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Abstract - This article discusses the (2+1)-dimensional case of the Zakharov-Kuznetsov (ZK) equation. The 

(2+1)-dimensional ZK equation is primarily used to describe wave propagation phenomena in multi-dimensional media. In 

plasma, liquids, or gases, waves may be influenced by multiple elements. Due to nonlinear effects, the propagation speed, 

shape and interactions of these waves become complex. We have obtained a variety of exact solutions of the (2+1) 

dimensional ZK equation by using two effective methods: the improved extended tanh function method and the modified 

Kudryashov method. The forms of the solutions include exponential solutions, logarithmic solutions, hyperbolic solutions 

and trigonometric solutions. In addition, by selecting appropriate parameter values,we have plotted three-dimensional and 

two-dimensional images to illustrate the physical behavior of the exact solutions. 

Keywords - (2+1)-dimensional ZK equation. Wave solution. Modified extended tanh-function method. Modified 

generalized Kudryashov method. 

1. Introduction  

The Korteweg de-Vries (KdV) equation is provided by 

,0=++ xxxxt uauuu                         (1.1) 

Where a is an arbitrary constant and the commonly used constants are 1=a  and 6=a . The KdV equation[1-4] 

models various nonlinear phenomena, including ion acoustic waves in plasma and shallow water waves. Many equations 

describing water waves have been derived from the KdV equation, which we refer to as a family of KdV-type equations. 

For example, the modified KdV (mKdV) equation[5,6] serves as a model for the evolution of nonlinear plasma waves, the 

Kadomtsev-Petviashvili (KP) equation[7-9] is used to study small amplitude long ion acoustic waves, and the 

Benjamin-Bona-Mahony (BBM) equation[10-12] describes the unidirectional propagation of weak long dispersive waves 

in inviscid fluids.  

 

It is essential to study the dynamic processes and solution forms of such nonlinear evolution equations (NLEEs), as 

they can be applied not only in oceanography, nonlinear optics and fluid mechanics, but also in solid-state physics, geology, 

thermodynamics, and more. Common methods include: the inverse scattering method [13,14], the Hirota’s bilinear method 

[15-18], the Jacobi elliptic functions method [19-22], the extended )/'( GG -expansion method [23], the Sinh-Gordon 

expansion method [24,25], the F-expansion method [26,27], the )))((exp( −  expansion method [28-30], the 
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generalized Kudryashov method [31-34], the new 6 -model expansion method [35], the sine-cosine method [36,37], the 

first integral method[38] and so on [39-42]. These methods transform the NLEEs into ordinary differential equations (ODE) 

and numerical computations using tools like Maple or Mathematica can also assist in the solutions. 

 

This paper focuses on the Zakharov-Kuznetsov (ZK) equation [43,44], written as  

,0)( 2 =++ xxt ubauuu                         (1.2) 

Where 2222

zyx ++=  is the isotropic Laplace operator. Eq (1.2) is an extension of the KdV equation. The ZK 

equation governs the behavior of weakly nonlinear ion acoustic waves in a plasma composed of cold ions and thermally 

isothermal electrons under uniform magnetic field. The ZK equation is a more isotropic equation, originally derived to 

describe weakly nonlinear ion acoustic waves in two-dimensional strongly magnetized lossless plasma. Unlike the KP 

equation, the ZK equation cannot be integrated using the inverse scattering transform method. 

The (2 + 1)-dimensional ZK equation is given by 

.0)( =+++ xyyxxxt uubauuu                      (1.3) 

Where the coefficients a and b are nonzero constants and are related to the physical parameters of plasma, typically 

associated with temperature, density and other state variables. Specifically, the derivative tu  characterizes the time 

evolution of the wave propagating in one direction, the nonlinear term xuu describes the steepening of the wave, 

xxxbu represents spatial dispersion and yyxbu  denotes the cross-dispersion effect. The (2+1)-dimensional ZK equation 

has wide applications in many fields, such as analyzing multidimensional plasma wave phenomena in plasma physics, 

studying multidimensional fluid waves and vortices in fluid mechanics, modeling wave propagation in oceans and assisting 

in predicting wave behavior in ocean engineering, and describing the propagation of sound waves in complex 

environments in acoustics. The (2+1)-dimensional ZK equation is an important component of nonlinear wave theory. By 

studying this equation in detail, a deeper understanding of the characteristics and behaviors of multidimensional waves can 

be achieved, which is significant for relevant wide scientific research and engineering applications. 

 

The rest of this paper is organized as follows. Section 2 introduces the modified extended tanh-function method 

[45-47]; Section 3 introduces the modified generalized Kudryashov method [48]; Section 4 presents a variety of new exact 

solutions for the (2+1)-dimensional ZK equation using the methods mentioned above; Section 5 provides graphical 

representations of the obtained solutions and their physical interpretations; Section 6 offers a brief conclusion.  

 

2. The Modified Extended Tanh-Function Method  

In this section, the following general NLEE is written as  

， 0),,,,,( =xxyxt uuuuuF
                     

(2.1) 

Where F is a function of ),,( tyxu  and its own derivatives. Using the wave transformation  

 

,  ),,,()( ctmyxtyxug ++== 
                   

(2.2) 
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Eq. (2.1) can be converted into an ordinary differential equation (ODE), given as 

.0),,,,( = ggggF
                      

(2.3) 

Based upon the modified extended tanh-function method, the solution of Eq. (2.3) is supposed having the form of  

( ).)()()(
1

0 
=

−++=
M

i

i

i

i

i HbHaag 
                

(2.4) 

Where 
ia  and 

ib  are constants to be determined later and the M is a positive integer obtained by the balance 

principle. The )(H  satisfies the following ODE 

,0)()(' 2 =−−  HH
                       

(2.5) 

Where   is a constant to be determined later. The solution of Eq. (2.5) is written as follows according to the sign of 

the parameter  .  

 

When ,0  we have 

),tanh()(  −−−=H                    (2.6) 

).coth()(  −−−=H                    (2.7) 

When ,0  we have 

),tan()(  =H
                     

(2.8) 

).cot()(  −=H
                     

(2.9) 

When ,0=  we have 

.
1

)(


 −=H

                          

(2.10) 

Inserting Eq. (2.4) into Eq. (2.3) and rearranging the terms, and further setting all coefficients of the same 

),,2,1,0(  ),( MjH j =  power to zero. Then by using Maple program, the algebraic equations are solved to obtain the 

values of the unknowns, the exact solutions of Eq. (1.3) can be obtained. 

 

3. The Modified Generalized Kudryashov Method  

As in the previous section, a wave transformation is performed to convert the NLEE into an ODE. The modified 

generalized Kudryashov method assumes the solution has the following form 


= +

=
M

j
j

j

H

s
g

0

,
))(1(

)(


                          (3.1) 

Where Msss ,, 10  are constants to be determined later, and the M is a positive integer obtained by the balance 

principle. Furthermore, the function )(H  satisfies the following ODE 

),()()(' 2  HHH ++=                       (3.2) 
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Where  ,  and  are real constants. Solving the Eq. (3.2) yields the following three cases: 

When  ,  are arbitrary constants and 0 , the following solution is obtained,written as   

.
2

4)(
2

1
tan4

)(

22







−







−+−

=

E

H              (3.3) 

When ,0= 0 and  is an arbitrary constant, the solution of Eq.(3.2) is given as  

.
1

)(
)(

)(

−
−=

+

+










E

E

e

e
H                          (3.4) 

When   is an arbitrary constant, 0  and 0= , the solution of Eq.(3.2) is written as  

.)(
)(






 −
=

+Ee
H                            (3.5) 

In the expressions mentioned above E is a constant of integration. 

 

Inserting Eq. (3.1) into Eq. (2.3) and rearranging the terms, and furthermore setting all coefficients of the same )(H  

power to zero. Then by using Maple program, the algebraic polynomial is solved to obtain the values of the unknowns, the 

exact solutions to Eq. (1.3) are obtained. 

 

4. Application of the Above Methods  

For the (2+1)-dimensional ZK equation, the following wave transformation is used and written as 
 

,  ),,,()( ctmyxtyxug ++== 
                     

(4.1) 

which convert Eq. (1.3) into the ODE  

.0'')1(
2

1 22 =+++ gmbagcg                       (4.2) 

Balancing Mg 22 =  with 2'' += Mg  gives ,2=M  the following exact solutions are derived. 

4.1. Using the Modified Extended Tanh-Function Method  

By taking ,2=M  Eq. (2.4) is written in the following form 

.
)()(

)()()(
2

212

210



H

b

H

b
HaHaag ++++=

             
(4.3) 

Substituting Eq. (4.3) into Eq. (4.2) and using the Eq. (2.5), collecting the coefficients of the same powers of )(H and 

making them equal to zero, the following system of algebraic equations is obtained, written as 

2

2

22

2 6
2

1
60 baaaabm ++=  

1211

2 220 baaaaabm ++=  

22

2

1202

2 8
2

1
80 cabaaaaaaabm ++++=   

1112101

2 220 cababaaaaaabm ++++=   

022211

2

02

2

2

2

2

22 2
2

1
2220 cabbbaabaaaabbmbaabm +++++++=   

1121101

2 220 cbbbbaabaabbm ++++=   
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22

2

1202

2 8
2

1
80 cbbbabbaabbm ++++=   

211

2

1

22 220 babbbbbm ++=   

2

22

2

2

22

2

1
660 abbbbbm ++=   

Here the unknowns are 
21210 ,,,, bbaaa and c . Using Maple program, the following six cases are obtained. 

Case 1 

).1(4 ,0 ,0 ,
)1(12

 ,0 ,
)1(4 2

21

2

21

2

0 +−===
+

−==
+

−= mbcbb
a

mb
aa

a

mb
a 


 

For 0 ,0  a , the solution of Eq.(1.3) has the following forms 

)),)1(4((tanh
)1(12)1(4 22

22

1.1 tmbmyx
a

mb

a

mb
g +−+−

+
+

+
−= 


   (4.4) 

)),)1(4((coth
)1(12)1(4 22

22

2.1 tmbmyx
a

mb

a

mb
g +−+−

+
+

+
−= 


   (4.5) 

For 0 ,0  a , the solutions of Eq.(1.3) are written as 

)),)1(4((tan
)1(12)1(4 22

22

3.1 tmbmyx
a

mb

a

mb
g +−+

+
−

+
−= 


     (4.6) 

)),)1(4((cot
)1(12)1(4 22

22

4.1 tmbmyx
a

mb

a

mb
g +−+

+
−

+
−= 


     (4.7) 

Case 2 

).1(4,0,0,
)1(12

,0,
)1(12 2

21

2

21

2

0 +===
+

−==
+

−= mbcbb
a

mb
aa

a

mb
a 


 

For 0 ,0  a , the solutions of Eq.(1.3) are obtained and given as 

)),)1(4((tanh
)1(12)1(12 22

22

1.2 tmbmyx
a

mb

a

mb
g +++−

+
+

+
−= 


   (4.8) 

)),)1(4((coth
)1(12)1(12 22

22

2.2 tmbmyx
a

mb

a

mb
g +++−

+
+

+
−= 


   (4.9) 

For 0 ,0  a , the solutions of Eq.(1.3) are written as follows 

)),)1(4((tan
)1(12)1(12 22

22

3.2 tmbmyx
a

mb

a

mb
g +++

+
−

+
−= 


    (4.10) 

)),)1(4((cot
)1(12)1(12 22

22

4.2 tmbmyx
a

mb

a

mb
g +++

+
−

+
−= 


    (4.11) 
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Case 3 

).1(16,
)1(12

 ,0 ,
)1(12

 ,0 ,
)1(8 2

22

21

2

21

2

0 +−=
+

−==
+

−==
+

= mbc
a

mb
bb

a

mb
aa

a

mb
a 


For 

0 ,0  a , the solution of Eq.(1.3) is given as follows 

)),)1(16((coth
)1(12

)))1(16((tanh
)1(12)1(8

22
2

22
22

1.3

tmbmyx
a

mb

tmbmyx
a

mb

a

mb
g

+−+−
+

+

+−+−
+

+
+

=







    (4.12) 

For 0 ,0  a , the solution of Eq.(1.3) is obtained, written as  

)),)1(16((tan
)1(24)1(8 22

22

2.3 tmbmyx
a

mb

a

mb
g +−+

+
−

+
= 


     (4.13) 

Case 4 

).1(16,
)1(12

 ,0 ,
)1(12

 ,0 ,
)1(24 2

22

21

2

21

2

0 +=
+

−==
+

−==
+

−= mbc
a

mb
bb

a

mb
aa

a

mb
a 


 

For 0 ,0  a , the solution of Eq.(1.3) is given as 

)),)1(16((coth
)1(12

)))1(16((tanh
)1(12)1(24

22
2

22
22

1.4

tmbmyx
a

mb

tmbmyx
a

mb

a

mb
g

+++−
+

+

+++−
+

+
+

−=







   (4.14) 

For 0 ,0  a , the solution of Eq.(1.3) is written as 

)),)1(16((tan
)1(24)1(24 22

22

2.4 tmbmyx
a

mb

a

mb
g +++

+
−

+
−= 


    (4.15) 

Case 5 

).1(4 ,
)1(12

 ,0 ,0 ,0 ,
)1(4 2

22

2121

2

0 +−=
+

−====
+

−= mbc
a

mb
bbaa

a

mb
a 


 

For 0 ,0  a , the solutions of Eq.(1.3) are given as 

)),)1(4((coth
)1(12)1(4 22

22

1.5 tmbmyx
a

mb

a

mb
g +−+−

+
+

+
−= 


   (4.16) 

)),)1(4((tanh
)1(12)1(4 22

22

2.5 tmbmyx
a

mb

a

mb
g +−+−

+
+

+
−= 


   (4.17) 

For 0 ,0  a ,the solutions of Eq.(1.3) are written as 

)),)1(4((cot
)1(12)1(4 22

22

3.5 tmbmyx
a

mb

a

mb
g +−+

+
−

+
−= 


    (4.18) 
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)),)1(4((tan
)1(12)1(4 22

22

4.5 tmbmyx
a

mb

a

mb
g +−+

+
−

+
−= 


    (4.19) 

For 0= , the solution of Eq.(1.3) is 

.05.5 =g                               (4.20) 

Case 6 

).1(4 ,
)1(12

 ,0 ,0 ,0 ,
)1(12 2

22

2121

2

0 +=
+

−====
+

−= mbc
a

mb
bbaa

a

mb
a 


 

For 0 ,0  a , the solutions of Eq.(1.3) are given as 

)),)1(4((coth
)1(12)1(12 22

22

1.6 tmbmyx
a

mb

a

mb
g +++−

+
+

+
−= 


   (4.21) 

)),)1(4((tanh
)1(12)1(12 22

22

2.6 tmbmyx
a

mb

a

mb
g +++−

+
+

+
−= 


   (4.22) 

For 0 ,0  a , the solutions of Eq.(1.3) are written as 

)),)1(4((cot
)1(12)1(12 22

22

3.6 tmbmyx
a

mb

a

mb
g +++

+
−

+
−= 


    (4.23) 

)),)1(4((tan
)1(12)1(12 22

22

4.6 tmbmyx
a

mb

a

mb
g +++

+
−

+
−= 


    (4.24) 

For 0= , the solution of Eq.(1.3) is 

.05.6 =g                              (4.25) 

4.2. Using the Modified Generalized Kudryashov Method  

By taking 2=M , Eq. (3.1) becomes 

,
))(1()(1

)(
2

21
0




H

s

H

s
sg

+
+

+
+=               (4.26) 

Substituting Eq. (4.26) into Eq. (4.2) and using the Eq. (3.2), and furthermore collecting the coefficients of the same 

powers of )(H  and making them equal to zero, the following systems of algebraic equations are obtained and written 

as 

0

2

02

2

12

22

1

22

1

2 2424420 csassbsbsbmsbmsmb ++−++−=   

2

22

1

22

1

22

121

0

2

01

2

101

2

2

2

1

2

2

2

84)2(24122

8442)2(212480

sbmsbmsbmsbbscs

csassbsasbssmbsmbsb





−−++−++

++−++++−−=
 





2

2

1

2

1

2

2

2

210

2

1

2

01102012

22

2

1266)2(82612

66626)2(8120

sbmsbmsbmbscscscs

asasbssassasbssbmbs

−−++++++

++−+++++−=
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2

22

1

22

2

1

2

12210

2

1

2

01

2

212010

2

12

2

1

2

2

2

)2(4)2(2

442046824)2(2

2464204)2(40

sbmsbm

sbmbsbscscscsasasbs

sassassasbssbmsbmbs







+−+−

+++++++++−

+++++++−=

 

210

2

221

2

12010

2

0

2

2

2

121

2

2

22

1

2

2

2

1

2

22222212

442124420

cscscsassasassassasasbs

bsbsbssbmsbmsbmsbm

++++++++++

+−−++−−=




 

The unknowns are 
210 ,, sss and c . Using Maple program, the following two cases are obtained. 

Case 7 

.
)222)(1(12

,
))(22(12

,
)626626(2

),44(

2222

2

22

1

22222222

0

2222

a

mb
s

a

mmb
s

a

mmmmb
s

mmbc









+++−−+
−=

−−−+−
=

++−+++−
−=

−+−=

 

Therefore, the solutions of Eq.(1.3) are written as  

2

2222

22222

2222

22

22222222

1.7

2))4)(1((4
2

1
tan4

)222)(1(48

2))4)(1((4
2

1
tan4

))(22(24

)626626(2
)(









+−








−++++−−

+++−−+
−









+−








−++++−−

−−−+−
+

++−+++−
−=












tmbmyxEa

mb

tmbmyxEa

mmb

a

mmmmb
g

(4.27)

2))1((

2))1((2222222
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So the solutions of Eq.(1.3) are given as 
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4.3. Graphs and Discussion  

Since the tanh function and the coth function are reciprocals of each other, Eq. (4.8) is the same as Eq. (4.22), and Eq. 

(4.9) is the same as Eq. (4.21). Since the tan function and the cot function are reciprocals of each other, Eq. (4.10) is the 

same as Eq. (4.24), and Eq. (4.11) is the same as Eq. (4.23).  

 

There is a relationship between trigonometric functions and hyperbolic functions as follows:  

.cotcoth ,tantanh ixixixix =−=                      (5.1) 

 

Therefore, the forms of the solutions for Eq. (4.8) and Eq. (4.10), Eq. (4.9) and Eq. (4.11), Eq. (4.16) and Eq. (4.18), Eq. 

(4.17) and Eq. (4.19), Eq. (4.21) and Eq. (4.23), and Eq. (4.22) and Eq. (4.24) are the same.  

Therefore, some partial solutions are chose to show the characters of the solutions, such as Eq. (4.8), Eq. (4.10), Eq. 

(4.16), Eq. (4.27), Eq. (4.29), and Eq. (4.32). 
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Fig. 1 3D, 2D and density plots of light soliton solution of Eq. (4.8) for .1,1,1,1,1 =−==== ymba   

 

 
Fig. 2 3D, 2D and density plots of periodic function solution of Eq. (4.10) for .1,1,1,1,1 ===== ymba   
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Fig. 3 3D, 2D and density plots of hyperbolic function solution of Eq. (4.16) for .1,1,1,1,1 −===== ymba  

 

 

 

Fig. 4 3D, 2D and density plots of periodic function solution of Eq. (4.27) for .1,1,1,1,2,1,1,2 =−======= yEmba   
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Fig. 5 3D, 2D and density plots of kink solution of Eq. (4.29) for .1,1,2,0,1,1,2 =−====== yEmba   

 

 

Fig. 6 3D and 2D of singular solution of Eq. (4.32) for .1,1,0,2,1,1,1,2 =−======= yEmba   

 

5. Conclusion  

This article provides a detailed introduction to the modified extended tanh-function method and the modified 

generalized Kudryashov method and menatime utilizes these two methods to obtain a variety of new exact solutions for the 

(2+1)-dimensional ZK equation, followed by an analysis of the solutions through graphical representations. The solutions 

to the (2+1)-dimensional ZK equation have profound physical significance and offer an important insights into nonlinear 

wave phenomena across various disciplines, thereby the work is very important for the theoretical understanding and 

practical applications of the (2+1)-dimensional ZK equation. 

 

In future work, other mathematical techniques can be selected to find analytical solutions that describe solitary waves 

and other wave forms; numerical methods can also be employed for simulations to study the characteristics of complex 

waves. Exploring higher-dimensional ZK equations, such as the (3+1)-dimensional case, and their properties are also a 

promising research direction. 
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