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Abstract - The fundamental idea in information theory literature, Shannon entropy has several applications in various scientific 

and technological fields. The difference in this entropy measure has been generalized by researchers using various 

methodologies. The purpose of this paper is to emphasize how important the concavity characteristic is. Thus, we have presented 

and examined three new generalized measures of probabilistic entropy with two dimensions, mostly based on the concavity of 

the entropy function postulate. We have also examined their significant and intriguing aspects.  

Keywords - Shannon entropy, Weighted entropy, Useful information measures. 

 

1. Introduction 
The concept of information entropy plays a crucial role in statistical physics. Many issues were resolved using information 

entropy, a measure of the uncertainty and information provided by a probabilistic experiment. Originating from the well-known 

Boltzmann H-function, the Shannon entropy quickly gained popularity in a number of fields, particularly in the following: nuclear 

reaction theory (Bloch), learning theory (Watanabe), measurement theory, statistical physics (Ingarden, [lo], Jaynes), 

communication theory (Shannon, Feinstein), and mathematical statistics (Kullback), without mentioning other fields like 

linguistics, music, or social sciences. With no intention of providing an exhaustive list, a number of generalizations of the 

Shannon entropy were proposed, aside from the applications of classical information theory in each of these domains.  

In a physical experiment, it is frequently quite difficult to ignore the subjective elements pertaining to the different objectives 

of the researcher. However, the perspective of a particular qualitative property may be very different from the various states of a 

physical system. All elementary events in statistical physics often have the same significance or are physically identical; however, 

this is not always the case. To explain the latter, each elementary occurrence must be given a qualitative weight in addition to its 

likelihood of occurring. 

It is possible for an event’s qualitative weight to be unrelated to its objective probability; for example, an event with a low 

probability could have a high weight, while an event with a high probability could have a very low weight.  

Obviously, giving each primary school event a weight is not something that can be done easily.  

It is possible for these weights to be objective or subjective. As a result, the weight of one event may convey a qualitative 

objective feature as well as the subjective usefulness of the event in relation to the experimenter’s objective. There may be a 

relationship between the subjective likelihood that an elementary event will occur and the weight assigned to it. 

We shall suppose that these qualitative weight are nonnegative, finite, real numbers, the usual weights in physics or as utility 

in decision theory. Also, if one event is more relevant, significant, and useful (with respect to a goal or from a given qualitative 

point of view) than another, the weight of the first event will be greater than that of the second one. How to evaluate the amount 

of information supplied by a probability space, i.e. by a probabilistic experiment, whose elementary events are characterized both 

by their probabilities and by some qualitative (objective or subjective) weights? In particular, what is the amount of information 
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supplied by a probabilistic experiment when the probabilities calculated by the experimenter (i.e. the subjective probabilities) do 

not coincide with the objective probabilities of these random events? 

 

In this work, we will provide a formula for entropy, which is a measure of uncertainty or information provided by a 

probabilistic experiment that depends on the qualitative (objective or subjective) weights of the potential events and the 

probabilities of occurrences. Well, refer to this entropy as the weighted entropy. The weighted entropy’s attributes, axiomatic 

treatment, and external properties will all be covered in the following paragraphs. 

Examine a probabilistic physical experiment in which the objective probabilities of a finite number of elementary events  

𝜔1, 𝜔2, … . . , 𝜔𝑛 are given by the numbers in the associated probability space. 

𝑝𝑘 ≥ 0 , ∀ 𝑘 = 1,2, … , 𝑛  ;  ∑ 𝑝𝑘  
𝑛
𝑘=1 = 1 

The many elementary occurrences have varied (objective or subjective) weights, mostly dependent on the experimenter’s 

objective or a qualitative aspect of the physical system under investigation. An event’s weight might be either independent or 

dependent on its objective likelihood. To distinguish between the events𝜔1, 𝜔2, … . . , 𝜔𝑛, f in a goal-directed experiment based 

on their significance concerning a particular qualitative feature of the physical system under consideration or their importance 

concerning the experimenter’s goal, we will assign to each event 𝜔𝑘 a nonnegative number 𝜔𝑘 ≥ 0 that is directly proportional 

to the significance or importance indicated above. We shall call 𝜔𝑘the  weight of the elementary event𝜔𝑘. We define the weighted 

entropy by the expression. 

𝐼𝑛 =  𝐼𝑛(𝜔1, 𝜔2, … … . . , 𝜔𝑛;  𝑝1 , 𝑝2, … … . . , 𝑝𝑛) =  − ∑ 𝑤𝑘

𝑛

𝑘=1

𝑝𝑘 log 𝑝𝑘  

Let us notice briefly some obvious properties of the weighted entropy. 

 

1. 𝐼𝑛(𝜔1, 𝜔2, … … . . , 𝜔𝑛;  𝑝1, 𝑝2, … … . . , 𝑝𝑛)  ≥ 0 

 

2. If  𝜔1, 𝜔2, … . . , 𝜔𝑛 = 𝜔 then  

𝐼𝑛(𝜔1, 𝜔2, … … . . , 𝜔𝑛;  𝑝1, 𝑝2, … … . . , 𝑝𝑛) =  −𝜔 ∑  

𝑛

𝑘=1

𝑝𝑘 log 𝑝𝑘                                                                                   

=  𝐻𝑛(𝑝1, 𝑝2, … … , 𝑝𝑛) 

Where 𝐻𝑛 is the classical Shannon Entropy. 

3. If  𝑝𝑘0 = 1, 𝑝𝑘 = 0 (𝑘 = 1,2, … … . , 𝑛 ; 𝑘 ≠ 𝑘0) 

Then 𝐼𝑛 (𝜔1, 𝜔2, … … … . , 𝜔𝑛; 𝑝1, 𝑝2, … , 𝑝𝑛) = 0 

Whatever are the weights𝜔1, 𝜔2, … . . , 𝜔𝑛 

4. If  𝑝𝑖  = 0 , 𝜔𝑖 ≠ 0 for every 𝑖 ∈ 𝐼 and  𝑝𝑗  ≠ 0 , 𝜔𝑗 = 0 for every 𝑗 ∈ 𝐽 ,where 

𝐼 ∪ 𝐽 =  {1,2, … … , 𝑛} ,𝐼 ∩ 𝐽 = 𝜙 

then𝐼𝑛(𝜔1, 𝜔2, … … . . , 𝜔𝑛;  𝑝1 , 𝑝2, … … . . , 𝑝𝑛)  = 0 

 

5. 𝐼𝑛+1(𝜔1, 𝜔2, … … . . 𝜔𝑛, 𝜔𝑛+1;  𝑝1 , 𝑝2, … … . . , 𝑝𝑛, 0)  = 𝐼𝑛(𝜔1, 𝜔2, … … . . , 𝜔𝑛;  𝑝1, 𝑝2, … … . . , 𝑝𝑛) 

 

Whatever are the weights  𝜔1, 𝜔2, … … . . 𝜔𝑛 , 𝜔𝑛+1 and the complete system of probabilities 

𝑝1, 𝑝2, … … . . , 𝑝𝑛. 
 

6. For every nonnegative,real no. 𝜁we have 

 

𝐼𝑛(𝜁𝜔1, 𝜁𝜔2, … … . . , 𝜁𝜔𝑛;  𝑝1, 𝑝2, … … . . , 𝑝𝑛) = 𝜁𝐼𝑛(𝜔1, 𝜔2, … … . . , 𝜔𝑛;  𝑝1, 𝑝2, … … . . , 𝑝𝑛) 

 

7.If the rule (2) for the weights holds, then 
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𝐼𝑛+1(𝜔1, 𝜔2, … … . . , 𝜔𝑛+1, 𝜔′, 𝜔′′;  𝑝1, 𝑝2, … … . . , 𝑝𝑛−1, 𝑝′, 𝑝′′)  = 

𝐼𝑛(𝜔1, 𝜔2, … … . . , 𝜔𝑛;  𝑝1 , 𝑝2 , … … . . , 𝑝𝑛) + 𝐼2𝑝𝑛 (𝜔′, 𝜔′′,
𝑝′

𝑝𝑛

,
𝑝′′

𝑝𝑛

) 

 

2. Weighted Entropy–Type Measures 
Definition 2.1. Weighted Entropy 

Let us define the weighted entropy(WE) as 

𝐻𝜑
𝑊(𝑃) =  − ∑ 𝜑(𝑥𝑖)

𝑖

𝑝(𝑥𝑖) log 𝑝(𝑥𝑖) 

Here, we introduce a nonnegative weight function (WF),𝑥𝑖 ⟼ 𝜑(𝑥𝑖), which denotes the value or usefulness of an outcome 

𝑥𝑖. The differential entropy of a probability density function (PDF) f can be calculated in a manner akin to this. Give the weighted 

differential definition.  

 

(WDE) entropy as  

𝐻𝜑
𝑊(𝑓) = − ∫ 𝜑(𝑥𝑖) 𝑓(𝑥𝑖) log 𝑓(𝑥𝑖) 

 
Definition 2.2. Weighted Shannon Entropy 

Consider a stochastic source that is described by a discrete random variable X of n possible events, with distribution  𝑃𝑋, 

probability mass function 𝑝 =  (𝑝1, 𝑝2, … … , 𝑝𝑛)𝑇and (𝑤1, 𝑤2, … … , 𝑤𝑛)𝑇 as a vector of weights associated with these states, 𝑤 ≥
0, I =1,2.3,…..,n. The weighted Shannon entropy measured is defined by 

𝐻𝑤(𝑋) =  ∑ 𝑤𝑖𝑝𝑖 log (
1

𝑝𝑖

)

𝑛

𝑖=1

 

 

Definition 2.3. Weighted Differential Entropy 

The weighted differential entropy defined by Das for random variable 𝛾with weighted function 𝑤(𝑥) = 𝑥as 

 

𝜓𝑤(𝛾) = −
𝐻𝑤(𝛾) + ∫

𝑐 
𝑥𝑓𝛾(𝑥) ln 𝑓𝛾(𝑥)𝑑𝑥 − 𝐸[𝛾] ln 𝐸[𝛾]

𝐸[𝛾]
 

 

=  
𝐻𝑤(𝛾)

𝐸[𝛾]
+ ln 𝐸[𝛾] −

𝛿𝑤

𝐸[𝛾]
 

Where            

𝛿𝑤 =  ∫
𝑐 

𝑥𝑓𝛾(𝑥) ln 𝑓𝛾(𝑥)𝑑𝑥  = 𝐸(𝛾 ln 𝛾) 

 

Definition 2.4. Weighted Generalized Entropy 

Let X be an absolutely continuous nonnegative random variable having a probability density function 𝑓𝑋(𝑋). Then Shannon’s 

entropy is defined as 

 

𝐻(𝑋)  =  − ∫ 𝑓𝑋(𝑋) ln 𝑓𝑋(𝑋)
∞

0

𝑑𝑥 = −𝐸 [ln 𝑓𝑋(𝑋)] 

 

3. Our Results 
In information theory and other fields, Shannon’s concept of entropy, which he established in 1948, is crucial. If X is an 

absolutely continuous nonnegative random variable with partial differential function f(x), then Shannon’s entropy is defined as 

𝐻(𝑋)  =  − ∫ 𝑓(𝑥) log 𝑓(𝑥)
∞

0

𝑑𝑥 

= −𝐸 [log 𝑓 (𝑋)] (1) 

 

Belis and Guiasu (1968) established the idea of weighted entropy because a shift-dependent measure of uncertainty is 

preferred in particular real-world scenarios, like reliability or neurobiology. 
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𝐻𝑊(𝑋) =  − ∫ 𝑥 𝑓(𝑥) log 𝑓(𝑥)
∞

0

𝑑𝑥(2) 

 

The probability density function and absolutely continuous nonnegative random variable are denoted by the partially 

differential function and random variable X, respectively, throughout this text. Numerous extensions of (1) were put forth in 

information theory, notably, Consequently, a new three-parameter generalization of this uncertainty measure is created in this 

article as follows: 

 

𝐻𝛼,𝛽,𝛾(𝑋)  =  
1

1 − 𝛼
log ∫

𝑓𝛼+𝛽+𝛾−1(𝑥)

𝑓𝛽+𝛾(𝑥)

∞

0

 𝑑𝑥 

 

=  
1

1−𝛼
∫ log

𝑓𝛼+𝛽+𝛾−1(𝑥)

𝑓𝛽+𝛾(𝑥)
 𝑑𝑥

∞

0
 ,α ≠ 1, β ≥ 0, γ ≥ 0, β + γ − 1 ≥ 0    (1) 

 

As 𝛼 → 1the measure reduces to 

 𝐻𝛽,𝛾(𝑋)  = − 
∫ 𝑓𝛽+𝛾 (𝑥) log 𝑓(𝑥)

∞
0

∫ 𝑓𝛽+𝛾∞
0

(𝑥)
                              (2) 

If  𝛽 = 0 and 𝛾 = 1, then the above measures reduces to Shannon’s measures of entropy 

                       Where    𝐻(𝑋) =  − ∫ 𝑓(𝑥) log 𝑓(𝑥)
∞

0
 

The measure (1) reduces to Renyi’s measures when 𝛽 + 𝛾 = 1 

As stated by Ebrahimi (1996), The metric is not appropriate for determining the uncertainty over a system’s remaining life 𝑋𝑡 =
|𝑋 − 𝑡|, 𝑋 > 𝑡 if the system with lifespan X is still alive at time t.Consequently, the residual lifetime 𝑋𝑡 = |𝑋 − 𝑡|, 𝑋 > 𝑡 concept, 

which is provided by 

𝐻(𝑋; 𝑡) =  − ∫
𝑓(𝑥)

𝐹(𝑡)

∞

𝑡
log

𝑓(𝑥)

𝐹(𝑡)
  𝑑𝑥                              (3) 

The weighted residual entropy version of (3) by Di Crescenzo and Longobardi (2006) is given by 

𝐻𝑤(𝑋; 𝑡) =  − ∫  𝑥
𝑓(𝑥)

𝐹(𝑡)

∞

𝑡
log

𝑓(𝑥)

𝐹(𝑡)
  𝑑𝑥                           (4) 

The two-dimensional version of (1) can be defined as 

𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌) =  

1

1 − 𝛼
log ∫ ∫ 𝑥𝑦 

𝑓𝛼+𝛽+𝛾−1(𝑥, 𝑦)

𝑓𝛽+𝛾(𝑥, 𝑦)
dy dx

∞

0

∞

0

 

∀ 𝛼 ≠ 1, 𝛽 ≥ 0, 𝛾 ≥ 0, 𝛽 + 𝛾 − 1 ≥ 0 

=  
1

1−𝛼
{𝑥𝑦 ∫ ∫ [log(𝑓(𝑥, 𝑦))

𝛼+𝛽+𝛾−1
− log(𝑓(𝑥, 𝑦))

𝛽+𝛾
]  𝑑𝑦 𝑑𝑥

∞

0

∞

0
}        (5) 

The residual version of (5) is given by 

𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌; 𝑡) =

1

1 − 𝛼
{𝑥𝑦 ∫ ∫ [log (

𝑓(𝑥, 𝑦)

𝐹 ̅(𝑡)
)

𝛼+𝛽+𝛾−1

− log (
𝑓(𝑥, 𝑦)

�̅�(𝑡)
)

𝛽+𝛾

] 𝑑𝑦 𝑑𝑥
∞

0

∞

0

} 

∀ 𝛼 ≠ 1, 𝛽 ≥ 0, 𝛾 ≥ 0, 𝛽 + 𝛾 − 1 ≥ 0 

Or (1 − 𝛼)𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌; 𝑡) = 𝑥𝑦 ∫ ∫ log (

𝑓(𝑥,𝑦)

𝐹 ̅(𝑡)
)

𝛼+𝛽+𝛾−1∞

0
𝑑𝑦 𝑑𝑥 −

 

∞

0
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𝑥𝑦 ∫ ∫ log (
𝑓(𝑥, 𝑦)

�̅�(𝑡)
)

𝛽+𝛾

 𝑑𝑦 𝑑𝑥
∞

0

∞

0

 

 

=  𝑥𝑦 (𝛼 + 𝛽 + 𝛾 − 1) ∫ ∫ log (
𝑓(𝑥, 𝑦)

𝐹 (𝑡)̅̅ ̅̅ ̅̅ ̅
)  𝑑𝑦 𝑑𝑥 −

∞

0

∞

0

 

𝑥𝑦 (𝛽 + 𝛾) ∫ ∫ log (
𝑓(𝑥, 𝑦)

𝐹 (𝑡)̅̅ ̅̅ ̅̅ ̅
)  𝑑𝑦 𝑑𝑥

∞

0

∞

0

 

=  (𝛽 + 𝛾)𝑥𝑦 ∫ ∫ log (
𝑓(𝑥, 𝑦)

𝐹 (𝑡)̅̅ ̅̅ ̅̅ ̅
)  𝑑𝑦 𝑑𝑥 +

∞

0

∞

0

𝑥𝑦(𝛼 − 1) ∫ ∫ log (
𝑓(𝑥, 𝑦)

𝐹 (𝑡)̅̅ ̅̅ ̅̅ ̅
)  𝑑𝑦 𝑑𝑥

∞

0

∞

0

− 

𝑥𝑦 (𝛽 + 𝛾) ∫ ∫ log (
𝑓(𝑥, 𝑦)

𝐹 (𝑡)̅̅ ̅̅ ̅̅ ̅
)  𝑑𝑦 𝑑𝑥

∞

0

∞

0

 

= (𝛼 − 1)𝑥𝑦 ∫ ∫ log (
𝑓(𝑥, 𝑦)

𝐹 (𝑡)̅̅ ̅̅ ̅̅ ̅
)  𝑑𝑦 𝑑𝑥

∞

0

∞

0

 

𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌; 𝑡) =  −𝑥𝑦 ∫ ∫ log (

𝑓(𝑥, 𝑦)

𝐹 (𝑡)̅̅ ̅̅ ̅̅ ̅
)  𝑑𝑦 𝑑𝑥

∞

0

∞

0

 

=  − 𝑥𝑦 ∫ ∫ log(𝑓(𝑥, 𝑦))𝑑𝑦 𝑑𝑥 + 𝑥𝑦 ∫ ∫ log 𝐹 ̅ (𝑡)𝑑𝑦 𝑑𝑥
∞

0

∞

0

∞

0

∞

0
       (6)        

 “Weighted Verma’s entropy of order 𝛼 and 𝛽 is defined as follows: X is a nonnegative random variable with a probability 

density function f(x) and an absolutely continuous distribution function F(x). 

𝐻𝛼,𝛽
𝑊 (𝑋)  =  −

1

𝛽 − 𝛼
log ∫ 𝑥𝑓𝛼+𝛽−1

∞

0

(𝑥) 𝑑𝑥      , 𝛽 − 1 < 𝛼 < 𝛽  , 𝛽 ≥ 1 

Then for 𝐻𝑊(𝑋)defined  in (2) 

      As 𝛼 → 1, 𝛽 → 1 

𝐻𝛼,𝛽
𝑊 (𝑋)  =  

𝐻𝑊(𝑋)

𝐸(𝑋)
                                          (7) 

Therefore, from (6) using equation (7) 

𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌; 𝑡) =  

𝐻𝑊(𝑋, 𝑌)

𝐸(𝑋, 𝑌)
+  𝑥𝑦 ∫ ∫ log 𝐹 ̅ (𝑡)𝑑𝑦 𝑑𝑥

∞

0

∞

0

 

=
𝐻𝑊(𝑋, 𝑌)

𝐸(𝑋, 𝑌)
 +  𝑥𝑦 ∫ ∫ log 𝐹 ̅ (𝑡)𝑑𝑦 𝑑𝑥

∞

0

∞

0

− 𝑥𝑦 ∫ ∫ log 𝑓 (𝑥)𝑑𝑦 𝑑𝑥
∞

0

∞

0

+ 

𝑥𝑦 ∫ ∫ log 𝑓 (𝑥)𝑑𝑦 𝑑𝑥
∞

0

∞

0

 

=
𝐻𝑊(𝑋, 𝑌)

𝐸(𝑋, 𝑌)
− 𝑥𝑦 ∫ ∫ log

𝑓(𝑥)

�̅�(𝑡)

∞

0

∞

0

 𝑑𝑦 𝑑𝑥 + 𝑥𝑦 ∫ ∫ log 𝑓 (𝑥)𝑑𝑦 𝑑𝑥
∞

0

∞

0

 

=
𝐻𝑊(𝑋,𝑌)

𝐸(𝑋,𝑌)
−  

𝐻𝑊(𝑋 ;𝑡)

𝐸(𝑋;𝑡)
  + 𝑦 ∫ [∫ 𝑥

∞

0
log 𝑓(𝑥) 𝑑𝑥] 𝑑𝑦

∞

0
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=
𝐻𝑊(𝑋, 𝑌)

𝐸(𝑋, 𝑌)
−  

𝐻𝑊(𝑋 ; 𝑡)

𝐸(𝑋; 𝑡)
− 𝑦 ∫ 𝐻𝑊

∞

0

(𝑋)𝑑𝑦 

=
𝐻𝑊(𝑋, 𝑌)

𝐸(𝑋, 𝑌)
− 

𝐻𝑊(𝑋 ; 𝑡)

𝐸(𝑋; 𝑡)
− 𝐻𝑊(𝑋) ∫ ∫ 𝑦 𝑑𝑦

∞

𝑡

𝑡

0

 

 

=
𝐻𝑊(𝑋, 𝑌)

𝐸(𝑋, 𝑌)
− 

𝐻𝑊(𝑋 ; 𝑡)

𝐸(𝑋; 𝑡)
−

𝑡2

2
𝐻𝑊(𝑋) 

 Or     𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌; 𝑡) =

𝐻𝑊(𝑋,𝑌)

𝐸(𝑋,𝑌)
− 

𝐻𝑊(𝑋 ,𝑡)

𝐸(𝑋,𝑡)
−

𝑡2

2
𝐻𝑊(𝑋) 

 Consequently, we note that the formula presented in equation (5) is a generalized probabilistic entropy measure. Next, we 

examine a few significant characteristics of this overall measurement 

The measure (5) satisfies the following properties: 

 The Measure 𝐻𝛼,𝛽,𝛾(𝑃), where  𝑃 = 𝑝1 + 𝑝2 + ⋯ … . +𝑝𝑛, ∑ 𝑝𝑖 
𝑛
𝑖=1 = 1 is a probability distribution, as characterized in the 

preceding section, that satisfies certain properties, which are given in the following. 

3.1. Non-negative 

The measure 𝐻𝛼,𝛽,𝛾
𝑤 (𝑃) is non-negative for 𝛼 ≠ 𝛽 ≠ 𝛾,       𝛼, 𝛽, 𝛾 > 0 

 

I) 𝜶 > 𝛾 ;  𝛽 < 𝛾 

⟹  
𝛼

𝛾
> 1  ,

𝛽

𝛾
< 1 

⟹   
1

1−𝛼
𝛾⁄

log ∑ (𝑝𝑖)
𝛼

𝛾𝑛
𝑖=1 < 1 ,

1

1−
𝛽

𝛾⁄
log ∑ (𝑝𝑖)

𝛽

𝛾𝑛
𝑖=1 > 1 

⟹  {[
1

1 − 𝛼
𝛾⁄

− 
1

1 −
𝛽

𝛾⁄
] log ∑ [(𝑝𝑖)

𝛼

𝛾 − (𝑝𝑖)
𝛽

𝛾]

𝑛

𝑖=1

} < 0 

⟹  {[

𝛼

𝛾
−

𝛽

𝛾

(𝛾−𝛼)(𝛾−𝛽)

𝛾2

] log ∑ [(𝑝𝑖)
𝛼

𝛾 − (𝑝𝑖)
𝛽

𝛾]

𝑛

𝑖=1

} < 0   

⟹  {[
𝛾(𝛼 − 𝛽)

(𝛾 − 𝛼)(𝛾 − 𝛽)
] log ∑ [(𝑝𝑖)

𝛼

𝛾 − (𝑝𝑖)
𝛽

𝛾]

𝑛

𝑖=1

} < 0 

⟹  [𝛾(𝛼 − 𝛽)][(𝛾 − 𝛼)(𝛾 − 𝛽)]−1 log ∑ [(𝑝𝑖)
𝛼

𝛾 − (𝑝𝑖)
𝛽

𝛾]

𝑛

𝑖=1

< 0 

⟹  [𝛾(𝛼 − 𝛽)] log ∑ [(𝑝𝑖)
𝛼

𝛾 − (𝑝𝑖)
𝛽

𝛾]

𝑛

𝑖=1

> 0 

 

II) Similarly for 𝜶 < 𝛾 ;  𝛽 > 𝛾 , we get 

[𝛾(𝛼 − 𝛽)] log ∑ [(𝑝𝑖)
𝛼

𝛾 − (𝑝𝑖)
𝛽

𝛾]

𝑛

𝑖=1

> 0 

Therefore, from case I ,case II ,we get 

𝐻𝛼,𝛽,𝛾
𝑤 (𝑃)  ≥ 0 
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3.2. Additive Property 

 The nature of measure (2.1) is additive. The following joint entropy is taken into consideration in order to demonstrate this 

additivity feature. 

 

Hmn 
w (𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) =  𝐺𝑛(𝑃; 𝛼, 𝛽, 𝛾)𝐻𝑚(𝑄; 𝛼, 𝛽, 𝛾) +  𝐺𝑚(𝑄; 𝛼, 𝛽, 𝛾)𝐻𝑛(𝑃; 𝛼, 𝛽, 𝛾) 

     α, β, γ > 0 

where,𝐺𝑛(𝑃; 𝛼, 𝛽, 𝛾)  =  
1

2
∑ [(𝑝𝑖)

𝛼

𝛾 + (𝑝𝑖)
𝛽

𝛾]𝑛
𝑖=1 ;  α, β, γ > 0 

from equation (2.5) we get 

=  
1

1−𝛼
{𝑥𝑦 ∫ ∫ [log(𝑓(𝑥, 𝑦))

𝛼+𝛽+𝛾−1
− log(𝑓(𝑥, 𝑦))

𝛽+𝛾
]  𝑑𝑦 𝑑𝑥

∞

0

∞

0
}=

1

1−𝛼
{𝑝 𝑞 ∫ ∫ [log(𝑓(𝑝, 𝑞))

𝛼+𝛽+𝛾−1
−

∞

0

∞

0

                                        log(𝑓(𝑝, 𝑞))
𝛽+𝛾

]  𝑑𝑞 𝑑𝑝} .
1

2
∑ [(𝑝𝑖)

𝛼

𝛾 + (𝑝𝑖)
𝛽

𝛾]𝑛
𝑖=1  

=   
1

1 − 𝛼
{𝑞 ∫ log

(𝑓(𝑝, 𝑞))
𝛼+𝛽+𝛾−1

(𝑓(𝑝, 𝑞))
𝛽+𝛾

∞

0

} +
1

1 − 𝛼
{𝑝 ∫ log

(𝑓(𝑝, 𝑞))
𝛼+𝛽+𝛾−1

(𝑓(𝑝, 𝑞))
𝛽+𝛾

∞

0

} 

Where, ∑ 𝑝𝑖 
𝑛
𝑖=1 = 1 

=  𝐻𝑚 
𝑤 (𝑄; 𝛼, 𝛽, 𝛾) + 𝐻𝑛 

𝑤(𝑃; 𝛼, 𝛽, 𝛾) 

Thus, the entropy is given by 

Hmn 
w (𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) =  𝐻𝑚 

𝑤 (𝑄; 𝛼, 𝛽, 𝛾) + 𝐻𝑛 
𝑤(𝑃; 𝛼, 𝛽, 𝛾) 

3.3. Sub Additive 

We have 

Hmn 
w (𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) =  𝐺𝑛(𝑃; 𝛼, 𝛽, 𝛾)𝐻𝑚(𝑄; 𝛼, 𝛽, 𝛾) +  𝐺𝑚(𝑄; 𝛼, 𝛽, 𝛾)𝐻𝑛(𝑃; 𝛼, 𝛽, 𝛾) 

     α, β, γ > 0 

where𝐺𝑛(𝑃; 𝛼, 𝛽, 𝛾)  =  
1

2
∑ [(𝑝𝑖)

𝛼

𝛾 + (𝑝𝑖)
𝛽

𝛾]𝑛
𝑖=1 ≤ 1 𝑓𝑜𝑟 𝛼, 𝛽 ≥  𝛾 

Therefore 

Hmn 
w (𝑃 ∗ 𝑄; 𝛼, 𝛽, 𝛾) ≤  𝐻𝑚 

𝑤 (𝑄; 𝛼, 𝛽, 𝛾) + 𝐻𝑛 
𝑤(𝑃; 𝛼, 𝛽, 𝛾) 

3.4. Maximum Value 

To find the maximum value of (2.5), we apply Lagrange’s method of maximum multipliers and differentiating (2.5) with 

respect to𝑝𝑖  and taking 
𝜕𝐻𝛼,𝛽,𝛾

𝑤

𝜕𝑝𝑖
= 0, we get 

Let  𝑓(𝑥, 𝑦) =  
1

1−𝛼
{𝑥𝑦 ∫ ∫ [log(𝑓(𝑥, 𝑦))

𝛼+𝛽+𝛾−1
−                                                                       log(𝑓(𝑥, 𝑦))

𝛽+𝛾
]  𝑑𝑦 𝑑𝑥

∞

0

∞

0
} 

So,       𝑓(𝑝) =  
1

1−𝛼
[∑ 𝑝𝑖 

𝑛
𝑖=1 log(𝑝𝑖)𝛼+𝛽+𝛾−1] −

1

1−𝛼
[∑ 𝑝𝑖 

𝑛
𝑖=1 log(𝑝𝑖)𝛽+𝛾] 

−𝜆 ∑(𝑝𝑖  − 1)

𝑛

𝑖=1

 

=  
(𝛼 + 𝛽 + 𝛾 − 1)

1 − 𝛼
[∑ 𝑝𝑖  log(𝑝𝑖)

𝑛

𝑖=1

] − 
𝛽 + 𝛾

1 − 𝛼
[∑ 𝑝𝑖  log(𝑝𝑖)

𝑛

𝑖=1

] − 𝜆 ∑ 𝑝𝑖

𝑛

𝑖=1

− 𝜆 
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=  
(𝛼 + 𝛽 + 𝛾 − 𝛽 − 𝛾 − 1)

1 − 𝛼
[∑ 𝑝𝑖  log(𝑝𝑖)

𝑛

𝑖=1

] − 𝜆 ∑ 𝑝𝑖

𝑛

𝑖=1

− 𝜆 

=  
𝛼 − 1

1 − 𝛼
∑ 𝑝𝑖  ∑ log(𝑝𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

− 𝜆 ∑ 𝑝𝑖

𝑛

𝑖=1

− 𝜆 

=  − ∑ log(𝑝𝑖)

𝑛

𝑖=1

− 𝜆 − 𝜆 

Taking 
𝜕𝑓(𝑝)

𝜕𝑝𝑖  
= 0, ∀  𝑖 = 1,2,3, … … . , 𝑛, we get 

𝑝1 = 𝑝2 = ⋯ … … … . = 𝑝𝑛 =
 1 

𝑛
and ∑ 𝑝𝑖

𝑛
𝑖=1 = 1. 

Therefore 
𝜕𝑓(𝑝)

𝜕𝑝𝑖  
= -log (

1

𝑛
) -2𝜆 

=  log 𝑛 − 2𝜆 

=  
−1

𝑛2
< 0 

which shows that the maximum value is a concave function of n. 

4. Conclusion 
A weighted generalized entropy of order α, β, and type 𝛾 its residual version were developed. Several important features and 

inequalities of the weighted measure were investigated, and the suggested measure characterizes the distribution function 

uniquely. The expressions of these measures were taken into consideration for a few specific distributions. The present 

communication introduces a new ‘useful weighted generalized information measure, i.e.,𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌)  of order α, 𝛽 𝑎𝑛𝑑 𝛾. The 

properties of 𝐻𝛼,𝛽,𝛾
𝑊 (𝑋, 𝑌)were considered Further, the behavior of  𝐻𝛼,𝛽,𝛾

𝑊 (𝑋, 𝑌) at different cases of 𝛼, 𝛽 and 𝛾were studied. 
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