, making such accuracy less critical at the outset.

Figure 1 illustrates the main structural form of solving a PIDE using two DNNs. The pseudo-code in Table 1 illustrates the

process of our method for computing the numerical solution of the PIDE, with more details already described in the preceding

text.

Table. 1 The pseudo-code of our deep learning method for solving PIDE.

Algorithm: Deep Learning for Solving PIDEs.

Input: The training set and the hyperparameters of the DNNs, the parameters of the question.

Output: The predicted solutions.

1: Initialize the weights and biases of the𝑁𝑁1(𝑥, 𝑡; 𝜃) and 𝑁𝑁2(𝑥, 𝑦, 𝑡; 𝛽).

2: Repeat for epochs times

3: Construct neural network and get the output 𝑝𝜃(𝑥, 𝑡) and 𝐹𝛽(𝑥, 𝑦, 𝑡).

4:

The predicted solution𝑝𝜃(𝑥, 𝑡) is combined with the initial and boundary conditions,as

well as the PIDE, to construct the loss function𝐿𝑜𝑠𝑠1(𝜃; 𝛽). Similarly, the 𝐹𝛽(𝑥, 𝑦, 𝑡) is used

to approximate the integrand by constructing the loss function 𝐿𝑜𝑠𝑠2(𝛽; 𝜃).

5:
Update the parameters 𝜃and 𝛽by minimizing the loss function𝐿𝑜𝑠𝑠1(𝜃; 𝛽) and 𝐿𝑜𝑠𝑠2(𝛽; 𝜃),

respectively.

4. Examples
The primary objective of this section is to evaluate the effectiveness of our algorithm. To achieve this, the solution obtained

using the Monte Carlo method will be treated as the standard solution for comparison.

Consider a nonlinear function in Equation (2.3):

𝑓(𝑥) = 𝑎𝑥 + 𝑏𝑥3, 𝑔(𝑥) = 1 (4.1)

Combining the above formula with the SDE (2.1) describes the OU process, where 𝑥is defined within the range [𝑥𝑚𝑎𝑥𝑚𝑖𝑛 .

We assume that the random variable 𝐽(𝑋𝑡) in Equation (2.3) follows a normal distribution 𝑁(𝜇𝑅, 𝜎𝑅
2). Consequently, the PIDE

associated with the Fokker-Planck (FP) equation is described as follows:

−（𝑎 + 3𝑏𝑥2 + 𝜆）𝑝(𝑥, 𝑡) − (𝑎𝑥 + 𝑏𝑥3)
∂

∂𝑥
𝑝(𝑥, 𝑡) +

𝑞

2

∂2

∂𝑥2
𝑝(𝑥, 𝑡)

 +
𝜆

√2𝜋𝜎𝑅
2

× ∫ 𝑒𝑥𝑝(−
(𝑥−𝑦−𝜇𝑅

2)

2𝜎𝑅
2)

∞

−∞
𝑝(𝑥, 𝑡)𝑑𝑥 =

∂

∂𝑡
𝑝(𝑥, 𝑡) (4.2)

The initial condition is defined as follows:

𝑝0(𝑥) =
1

√2𝜋
𝑒𝑥𝑝(−

𝑥2

2
) (4.3)

For the PIDE (4.2), the Monte Carlo results are obtained by fitting 500,000 paths. In our deep learning algorithm, the learning

rate is reduced to 75% every 5000 iterations. The initial learning rate is set to 0.005, and the training process is conducted over

30,000 epochs using the Adam optimizer. During training, both 𝑁𝑁1(𝑥, 𝑡; 𝜃) and 𝑁𝑁2(𝑥, 𝑦, 𝑡; 𝛽) consist of 8 hidden layers, each

with 40 neurons, and the activation function is set to Sigmoid. Unless otherwise specified, the parameters are defined as follows:

𝑎 = 0.5, 𝑏 = −0.5, 𝜆 = 0.5, 𝑞 = 0.25, 𝜇𝑅 = 0. , 𝜎𝑅 = 0.1, 𝑥𝑚𝑎𝑥𝑚𝑖𝑛 (4.4)

Xingyu Zhang & Jianguo Tan / IJMTT, 71(2), 1-6, 2025

5

Fig. 2 The predictive solutions 𝒑𝜽(𝒙, 𝒕) of the PIDE (4.2) of the PIDE (4.2) were obtained using our deep learning method, which employs a

feedforward neural network (FNN) to compute the integral term. (a1)The density plot is generated over the truncated space-time range. (b1)The

three-dimensional pattern is visualized within the corresponding truncated space-time range. (c1)-(c3)These figures compare 𝒑𝜽(𝒙, 𝒕) with the results

obtained by the Monte Carlo method. Specifically, (c1)-(c3) correspond to three temporal snapshots from (a1), at𝒕 = 𝟎. 𝟐, 𝟎. 𝟓, 𝟎. 𝟖 , respectively. And

the solid red line represents the prediction solution obtained by our deep learning method, and the dashed black line represents the comparison

solution obtained by Monte Carlo method.

Moreover, 𝑁𝐵, 𝑁𝑖, 𝑁𝐷and 𝑁𝑓 in formulas (3.4), (3.5), (3.8) and (3.9) are set to300, 300, 6000 and 5000, respectively.

The Figure 2 illustrates the predicted solutions 𝑝𝜃(𝑥, 𝑡) of the PIDE (4.2) obtained by our deep learning method, including

the density plot, the 3D plot and the the comparison with the MC reference solutions at three temporal snapshots in (a1):𝑡 =
0.2,0.5,0.8, respectively. The results show that the solution of our method can capture the solution of PIDE (4.2) .

5. Conclusion
In this paper, we propose a novel deep learning method that leverages DNNs to compute the integral terms in equations and

provide numerical solutions to the PIDE. Furthermore, we validate the effectiveness of this method by applying it to solve the

FP equation for the OU process. The results demonstrate that the proposed method successfully captures the solution of the PIDE.

However, our current work has limitations, and several challenges remain unaddressed, such as handling cases where the

integrand function is discontinuous. In future work, we aim to extend our approach to tackle such models and explore additional

applications.

Funding Statement
The research was conducted without any external financial support.

Acknowledgments
All authors contributed to the study conception and design.

Xingyu Zhang: Conceptualization, Methodology, Software, Data curation and Writing- Original draft preparation.

Jianguo Tan: Supervision, Writing- Reviewing and Editing.

Xingyu Zhang & Jianguo Tan / IJMTT, 71(2), 1-6, 2025

6

References

[1] M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward

and Inverse Problems Involving Nonlinear Partial Differential Equations,” Journal of Computational Physics, vol. 378, pp. 686-707, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Wantao Jia et al., “Deep Neural Network Method to Predict the Dynamical System Response under Random Excitation of Combined

Gaussian and Poisson White Noises,” Chaos, Solitons & Fractals, vol. 185, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[3] Sifan Wang, and Paris Perdikaris, “Deep Learning of Free Boundary and Stefan Problems,” Journal of Computational Physics, vol. 428,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Xu Sun, Jinqiao Duan, and Xiaofan Li, “Stochastic Modeling of Nonlinear Oscillators under Combined Gaussian and Poisson White

Noise: A Viewpoint Based on the Energy Conservation Law,” Nonlinear Dynamics, vol. 84, pp. 1311-1325, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[5] Weiyan Liu, Weiqiu Zhu, and Wantao Jia, “Stochastic Stability of Quasi-Integrable and Non-Resonant Hamiltonian Systems Under

Parametric Excitations of Combined Gaussian and Poisson White Noises,” International Journal of Non-Linear Mechanics, vol. 58, pp.

191-198, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[6] Rama Cont, and Ekaterina Voltchkova, “A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models,”

SIAM Journal on Numerical Analysis, vol. 43, no. 4, pp. 1596-1626, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[7] S. Chakraverty, and Susmita Mall, “Single Layer Chebyshev Neural Network Model with Regression-Based Weights for Solving

Nonlinear Ordinary Differential Equations,” Evolutionary Intelligence, vol. 13, no. 4, pp. 687-694, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[8] I.E. Lagaris, A. Likas, and D.I. Fotiadis, “Artificial Neural Networks for Solving Ordinary and Partial Differential Equations,” IEEE

Transactions on Neural Networks, vol. 9, pp. 987-1000, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[9] Ling Guo et al., “Monte Carlo fPINNs: Deep Learning Method for Forward and Inverse Problems Involving High Dimensional Fractional

Partial Differential Equations,” Computer Methods in Applied Mechanics and Engineering, vol. 400, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[10] Leif Andersen, and Jesper Andreasen, “Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing,”

Review of Derivatives Research, vol. 4, pp. 231-262, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[11] A. Pirrotta, and R. Santoro, “Probabilistic Response of Nonlinear Systems under Combined Normal and Poisson White Noise via Path

Integral Method,” Probabilistic Engineering Mechanics, vol. 26, no. 1, pp. 26-32, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[12] Weiyan Liu, and Weiqiu Zhu, “Lyapunov Function Method for Analyzing Stability of Quasi-Hamiltonian Systems Under Combined

Gaussian and Poisson White Noise Excitations,” Nonlinear Dynamics, vol. 81, pp. 1879-1893, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

https://doi.org/10.1016/j.jcp.2018.10.045
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Physics-informed+neuralnetworks%3A+A+deep+learning+framework+for+solving+forward+and+inverseproblems+involving+nonlinear+partial+differential+equations&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
https://doi.org/10.1016/j.chaos.2024.115134
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+neural+network+method+to+predict+the+dynamical+system+response+underrandom+excitation+ofcombined+Gaussian+and+Poisson+white+noises&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0960077924006866
https://doi.org/10.1016/j.jcp.2020.109914
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+of+free+boundary+and+Stefan+problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0021999120306884
https://doi.org/10.1007/s11071-015-2570-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stochastic+modeling+of+nonlinear+oscillatorsunder+combined+Gaussian+and+Poisson+white+noise%3A+a+viewpoint+based+on+the+energy+conservation+law&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stochastic+modeling+of+nonlinear+oscillatorsunder+combined+Gaussian+and+Poisson+white+noise%3A+a+viewpoint+based+on+the+energy+conservation+law&btnG=
https://link.springer.com/article/10.1007/s11071-015-2570-7
https://doi.org/10.1016/j.ijnonlinmec.2013.09.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stochastic+stability+of+quasi-integrable+andnon-resonant+Hamiltonian+systems+under+parametric+excitations+of+combined+Gaussian+and+Poisson+white+noises&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0020746213001844
https://doi.org/10.1137/S0036142903436186
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+finite+difference+scheme+for+option+pricingin+jump+diffusion+and+exponential+L%C3%A9vy+models&btnG=
https://epubs.siam.org/doi/abs/10.1137/S0036142903436186
https://doi.org/10.1007/s12065-020-00383-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Single+layer+Chebyshev+neural+network+modelwith+regression-based+weights+for+solving+nonlinear+ordinary+differentialequations&btnG=
https://link.springer.com/article/10.1007/s12065-020-00383-y
https://doi.org/10.1109/72.712178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+neural+networks+forsolving+ordinary+and+partial+differential+equations&btnG=
https://ieeexplore.ieee.org/abstract/document/712178
https://doi.org/10.1016/j.cma.2022.115523
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Monte+Carlo+fPINNs%3A+Deep+learningmethod+for+forward+and+inverse+problems+involving+high+dimensionalfractional+partial+differential+equations&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045782522005254
https://doi.org/10.1023/A:1011354913068
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Jump-diffusion+processes%3A+Volatility+smilefitting+and+numerical+methods+for+option+pricing&btnG=
https://link.springer.com/article/10.1023/A:1011354913068
https://doi.org/10.1016/j.probengmech.2010.06.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Probabilistic+response+of+nonlinear+systems+under+combined+normal+and+Poisson+white+noise+via+path+integral+method&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S026689201000041X
https://doi.org/10.1007/s11071-015-2113-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lyapunov+function+method+for+analyzing+stability+of+quasi-Hamiltonian+systems+under+combined+Gaussian+and+Poisson+white+noise+excitations&btnG=
https://link.springer.com/article/10.1007/s11071-015-2113-2

