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1. Introduction 
Fuzzy set theory, first introduced by Zadeh[20] in 1965, revolutionized the approach to uncertainty in Mathematics and 

Engineering by allowing partial membership rather than relying on binary classification. This development laid the groundwork 

for handling imprecision in real-world problems. Building on this idea, Atanassov[1,2] introduced intuitionistic fuzzy sets (IFS), 

which incorporate both membership and non-membership degrees, thus improving decision-making under uncertainty. IFS found 

applications in areas such as expert systems and medical diagnostics. Further advancing this field, Atanassov and Gargov[3] 

developed interval-valued intuitionistic fuzzy sets, providing a more refined way to manage uncertainty. 

 

The introduction of neutrosophic sets took the concept of fuzziness even further by treating truth, indeterminacy, and falsity 

as independent components. Broumi and Smarandache[4,5] made significant contributions by defining correlation coefficients 

and similarity measures for neutrosophic sets, expanding their use in practical domains like pattern recognition and decision 

analysis. Neutrosophic structures have also been applied in algebra, with Jun and colleagues[11,12] exploring cubic structures in 

BCK/BCI algebras. 

 

Interval neutrosophic sets, as proposed by Wang et al. [15], merge theoretical progress with computational applications, 

particularly in artificial intelligence and machine learning. Similarly, Pythagorean fuzzy sets, introduced by Yager[17], offer a 

broader framework by allowing the square sum of membership and non-membership degrees to be less than or equal to one. 

Xindong Peng and Yong Yang[16,19] further developed this concept, producing novel results that strengthened the mathematical 

foundation of Pythagorean fuzzy sets. 

 

Extending the work on fuzzy and neutrosophic sets, picture fuzzy sets were introduced by Bui Cong Cuong[6,7,18] as a new 

approach to tackling computational intelligence challenges. These sets expand intuitionistic fuzzy logic by adding a fourth 

parameter, neutrality, to better model real-world situations. Recent advancements have focused on refining the arithmetic 

operations and aggregation operators for picture fuzzy sets, highlighting their usefulness in multi-criteria decision-making[8,19]. 

 

Fermatean fuzzy sets and their applications in topology represent another important step forward in fuzzy logic research. 

Ibrahim[9,10] explored Fermatean fuzzy topological spaces, providing valuable theoretical insights and practical applications in 

optimization and topology. In our current research[13,14], we introduce Fermatean Picture fuzzy sets, which combine the 

strengths of both Fermatean and Picture fuzzy frameworks to address nonlinear variational problems. 

 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The aim of this paper is to introduce and explore the concepts of connectedness and compactness in Fermatean Picture fuzzy 

topological spaces. It also seeks to examine some fundamental properties and provide characterization theorems for these newly 

defined concepts within this specific type of topological space. It provides fresh insights and methods for analyzing the behavior 

of Fermatean Picture fuzzy systems within a topological framework. This study connects the theoretical and practical aspects of 

fuzzy topology, paving the way for future developments in the field. 

 

2. Preliminaries 
Definition: 2.1 

Let X be a universe of discourse, then a fuzzy set A is an object having the following formulation: 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥)〉|𝑥 ∈ 𝑋} where 𝜇𝐴: 𝑋 → [0, 1] and 𝜇𝐴(𝑥) is called the membership degree of 𝑥 in 𝑋. 

 

Definition: 2.2.[13] 

A Fermatean Picture Fuzzy (FPF) set 𝒜 in a universe U  is an object of the form, 𝒜 = {〈𝑥, 〈𝑥, 𝛼𝒜(𝑥), 𝛽𝒜(𝑥), 𝛾𝒜(𝑥)〉|𝑥 ∈ 𝑈〉} 

where 𝛼𝒜(𝑥), 𝛽𝒜(𝑥), 𝛾𝒜(𝑥) are respectively called the degree of positive membership, the degree of neutral membership, the 

degree of negative membership of x  in 𝒜  and the following conditions are satisfied 

 

0 ≤ 𝛼𝒜(𝑥), 𝛽𝒜(𝑥), 𝛾𝒜(𝑥) ≤ 1,  

0 ≤ 𝛼𝒜
3(𝑥) + 𝛽𝒜

3(𝑥) + 𝛾𝒜
3(𝑥) ≤ 1, ∀𝑥 ∈ 𝑈. 

Then ∀𝑥 ∈ 𝑈, 𝜋𝒜(𝑥) = 1 − 𝛼𝒜
3(𝑥) + 𝛽𝒜

3(𝑥) + 𝛾𝒜
3(𝑥) is called the degree of refusal membership of x  in 𝒜. 

 

When dealing with human opinions that involve multiple types of responses such as "yes," "abstain," "no," and "refusal," 

Fermatean Picture Fuzzy Sets offer a suitable mathematical framework to handle the complexity and uncertainty inherent in 

such scenarios. For an example, in feedback mechanisms for products or services, users might express satisfaction (yes), 

dissatisfaction (no), neutrality (abstain) or refuse to provide feedback. 

 

Definition: 2.3.[13] 

Let X be a non-empty set, and the FPF sets A and B be in the form 

𝐴 = {〈𝑥, 〈𝑥, 𝛼𝐴(𝑥), 𝛽𝐴(𝑥), 𝛾𝐴(𝑥)〉|𝑥 ∈ 𝑋〉} and 𝐵 = {〈𝑥, 〈𝑥, 𝛼𝐵(𝑥), 𝛽𝐵(𝑥), 𝛾𝐵(𝑥)〉|𝑥 ∈ 𝑋〉} 

1. (𝐴) ⊆ (𝐵) iff 𝛼𝐴(𝑥) ≤ 𝛼𝐵(𝑥), 𝛽𝐴(𝑥) ≤ 𝛽𝐵(𝑥) and 𝛾𝐴(𝑥) ≥ 𝛾𝐵(𝑥) 

2. (𝐴) = (𝐵) iff 𝛼𝐴(𝑥) = 𝛼𝐵(𝑥), 𝛽𝐴(𝑥) = 𝛽𝐵(𝑥) and 𝛾𝐴(𝑥) = 𝛾𝐵(𝑥)∀𝑥 ∈ 𝑋 

3. 𝐴⋂𝐵 = {〈𝑥, 𝛼𝐴𝐵(𝑥), 𝛽𝐴𝐵(𝑥), 𝛾𝐴𝐵(𝑥)〉|𝑥 ∈ 𝑋} where  

I. 𝛼𝐴⋂𝐵(𝑥) = 𝑚𝑖𝑛{𝛼𝐴(𝑥), 𝛼𝐵(𝑥)} 

II. 𝛽𝐴⋂𝐵(𝑥) = 𝑚𝑖𝑛{𝛽𝐴(𝑥), 𝛽𝐵(𝑥)} 

III. 𝛾𝐴⋂𝐵(𝑥) = 𝑚𝑎𝑥{𝛾𝐴(𝑥), 𝛾𝐵(𝑥)} 

4. 𝐴 ∪ 𝐵 = {〈𝑥, 𝛼𝐴𝐵(𝑥), 𝛽𝐴𝐵(𝑥), 𝛾𝐴𝐵(𝑥)〉|𝑥 ∈ 𝑋} where  

I. 𝛼𝐴∪𝐵(𝑥) = 𝑚𝑎𝑥{𝛼𝐴(𝑥), 𝛼𝐵(𝑥)} 

II. 𝛽𝐴∪𝐵(𝑥) = 𝑚𝑖𝑛{𝛽𝐴(𝑥), 𝛽𝐵(𝑥)} 

III. 𝛾𝐴∪𝐵(𝑥) = 𝑚𝑖𝑛{𝛾𝐴(𝑥), 𝛾𝐵(𝑥)} 

 

Definition: 2.4. Images of Fermatean Picture Fuzzy Set [13] 

 Let X and Y be two non-empty sets, and 𝑓: 𝑋 ⟶ 𝑌 be a function. If 𝐴 = {〈𝑥, 𝛼𝐴(𝑥), 𝛽𝐴(𝑥), 𝛾𝐴(𝑥)〉|𝑥 ∈ 𝑋} is an FPF set in 

X, then the image of 𝐴 under 𝑓 denoted by 𝑓(𝐴) is the FPF set in Y defined by  

 

𝑓(𝐴) = {〈𝑦, 𝑓(𝛼𝐴)(𝑦), 𝑓(𝛽𝐴)(𝑦), 1 − 𝑓(1 − (𝛾𝐴)(𝑦))〉|𝑦 ∈ 𝑌} 

𝑓(𝛼𝐴)(𝑦) = {
𝑠𝑢𝑝𝑥𝜖𝑓−1(𝑦)𝛼𝐴(𝑥) 𝑖𝑓 𝑓−1(𝑦) ≠ 𝜙

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑓(𝛽𝐴)(𝑦) = {
𝑖𝑛𝑓𝑥𝜖𝑓−1(𝑦)𝛽𝐴(𝑥) 𝑖𝑓 𝑓−1(𝑦) ≠ 𝜙

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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1 − 𝑓(1 − (𝛾𝐴)(𝑦)) = {
𝑖𝑛𝑓𝑥𝜖𝑓−1(𝑦)𝛾𝐴(𝑥) 𝑖𝑓 𝑓−1(𝑦) ≠ 𝜙

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Definition: 2.5.[13] 

Let 𝑋 be a non-empty set and 𝜏 be a family of Fermatean Picture Fuzzy (ℱ) subset of  𝑋. If 

1. 1𝑋, 0𝑋 ∈ 𝜏 

2. for any ℱ1, ℱ2 ∈ 𝜏 , we have ℱ1 ∩ ℱ2 ∈ 𝜏 ,  

3. for any {ℱ𝑖}𝑖∈𝐼 ⊂ 𝜏, we have ⋃𝑖∈𝐼ℱ𝑖 ∈ 𝜏 where 𝐼 is an arbitrary index set, then 𝜏 is called a Fermatean Picture Fuzzy 

topology on X. 

Fermatean Picture Fuzzy topological space (FPFTS) is defined as the pair (𝑋, 𝜏 ). Every element in 𝜏 is referred to as an open 

Fermatean Picture Fuzzy subset. A closed Fermatean Picture Fuzzy set is the complement of an open Fermatean Picture Fuzzy 

subset.  

 

Definition: 2.6.[13] 

𝐴 = {𝑥, 𝛼ℱ(𝑥), 𝛽ℱ(𝑥), (𝛾ℱ(𝑥)): 𝑥 ∈ 𝑋} be an FPFS in 𝑋 and (𝑋, 𝜏 ) be an FPFTS. Fermatean Picture fuzzy closure and interior 

are defined by 

1. 𝐹𝑃𝐹𝑐𝑙(𝐴) =∩ {𝐻: 𝐻 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝐹𝑒𝑟𝑚𝑎𝑡𝑒𝑎𝑛 𝑃𝑖𝑐𝑡𝑢𝑟𝑒 𝑓𝑢𝑧𝑧𝑦 𝑠𝑒𝑡 𝑖𝑛 𝑋 𝑎𝑛𝑑 ℱ ⊂ 𝐻}. 
2. 𝐹𝑃𝐹𝑖𝑛𝑡(𝐴) =∪ {𝐺: 𝐺 𝑖𝑠 𝑜𝑝𝑒𝑛 𝐹𝑒𝑟𝑚𝑎𝑡𝑒𝑎𝑛 𝑃𝑖𝑐𝑡𝑢𝑟𝑒 𝑓𝑢𝑧𝑧𝑦 𝑠𝑒𝑡 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐺 ⊂ ℱ}. 

 

Definition: 2.7.[13] 

Let ℱ1 and ℱ2 be two Fermatean Picture fuzzy subsets in an FPFTS. Then, if there is an open Fermatean Picture fuzzy subset 𝐴, 

such as ℱ1 ⊂ 𝐴 ⊂ ℱ2, then ℱ2  is said to be a neighbourhood of ℱ1. 

 

Definition: 2.8.[13] 

Let 𝑔 ∶  𝑋 →  𝑌  be a function and (𝑋, 𝜏1), (𝑌, 𝜏2) two Fermatean Picture fuzzy topological spaces. If there exists a 

neighbourhood 𝑈 of ℱ1  such that 𝑔[𝑈]  ⊂  𝑉 for every neighbourhood 𝑉 of 𝑔[ℱ1] and for any Fermatean Picture fuzzy subset 

ℱ1of  𝑋, then 𝑔 is said to be Fermatean Picture fuzzy continuous. 

 

Definition: 2.9.[14] 

Let (X, ℱp) be a Fermatean Picture fuzzy topological space (FPFTS) and a Fermatean Picture fuzzy (FPF) subset A on a non-

empty set X is called Fermatean Picture fuzzy open (FPF-O) set if, for each element 𝑥 ∈ 𝐴, there exists an open neighborhood 

around 𝑥 within 𝐴, where: 

• The degrees of positive membership (𝑚(𝑥)), neutral membership (𝑛(𝑥)), and negative membership (𝑙(𝑥)) are 

consistently high within this neighborhood for each element. 

• The hesitation degree ℎ(𝑥) is also appropriately accounted for, ensuring the Fermatean condition 𝑚3 + 𝑛3 + 𝑙3 + ℎ3 ≤
1. 

Definition: 2.10.[14] 

An FPF subset A on a non-empty set X is called an FPF pre-open (FPF-PO) set if there exists an FPF subset 𝐵 ⊆ 𝑋 such that 𝐵 

is FPF-O set in 𝑋 and 𝐵 ⊆ 𝐴 ⊆ 𝐹𝑃𝐹𝑐𝑙(𝐵).  

 

Definition: 2.11.[14] 

A subset 𝐴 ⊆  𝑋 in an FPFTS is called Fermatean Picture fuzzy semi-open (FPF-SO) set if 𝐴 ⊆ 𝐹𝑃𝐹𝑐𝑙(𝐹𝑃𝐹𝑖𝑛𝑡(𝐴)). 

 

Definition: 2.12.[14] 

A subset 𝐴 ⊆ 𝑋 in an FPFTS is called Fermatean Picture fuzzy 𝛽-open (FPF- 𝛽O) set if there exists an FPF-O set 𝑂 such that 

𝑂 ⊆ 𝐴 ⊆ 𝐹𝑃𝐹𝑐𝑙(𝑂). 
 

Theorem: 2.13.[14] 

For any FPFTS (X, ℱp), we have the following, 

1. Every FPF-O set is a FPF-PO set. 

2. Every FPF-SO set is a FPF-PO set. 

3. Every FPF-O set is a FPF-SO set. 

4. Every FPF-βO set is a FPF-PO set. 

The converse of the above statements need not be true, as can be seen from the following examples. 
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Definition: 2.14.[14] 

Let (X, ℱp) and (Y, ℋp) be two FPFTS. Then, a bijective mapping  f : (X, ℱp) →(Y, ℋp)  is called a 

(i) Fermatean Picture Fuzzy continuous mapping (in short FPF-C mapping) if and only if  f -1 (L) is a FPF-

O set in X, whenever L is a FPF-O set in Y. 

(ii) Fermatean Picture Fuzzy semi continuous mapping (in short FPF-SC mapping) if and only if  f -1(L) is a 

FPF-SO set in X, whenever L is a FPF-O set in Y. 

(iii)  Fermatean Picture Fuzzy pre continuous mapping (in short FPF-PC mapping) if and only if  f -1(L) is a 

FPF-PO set in X, whenever L is FPF-O set in Y. 

(iv)  Fermatean Picture Fuzzy β-continuous mapping (in short FPF-βC mapping) if and only if  f -1 (L) is a 

FPF-βO set in X, whenever L is a FPF-O set in Y. 

3. Fermatean Picture fuzzy connectedness and compactness 
Definition: 3.1. 

An FPFTS (X, ℱp), where 𝑋 is the universe of discourse and ℱp is the FPF topology, is said to be FPF-connected if there exist 

two non-empty disjoint FPF open sets 𝐴, 𝐵 ∈ ℱp such that: 

𝐴 ∩ 𝐵 = ∅, and 

𝐴 ∪ 𝐵 = 𝑋, where 𝐴 ≠ ∅, 𝐵 ≠ ∅ 

 

Example: 3.2. 

Let 𝑋 = {𝑥1, 𝑥2}, where the Fermatean picture fuzzy degrees of 𝑥1 and 𝑥2  are as follows: 

For 𝑥1: 𝜇 = 0.6, 𝜈 = 0.3, 𝜋 = 0.1 

For 𝑥2: 𝜇 = 0.5, 𝜈 = 0.4, 𝜋 = 0.1 

We cannot be partitioned X into two disjoint FPF open sets and so it is FPF-connected. 

 

Theorem: 3.3. 

If {(X, ℱpi), 𝑖 ∈ 𝐼} is a family of connected FPFTS and  ⋂ 𝑋𝑖𝑖∈𝐼 ≠ ∅ , then the union ⋃ 𝑋𝑖𝑖∈𝐼  is also FPF-connected in the 

FPF topology. 

Proof: Let us assume ⋃ 𝑋𝑖𝑖∈𝐼  is not FPF-connected. Then there exist two disjoint FPF open sets 𝐴 and 𝐵 such that            𝐴 ∩
𝐵 = ∅ and A ∪ B = ⋃ 𝑋𝑖𝑖∈𝐼 . Since ⋂ 𝑋𝑖𝑖∈𝐼 ≠ ∅ , there is at least one common point 𝑥 belonging to all 𝑋𝑖, which implies 𝑥 cannot 

belong exclusively to 𝐴 or 𝐵. 

This contradiction implies ⋃ 𝑋𝑖𝑖∈𝐼   is FPF-connected. 

 

Example: 3.4. 

Consider the FPFTS (X, ℱp), where: 

𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 
ℱp= {∅, 𝑋, {𝑥1, 𝑥2}, {𝑥3, 𝑥4}, {𝑥1, 𝑥2, 𝑥3}}.   

 

The Fermatean values for the elements are as follows: 

Element Membership(𝜇) Non- membership(𝛾) Hesitation(𝜋) 

𝑥1 0.6 0.3 0.1 

𝑥2 0.7 0.2 0.1 

𝑥3 0.5 0.4 0.1 

𝑥4 0.4 0.5 0.1 

 

Let 𝑋1 = {𝑥1, 𝑥2} and 𝑋2 = {𝑥3, 𝑥4}. Assume 𝑋1 and 𝑋2 are FPF-connected. 

𝑋1 cannot be separated into disjoint FPF open sets because there are no subsets of 𝑋1 in ℱp that are both disjoint and open. 

Similarly, 𝑋2 is FPF-connected for the same reason. 

𝐼𝑓 𝑋1 ∩ 𝑋2 = ∅, the union 𝑋1 ∪ 𝑋2 = 𝑋 is FPF-connected because 𝑋 cannot be partitioned into disjoint FPF open sets. 

 

Theorem: 3.5. 

Let f : (X, ℱp) →(Y, ℋp) be a FPF-continuous function. If (X, ℱp) is FPF-connected, then 𝑓(𝑋) is also FPF-connected in  (Y, 

ℋp). 

Proof: Let us assume that 𝑓(𝑋) is not FPF-connected. Then 𝑓(𝑋) can be expressed as the union of two disjoint non-empty FPF 

open sets A and B in (Y, ℋp) : A ∪ B = f(X) and 𝐴 ∩ 𝐵 = ∅. Since 𝑓 is       FPF-continuous, 𝑓−1(𝐴) and  𝑓−1(𝐵) are FPF open 

sets in (X, ℱp) that are disjoint and cover  𝑋. 
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This contradicts the connectedness of (X, ℱp). 

Hence, 𝑓(𝑋) is FPF-connected. 

 

Example: 3.6. 

By using example 3.4, consider a FPF-continuous function  f : (X, ℱp) →(Y, ℋp), 

where 𝑌 = {𝑦1, 𝑦2} and 𝑓(𝑥1) = 𝑦1, 𝑓(𝑥2) = 𝑦1, 𝑓(𝑥3) = 𝑦2, 𝑓(𝑥4) = 𝑦2 

Let ℋp= {∅, 𝑌, {𝑦1}, {𝑦2}}. 

Since 𝑋 is FPF-connected, 𝑓(𝑋) = {𝑦1, 𝑦2} is also FPF-connected because 𝑓−1(𝑦1) = {𝑥1, 𝑥2} and 𝑓−1(𝑦2) = {𝑥3, 𝑥4}  are open 

in FPFTS, satisfying continuity. 

 

Theorem: 3.7. 

A FPFTS (X, ℱp) is FPF-connected if and only if 𝑋 cannot be expressed as the union of two non-empty disjoint FPF closed 

sets. 

Proof: 

Necessity: 

Assume 𝑋 is FPF-connected. If 𝑋 = 𝐴 ∪ 𝐵, where 𝐴 and 𝐵 are non-empty disjoint FPF closed sets, then their complements 

𝑋 − 𝐴 and 𝑋 − 𝐵 would form non-empty disjoint FPF open sets covering 𝑋. This violates the connectedness of 𝑋. 

Sufficiency: 

Assume 𝑋 cannot be decomposed into two non-empty disjoint FPF closed sets. If 𝑋 = 𝐴 ∪ 𝐵, where 𝐴 and 𝐵 are disjoint FPF 

open sets, their complements would form disjoint FPF closed sets, which contradicts the assumption. 

Thus, 𝑋 is FPF-connected. 

 

Example: 3.8. 

By using example 3.4, In (X, ℱp), consider the sets:  

𝐴 = {𝑥1, 𝑥2}  

𝐵 = {𝑥3, 𝑥4}  
Both 𝐴 and 𝐵 are FPF closed sets because their complements 𝑋\𝐴 = {𝑥3, 𝑥4} and 𝑋\𝐵 = {𝑥1, 𝑥2} are FPF open sets in ℱp. 

If  𝑋 = 𝐴 ∪ 𝐵 , 𝐴 ∩ 𝐵 = ∅  , then 𝑋 is not FPF-connected. Hence, 𝑋 being connected means it cannot be partitioned this way. 

 

Theorem: 3.9. 

Let (X, ℱp) be a FPF-connected FPFTS. If 𝐴 ⊆ 𝑋 is an FPF subspace such that 𝐴 ∩ 𝐵 ≠ ∅ for any FPF closed set 𝐵 ⊆ 𝑋, then 𝐴 

is FPF-connected. 

Proof: Suppose 𝐴 is not FPF-connected. Then 𝐴 can be partitioned into two disjoint FPF open subsets 𝐴1 and  𝐴2 such that  𝐴1 ∪
 𝐴2 = 𝐴. Extend  𝐴1 and  𝐴2 to FPF open sets in 𝑋, which would imply 𝑋 is not connected. 

This contradiction proves that 𝐴 is FPF-connected. 

 

Example: 3.10. 

By using example 3.4, Let 𝐴 = {𝑥1, 𝑥2, 𝑥3}, which is a subspace of 𝑋. The Fermatean Picture fuzzy topology on 𝐴 is        ℱp=
{∅, 𝐴, {𝑥1, 𝑥2}, {𝑥3}}. 

Here, 𝐴 is FPF-connected because there are no disjoint Fermatean Picture fuzzy open sets in ℱp that partition 𝐴. 

 

Theorem: 3.11. 

If (X, ℱp) and (Y, ℋp) are connected FPFTS, then their product 𝑋 × 𝑌 is also FPF-connected. 

Proof: Assume (𝑋 × 𝑌) is not FPF-connected. Then, there exist two disjoint FPF open sets 𝐴 and 𝐵 in 𝑋 × 𝑌 such that    𝐴 ∪
𝐵 = 𝑋 × 𝑌. The projections onto 𝑋 and 𝑌 would lead to disjoint Fermatean picture fuzzy open sets in 𝑋 and 𝑌, contradicting the 

connectedness of 𝑋 and 𝑌. 

Hence, 𝑋 × 𝑌 is FPF-connected. 

 

Example: 3.12. 

By using example 3.4, Let (X, ℱp) and (Y, ℋp) be FPF-connected in FPFTS, where: 

𝑋 = {𝑥1, 𝑥2} and ℱp = {∅, 𝑋, {𝑥1}, {𝑥2}} 

𝑌 = {𝑦1 , 𝑦2} and ℋp = {∅, 𝑌, {𝑦1}, {𝑦2}} 

The product space 𝑋 × 𝑌 = {(𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1), (𝑥2, 𝑦2)} with the product topology is connected because any attempt to 

partition 𝑋 × 𝑌 into disjoint Fermatean Picture fuzzy open sets will violate the connectedness of 𝑋 or 𝑌. 
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Theorem: 3.13. 

If (X, ℱp) is an FPF-connected and 𝑓: 𝑋 → ℝ is an FPF-continuous function, then 𝑓 has the intermediate value property. 

Proof: Let us assume 𝑓 does not have the intermediate value property. Then there exist 𝑎, 𝑏 ∈ 𝑋 such that 𝑓(𝑎) < 𝑐 < 𝑓(𝑏), but 

𝑓(𝑥) ≠ 𝑐 for all 𝑥 ∈ 𝑋. Define 𝐴 = {𝑥 ∈ 𝑋: 𝑓(𝑥) < 𝑐} and 𝐵 = {𝑥 ∈ 𝑋: 𝑓(𝑥) > 𝑐}. Both are disjoint FPF open sets that cover  

𝑋, contradicting its connectedness. 

Hence, 𝑓 has the intermediate value property. 

 

Definition: 3.14. 

A subset B is called a FPF-𝛽 disconnected subset of a FPFTS (X, ℱp) if there exist FPF-𝛽 open sets M, N such that     M ∩ 

B ≠ 𝜑 ≠ N ∩ B , M ∩ N ∩ B = 𝜑 and B   M∪N. Otherwise B is called an FPF- 𝛽connected subset. 

 

Theorem: 3.15. 

The union of any family of FPF-𝛽 connected sets with a nonempty intersection is FPF-𝛽 connected. 

Proof: Take P = ∪𝑖∈𝐼Pi, where each Pi is FPF-𝛽 connected with ∩Pi≠ ∅. Suppose that P is not   FPF-𝛽 connected. Then P 

= R∪S, where R and S are two nonempty disjoint sets such that (R∩FPF-𝛽cl(S)) ∪ (FPF-𝛽cl(R)∩S) = ∅. Since Pi is FPF-

𝛽 connected and Pi P, we have PiR or Pi S. Therefore, ∪Pi R or, ∪Pi S. Since ∩Pi≠ ∅, there exist atleast one 

element x∈∩Pi. Therefore, x∈ Pi for all i. So, x∈ P. Therefore, x∈ R or x∈ S. Suppose x∈ R, since R∩S = ∅, we have xR. 

Therefore R S. Thus PR. This contradicts P = R∪S. Thus, P is FPF – 𝛽connected. 

 

Example: 3.16. 

Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} and define 𝐹𝑃𝐹-𝛽 connected subsets 𝐴 and 𝐵 of 𝑋 are 

𝐴 = {< 𝑥1, 0.85, 0.1, 0.05 >, < 𝑥2, 0.8, 0.15, 0.05 >} 

𝐵 = {< 𝑥2, 0.8, 0.15, 0.05 >, < 𝑥3, 0.75, 0.2, 0.05 >} 

𝐴 ∪ 𝐵 = {< 𝑥1, 0.85, 0.1, 0.05 >, < 𝑥2, 0.8, 0.15, 0.05 >, < 𝑥3, 0.75, 0.2, 0.05 >} 

Since 𝐴 ∩ 𝐵 ≠ ∅( i.e., 𝐴 and 𝐵 share 𝑥2), their union 𝐴 ∪ 𝐵 is also FPF-𝛽 connected. 

 

Definition: 3.17. 

A subset 𝐴 of a 𝐹𝑃𝐹𝑇𝑆 (X, ℱp) is called compact if for every collection of FPF-O sets {𝑈𝛼}𝛼∈𝐼 in ℱp that covers 𝐴 (i.e.,𝐴 ⊆
∪𝛼∈𝐼 𝑈𝛼), there exists a finite subcollection {𝑈𝛼1

, 𝑈𝛼2
, … . , 𝑈𝛼𝑛

} that also covers 𝐴. 

 

Theorem: 3.18. 

In a 𝐹𝑃𝐹𝑇𝑆  (X, ℱp), a subset 𝐴 ⊆ 𝑋 is compact if and only if every collection of FPF-O sets {𝑈𝛼}𝛼∈𝐼  covering A (i.e.,𝐴 ⊆
∪𝛼∈𝐼 𝑈𝛼), there exists a finite subcollection {𝑈𝛼1

, 𝑈𝛼2
, … . , 𝑈𝛼𝑛

} that also covers 𝐴. 

 

Proof: 

Necessity: 

Let us assume that 𝐴 is compact in the FPFTS (X, ℱp). By using the definition, which means for every collection of FPF-O sets 

{𝑈𝛼}𝛼∈𝐼 in ℱp that covers 𝐴 (i.e.,𝐴 ⊆∪𝛼∈𝐼 𝑈𝛼), there must exist a finite subcollection that also covers 𝐴. 

Hence, for any cover {𝑈𝛼}𝛼∈𝐼  of 𝐴, we can find the finite subset {𝑈𝛼1
, 𝑈𝛼2

, … . , 𝑈𝛼𝑛
} such that 𝐴 ⊆ ⋃ 𝑈𝛼𝑖

𝑛
𝑖=1 . 

Sufficiency: 

Assume that every collection of FPF-O sets that covers 𝐴 has a finite subcover. Let us take any arbitrary cover {𝑈𝛼}𝛼∈𝐼 of 𝐴 by 

FPF-O sets. By assumption, there exists a finite subcover {𝑈𝛼1
, 𝑈𝛼2

, … . , 𝑈𝛼𝑛
} such that 𝐴 ⊆ ⋃ 𝑈𝛼𝑖

𝑛
𝑖=1 . This finite subcover 

verifies the compactness of 𝐴 in the FPFTS. 

 

Example: 3.19. 

Consider a 𝐹𝑃𝐹𝑇𝑆 (X, ℱp), where 𝑋 = {𝑝, 𝑞, 𝑟} and the 𝐹𝑃𝐹 topology ℱp consists of the following open sets:                  ℱp=
{∅, {𝑝}, {𝑝, 𝑞}, 𝑋} 

Each element in 𝑋 has associated membership 𝜇, non membership 𝜈 and indeterminate 𝛾 values with the condition    𝜇(𝑥)3 +
𝜈(𝑥)3 + 𝛾(𝑥)3 ≤ 1 for 𝐹𝑃𝐹 sets. 

Assume the following: 

➢ For 𝑝: 𝜇(𝑝) = 0.5, 𝜈(𝑝) = 0.2, 𝛾(𝑝) = 0.3 

➢ For 𝑞: 𝜇(𝑞) = 0.6, 𝜈(𝑞) = 0.3, 𝛾(𝑞) = 0.1 

➢ For 𝑟: 𝜇(𝑟) = 0.5, 𝜈(𝑟) = 0.2, 𝛾(𝑟) = 0.3 

Let 𝐴 = {𝑝, 𝑞}, to cover 𝐴, we need to find a collection of FPF-O sets that include 𝐴. 
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Consider the collection {{𝑝}, {𝑝, 𝑞}, 𝑋}: 

➢ {𝑝} only contains 𝑝, 

➢ {𝑝, 𝑞} contains both 𝑝 and 𝑞, which covers 𝐴, 

➢ 𝑋 contains 𝑝, 𝑞 and 𝑟, also covering𝐴. 

Therefore {{𝑝}, {𝑝, 𝑞}, 𝑋} is an open cover of 𝐴. 

From the collection{{𝑝}, {𝑝, 𝑞}, 𝑋}, the set {𝑝, 𝑞} alone is sufficient to cover 𝐴, because 𝐴 ⊆ {𝑝, 𝑞}. 

Thus {{𝑝, 𝑞}} is a finite subcover of 𝐴. 

Since we have found the finite subcover for every open cover of 𝐴, we conclude that 𝐴 = {𝑝, 𝑞} is compact in the FPFTS (X, 

ℱp). 

 

Theorem: 3.20. 

A subset 𝐴 of a FPFTS (X, ℱp) is compact if and only if every collection of FPF-C sets {𝐹𝛼}𝛼∈𝐼 with the finite intersection 

property (i.e., the intersection of any finite subcollection is non-empty) has a non-empty intersection. 

Proof: 

Necessity: 

Suppose 𝐴 is compact, and {𝐹𝛼}𝛼∈𝐼 is a collection of FPF-C sets with the finite intersection property. 

Let us assume the contradiction, that ⋂ 𝐹𝛼 = ∅𝛼∈𝐼 . Then {𝑋\𝐹𝛼}𝛼∈𝐼  is an open cover of 𝐴. Since 𝐴 is compact, there is a finite 

subcover {𝑋\𝐹𝛼1,…,𝑋\𝐹𝛼𝑛
}. This implies that ⋂ 𝐹𝛼𝑖

= ∅𝑛
𝑖=1 , contradicting the finite intersection property. 

Sufficiency: 

Assume the finite intersection property holds for closed sets. 

Given an open cover {𝑈𝛼}𝛼∈𝐼 of 𝐴, take 𝐹𝛼 = 𝑋\𝑈𝛼. Then the collection {𝐹𝛼}𝛼∈𝐼 has the finite intersection property, implying 𝐴 

is compact. 

 

Theorem: 3.21. 

Let f: (X, ℱp) →(Y, ℋp) be a continuous mapping between two FPFTS. If 𝐴 ⊆ 𝑋 is compact in (X, ℱp), then 𝑓(𝐴) is compact in 

(Y, ℋp). 

Proof: Assume 𝐴 is compact in (X, ℱp). Consider an open cover {𝑉𝛽}𝛽∈𝐽 of 𝑓(𝐴) in Y. 

By the continuity of 𝑓, the inverse images {𝑓−1(𝑉𝛽)}𝛽∈𝐽 from an open cover of 𝐴 in X. Since 𝐴 is compact, there exists a finite 

sub cover {𝑓−1(𝑉𝛽1
), … , 𝑓−1(𝑉𝛽𝑛

)}. Therefore {𝑉𝛽1
, … 𝑉𝛽𝑛

} is a finite cover of 𝑓(𝐴), proving that 𝑓(𝐴) is compact. 

 

Example: 3.22. 

Let (X, ℱp)  be a FPFTS, where 𝑋 = {𝑝, 𝑞} and ℱp = {∅, {𝑝}, 𝑋}. 

Let (Y, ℋp), be another space, where Y={x,y,z} and ℋp = {∅, {𝑥}, {𝑥, 𝑦}, 𝑌}. 

Let us define a continuous function 𝑓: 𝑋 → 𝑌 by 𝑓(𝑝) = 𝑥, 𝑓(𝑞) = 𝑦. 
Assume 𝐴 = {𝑝, 𝑞} ⊂ 𝑋 is compact in (X, ℱp). The image 𝑓(𝐴) = {𝑥, 𝑦}. The open set {𝑥, 𝑦} ∈ ℱp covers 𝑓(𝐴) alone, showing 

that 𝑓(𝐴) is compact in (Y, ℋp). 

 

Theorem: 3.23. 

In a FPFTS (X, ℱp), if 𝐴 ⊆ 𝑋 is compact and 𝐵 ⊆ 𝐴 is a closed subset, then 𝐵 is also compact. 

Proof: Assume 𝐴 ⊆  𝑋 is compact, and 𝐵 ⊆ 𝐴 is closed. Consider an open cover {𝑈𝛼}𝛼∈𝐼 of 𝐵 in 𝑋. By adding 𝑋 ∖ 𝐵 to this 

collection, we get an open cover {𝑈𝛼}𝛼∈𝐼 ∪ {𝑋\𝐵} of 𝐴. Since 𝐴 is compact, there exists a finite subcover for 𝐴. Removing 𝑋 ∖ 𝐵 

from this subcover gives a finite subcover for 𝐵, proving that 𝐵 is compact. 

 

4. Conclusion 
In this paper, we present and investigate the concepts of connectedness and compactness within Fermatean Picture fuzzy 

topological spaces. We explore key properties and offer characterization theorems for these newly defined concepts in this 

particular class of topological spaces. Additionally, we provide illustrative examples to highlight the significance of the results 

obtained. 
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