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Abstract - In the context of globalization, climate change and environmental issues have received increasing attention. For a 

long time, relying on traditional fossil fuels for electricity production has led to significant greenhouse gas emissions, one of 

the key factors contributing to global warming. New energy power generation has become important to address global 

warming and promote sustainable energy development. With the progress of science and technology and the expansion of 

production scale, the utilization of new energy will improve the conversion efficiency of energy resources and reduce 

production and conversion costs. This study aims to utilize the methods of Random Forest and Long Short-Term Memory 

(LSTM) neural networks to research new energy generation power. By collecting and analyzing the historical data of wind 

power generation and solar power generation, a prediction model based on Random Forest and LSTM neural network was 

established. The experimental results show that this model can accurately predict the changing trends of new energy 

generation power. For example, when predicting solar power generation power, the model’s accuracy can reach 96.72 

percent and 97.37 percent, effectively reducing the prediction errors. Through in-depth research on new energy generation 

power, we can better understand the utilization potential of renewable energy, provide decision-making support for power 

grid dispatching and energy planning, promote the development of sustainable energy, improve the power generation 

efficiency of the power grid, and ensure the safety and stability of the power grid. 
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1. Introduction  

1.1. Research Background and Significance 

With the growing global concern for climate change and environmental protection, China has actively fulfilled its 

international responsibilities in addressing climate change, demonstrated its responsibility as a major country, actively 

responded to global climate governance, promoted the construction of a community with a shared future for mankind, and 

strived to achieve the goals of carbon peaking and carbon neutrality. In the context of global energy transformation, wind 

power generation and photovoltaic power generation [1-3], as clean and renewable energy sources, have gained favor from 

various countries and regions due to their characteristics. Carbon emissions can be further reduced in the development path 

of carbon peaking and carbon neutrality by improving the efficiency and scale of new energy power generation. At the 

same time, as the key driving force of green transformation, new energy power generation is of great significance in 

shaping green production and lifestyle and promoting high-quality development. New energy is green energy, which will 

play an important role in reducing carbon emissions and promoting the transformation of energy structure. These new 
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energy generation methods are clean and environmentally efficient and reduce their dependence on fossil energy, which is 

renewable and inexhaustible. We will promote transforming and upgrading the energy structure and optimize the 

supply-side structural reform. New energy power generation is also beneficial to energy security. Since new energy is 

inexhaustible, as long as there is sunlight and wind, electricity can be continuously generated, which can reduce the risk of 

energy supply and improve energy security. Vigorously developing new energy not only helps to enhance the 

competitiveness of the domestic industrial chain but also achieves synergistic effects of pollution reduction and carbon 

reduction, improves energy security, promotes economic development, and realizes sustainable development. 

 

Against the backdrop of the new normal of the global economy and the scientific and technological revolution, the 

traditional productivity structure is undergoing fundamental changes. The wide application of emerging information, 

science, and technology has promoted the leap of productivity to quality and the expansion of quantity, so the concept of 

new quality productivity came into being. It represents that the productive forces have entered a new stage and are a major 

supplement to the development of traditional theory. New quality productivity emphasizes the use of artificial intelligence, 

big data, and other new technologies to enable traditional industries to optimize production, distribution, circulation, and 

consumption comprehensively and maximize the efficiency of resource allocation. With the improvement of environmental 

protection awareness and the adjustment of energy structure, China’s power structure will develop in a cleaner, more 

efficient and renewable direction. Currently, China has adopted the energy structure of thermal power generation and 

continues to increase the diversified power generation methods such as hydraulic power, nuclear energy, new energy and so 

on. Firstly, new energy power generation, such as solar, wind, and hydropower, are all green and low-carbon energy forms. 

The advantages of new energy power generation lie in its clean, low-carbon, and renewable characteristics. Solar 

photovoltaic power generation uses solar cells to convert light energy into electrical energy, which is clean and efficient; 

wind power generation converts the kinetic energy of the wind into mechanical kinetic energy and then into electrical 

energy, with the advantages of being renewable and pollution-free. Secondly, new energy power generation also has 

significant economic advantages. At present, the utilization efficiency of new energy is high; for example, the utilization 

efficiency of solar power generation can reach more than 30 percent, while that of traditional thermal power generation is 

only about 30 percent. Using new energy will greatly improve efficiency and save costs. At the same time, with the 

improvement of photovoltaic and wind power generation technology, its power generation accounts for a substantial 

increase in the total power generation of the system. 

 

China has rich resources and a broad market in these two fields, but it also faces many challenges in technology and 

economy that need to be addressed urgently. According to the twin goals of carbon peak and carbon neutrality, China’s new 

energy industry is developing rapidly, and fields such as photovoltaic and wind power have shown strong momentum. 

Since the twin goals of carbon peak and carbon neutrality were put forward, the installed capacity of wind power and 

photovoltaic has exceeded 100 million kilowatts for three consecutive years, reaching a new historical high. Among them, 

distributed photovoltaics have developed rapidly, with an annual growth rate of 47.68 percent, exceeding the growth rate of 

centralized photovoltaics by nearly 20 percent. Since 2021, the newly connected grid scale of distributed photovoltaic has 

exceeded that of centralized photovoltaic, and the two show a parallel development trend. 

 

1.2. Research Status 

In recent years, new energy power generation in China has developed rapidly. However, due to the limitations of 

technology, cost and other factors, its proportion in the power structure is still relatively small. The construction of new 

energy power generation infrastructure is not yet perfect. Insufficient investment in technology research and development 

has led to fragile infrastructure, difficulties in breaking through key core technologies, and the dependence of new energy 

power generation equipment on imports. In addition, natural factors such as weather and temperature greatly affect new 
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energy power generation, resulting in an unstable power supply. In the new energy power generation field, especially in the 

practical application of wind and solar power generation, challenges such as insufficient prediction accuracy, complex 

resource allocation, and difficult efficient control are often faced. These problems have greatly increased the risk to the 

safety and stability of the power grid. To ensure the smooth operation of power dispatching and effectively reduce the daily 

maintenance costs of the power grid, it is urgent to strengthen the improvement of the safety and stability of the power 

grid. 

 

On the other hand, more and more new energy sources are connected to the power system, and the power grid 

operation faces the problems of peak regulation imbalance between supply and demand and consumption. New energy 

power prediction has become a key technology to solve these problems. Although existing research mainly focuses on the 

power prediction of centralized power stations, there are few research results on the power prediction of regional power 

plant clusters. The accuracy of the prediction systems put into operational use still needs to be improved, and they cannot 

meet the requirements of relevant dispatching and trading services. Therefore, studying high-precision new energy power 

prediction applications is of great significance. 

 

The prediction of new energy power generation can be subdivided into multiple time-period categories according to 

the period of the prediction and the control strategies adopted, including ultra-short-term prediction, short-term prediction, 

medium-term prediction, and long-term prediction. Each category serves specific management and optimization needs. 

There are many methods for short-term wind power and solar power prediction.  

 

Wavelet algorithms, Support Vector Machines (SVM), Markov chains, Wavelet transform LS-SVM[4], etc, are all 

used to conduct short-term predictions based on the existing wind and solar power generation data. Due to the 

intermittency and volatility of renewable energy, its power generation is greatly affected by natural, climatic, and 

geographical factors such as weather and seasons. The randomness, disturbance, and intermittency of wind farms have a 

huge impact on the voltage stability, transient stability, safety, and power quality of the power grid. 

 

Conducting short-term or long-term predictions of power generation is the main way to solve this problem. Through 

long-term prediction, the power generation of renewable energy can be more accurately evaluated, providing strong 

support for power grid dispatching, reducing the system risks caused by the fluctuations of renewable energy power 

generation, helping the power grid dispatching department to understand the changing trends of future power demand in 

advance, so as to reasonably arrange power generation plans and resource allocation, and ensuring the stability and 

reliability of power supply. Short-term power generation prediction cannot predict the power generation in a relatively 

long-term future, usually covering trends in several days, weeks, or even months. Therefore, long-term prediction is of 

great significance for the stable operation of the power system, optimal resource allocation, and economic 

decision-making. 

 

Domestic and foreign scholars have carried out many studies on the prediction of new energy power generation 

represented by wind energy and solar energy. Blonbou R [5]used adaptive Bayesian learning and neural network methods 

to predict wind power generation. Zhe S, Jiang Y, and Zhang Z [6] used Bayesian and Markov switching models for 

prediction. At the same time, the support vector machine (SVM) is also a popular algorithm. Yang L et [7] used an 

SVM-enhanced Markov model to predict wind power generation. Literature [8] adopted a wind power prediction method 

based on random forest. New energy power generation prediction can be divided into physical modeling methods, 

statistical analysis methods, and deep learning methods according to different historical data sources. 

 



Xinlong Zhang / IJMTT, 71(3), 33-53, 2025 

  

36 

Physical modeling methods model new energy and power electronic converters and use numerical weather forecasts as 

independent variables to achieve prediction [9]. Physical methods mainly rely on numerical weather forecasts for 

prediction. The disadvantage is that the accuracy is insufficient, and the modeling process is complex and requires high 

computational power. In statistical learning models, by combining factors such as light intensity, wind speed, and historical 

power generation, better prediction results can be achieved than other methods, but the modeling requirements are 

relatively high. With the help of big data and artificial intelligence technology, learning methods effectively improve the 

accuracy and effectiveness of solar and wind power prediction, providing support for the power grid’s safe, stable, and 

economical operation. Machine learning, as the core technology of artificial intelligence, shows great potential in energy 

prediction. By learning and modeling historical data, machine learning algorithms can predict key indicators such as 

energy consumption and power generation, providing decision-making support for optimized energy system management. 

Among them, unique deep learning models, such as the Long-Short-Term Memory network (LSTM), can effectively 

capture the long-term dependence and non-linear patterns of energy data, laying a foundation for improving prediction 

accuracy. Its excellent performance benefits from its unique design and structure, enabling it to process complex sequence 

data and capture long-term dependencies. The long-short-term memory network, abbreviated as LSTM (Long Short-Term 

Memory) neural network, is a unique Recurrent Neural Network (RNN) type. It can solve the problems of gradient 

explosion and gradient disappearance that occur when traditional RNNs process long-sequence data. 

 

At the same time, the random forest algorithm is a powerful machine learning tool. The random forest algorithm can 

make accurate predictions in many highly accurate scenarios [10]. It generates accurate and stable prediction results of 

multiple decision trees, reducing the risk of overfitting. The random forest is composed of multiple decision trees and is 

more robust to outliers and noise in the data. The random forest can evaluate the important features that impact the 

prediction results the most. The random forest algorithm can also be easily parallelized, improving calculation efficiency. 

However, the random forest algorithm also has its own defects. The computational complexity is relatively high. Since 

multiple decision trees need to be trained, the computational complexity of the random forest is usually higher than that of 

a single decision tree. When the data set is very large, or the number of decision trees is very large, the training time may 

be long and require a large amount of memory space. If the memory is insufficient, it may lead to performance degradation 

or inability to run. In some specific types of problems, such as certain time-series problems or problems that require 

capturing long-term dependencies, the random forest may not be as effective as other algorithms [11-14], such as recurrent 

neural networks. This paper proposes combining the random forest and the Long-Short-Term Memory network (LSTM) to 

predict new energy power generation, which can form a hybrid model. This model combines the advantages of the two 

algorithms and has some unique advantages: it has a strong prediction ability. The random forest is known for its high 

accuracy and stability, while the LSTM is good at processing time-series data and capturing long-term dependencies. 

Combining the two can enhance the processing ability of time-series data while maintaining the prediction accuracy of the 

random forest to provide more accurate and comprehensive predictions, making the model more flexible and effective in 

processing complex data sets, improving the generalization ability of the model to a certain extent, reducing the risk of 

overfitting, and enabling long-term prediction and improving prediction accuracy [15,16]. 

 

1.3. Research Ideas 

This study collected and analyzed the historical data of wind power generation and solar power generation from 2021 

to 2023 in two regional power plant clusters and used the random forest and LSTM algorithms to predict solar power 

generation and wind power generation, respectively. The specific research ideas are as follows: 

(1) Since the data may be abnormal, the data is pre-processed first. 

(2) The optimal model is selected through parameter tuning of the random forest and LSTM algorithms for model training 

to predict solar power generation and wind power generation. 
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(3) The best accuracy is analyzed through error calculation, and appropriate parameters are used to establish a suitable 

prediction model. 

(4) The predicted values and real-value data are visualized to observe the results. 

 

2. Theoretical Basis of the Model  

2.1. Random Forest Algorithm 

As a machine-learning strategy, the random forest belongs to the category of ensemble learning. Its core lies in 

gathering the power of multiple models to improve prediction performance. In machine-learning tasks, the goals can be 

roughly divided into two categories: classification and regression. The uniqueness of the random forest lies in its flexibility 

in dealing with these two types of tasks. The operation mechanism of this algorithm is based on a collection of decision 

trees. Each decision tree is independently trained and adopts random subsets of data samples and features during the 

generation process to enhance the diversity and generalization ability of the model. During prediction, the outputs of all 

decision trees are aggregated. Usually, majority voting (for classification) or mean calculation (for regression) is used to 

obtain the final prediction conclusion. This collective decision-making method improves the accuracy and stability of the 

overall prediction. 

 

To understand the RF algorithm, it is necessary first to understand the meaning of the decision tree. The decision tree 

divides the data set into smaller subsets around the input variables. The division is performed to give the formed subsets a 

more minor variance in the result values. Each division can be regarded as a branch of the tree, and each data subset can be 

regarded as a leaf. The data is gradually divided until certain final conditions are met. The termination conditions can be 

that the maximum number of divisions has been performed or the standard deviation of the subset has dropped below a 

cut-off value. The average value of the results in the terminal leaves is the predicted value of the set of input variables. 

 

For example, a decision tree is used to predict the power generation as a function of two key variables: wind speed 

and temperature. It is created by tree splitting with branches of wind speed < 10 m/s and wind speed ≫ 10 m/s. These 

branches are further divided for temperature < 350K and temperature ≫ 350K. Then, to predict the power generation under 

certain conditions, such as wind speed = 4.5 and temperature = 300K, the average value of the power generation of the leaf 

wind speed < 7 → temperature < 350K is the predicted value of this decision tree. RF is composed of a large number of 

decision trees. The decision trees are formed based on random subsets of the training data through replacement and using 

random subsets of features. The RF algorithm reports the weighted average of the predictions of all decision trees. 

Generally, using the results of many machine-learning models for the final prediction is called ensemble learning, and it 

has been proven to improve prediction performance significantly. Therefore, RF is an ensemble learning algorithm based 

on numerous decision trees. Thus, in the above example, power generation is the output variable, and wind speed and 

temperature are the input variables. 

 

2.2. LSTM 

A special type of cyclic neural network, long-term and short-term memory network (Long Short Term Memory 

networks), is called “LSTM” for short, which can explain the long-term dependence of variables. Hochreiter and 

Schmidhuber introduced them, and they have been improved and popularized for predicting feasibility. 

LSTM belongs to a type of Recurrent Neural Networks (RNNs). Compared with traditional RNNs, LSTM has stronger 

memory ability and the ability to model long-term dependencies. LSTM solves the problems of gradient vanishing and 

gradient explosion in RNNs by introducing a mechanism called “gates”. These gates include the input gate, forget gate, and 

output gate, which control the flow of information by determining whether the information is to be remembered, forgotten, 

or output. 
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Fig. 1 Structure diagram of LSTM (right) and RNN (left)      Fig. 2 State diagram of the internal structure of LSTM 

 

Fig. 3 LSTM operation flow chart 

 

Analyzing the internal structure of LSTM as shown in Figure 1, input it into the LSTM formula and train it with the 

passage from the previous state to obtain four values. Among them, 𝑧𝑓 , 𝑧𝑖 , 𝑧𝑜 it is multiplied by the splicing vector by the 

weight matrix and then converted into a value between 0 and 1 by a sigmoid activation function, which is used as a gated 

state. It𝑧converts the result to a value between -1 and 1 through a tanh activation function (tanh is used here because it is 

used as input data, not as a gated signal). 

 

Figure 3 is Hadamard Product, ⊙which represents the multiplication of the corresponding elements in the operation 

matrix, so the two multiplication matrices are required to be of the same type. ⊕ is represented by matrix addition. 

 

3. Data processing and prediction 

3.1. Forecast of Random Forest Solar and Wind Power 

First, the solar and wind data are preprocessed, a random forest model is constructed to process the data set to get the 

predicted power, the parameter network is set, the cross-verification and parameter selection is carried out, and the 

prediction is carried out through the training model. Finally, the results are evaluated by error calculation, and the real and 

predicted values graphs are drawn. 
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3.1.1. Data Preprocessing 

The general steps of data preprocessing are cleaning and dealing with data problems such as missing values, outliers 

and repeated values. Cleaning is carried out by filling in missing values, deleting outliers and repeating values. Feature 

selection: select features with high correlation with target variables. Choices can be made based on statistical methods such 

as correlation coefficients or the feature importance of the model. The common coding methods are One-Hot Encoding, 

Label Encoding and so on. Feature scaling: continuous features are scaled to the same scale. Common scaling methods, 

such as Standardization and Normalization, are used to eliminate dimensional effects. Data split: divide the dataset into 

training sets and test sets. The training set is used to build the model, and the test set is used to evaluate the model’s 

performance. 

 

3.1.2. Random Forest Parameters 

The random forest library provides two core classes: Random Forest Classifier for classification tasks and Random 

Forest Regressor for regression tasks. Similarly, its variant Extra Trees also provides Extra Trees Classifier and Extra Trees 

Regressor. The core idea of stochastic forest regression is to build a more powerful model by combining multiple 

independently trained decision trees. These decision trees will consider different data subsets and feature subsets in the 

training process to reduce the model variance and improve the generalization ability. In terms of parameter adjustment, 

although random forests usually do not need a large number of parameter adjustments, the number of decision trees 

controlled by n_estimators parameters is a key parameter. If the n_estimator setting is too small, it may cause the model to 

underfit, while setting too large may not significantly improve performance. By default, the parameter value is 100. 

Another important parameter is the max_depth of the decision tree, which limits the maximum depth of the tree. In some 

cases, if the data sample size or the feature is large, it is beneficial to limit the depth of the tree, while when the sample size 

or feature is small, it may not need to be limited. It is worth noting that random forest is a decision tree model based on a 

bagging framework. Therefore, the parameter tuning involves two levels: one is the parameter tuning of the RF framework, 

such as n_estimators, and the other is the parameter tuning of the RF internal decision tree, such as max_depth. 

Understanding these parameters is the premise of effective model tuning. 

 

3.1.3. Generation Power Prediction 

In this paper, we introduce the prediction method of wind power and solar power rates based on the RF random forest 

algorithm. After determining the influence factors of solar energy and wind power, the pre-prediction mathematical model 

of solar energy and wind power is established. 

 

A photovoltaic power prediction system constitutes a comprehensive solution that closely integrates the three cores of 

data monitoring, power prediction models, and advanced software platforms. Among them, the data monitoring link, as the 

cornerstone of prediction, not only closely tracks and records the real-time changes of meteorological variables but also 

continuously monitors the operation status of photovoltaic power stations to ensure the comprehensiveness and accuracy of 

information. The system is equipped with optical power prediction technology, which is good at carrying out short-term 

and ultra-short-term prediction tasks and accurately fits the diversity of photovoltaic enterprises’ forecasting needs on 

different time scales. This ability is very important for lighting conditions and helps enterprises to dispatch resources and 

optimize production capacity efficiently. The supporting software platform transforms complex data into intuitive graphics 

and reports, provides management and decision-making methods, and further excavates data value through in-depth data 

analysis. The platform strictly follows the standards and specifications of power grid operation, and its design essence lies 

in high efficiency, accuracy and intelligence, which lays a foundation for daily power generation planning and operation 

and maintenance strategy and ensures the stability and efficiency of the power system. 
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3.1.4. Model Evaluation 

The loss function is obtained by the Mean Square Error (MSE) of the fitting degree between the predicted value of the 

evaluation model and the initial data set and the fitting degree of error analysis. The smaller the loss function value is, the 

better the model fitting is and the more accurate the prediction is. The average absolute error (MAE) index evaluates the 

prediction results, and the model accuracy is evaluated by Root Mean Square Error (RMSE) and correlation coefficient 𝑅2. 

The calculation formula is as follows: 

                           𝑀𝐴𝐸 =
1

𝑛𝑠
|�̂�𝑖 − 𝑦𝑖|                          (1) 

                          𝑀𝑆𝐸 =
1

𝑛𝑠
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛𝑠
𝑖=1                        (2) 

                         𝑅𝑀𝑆𝐸 = (
1

𝑛𝑠
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛𝑠
𝑖=1 )

1

2
                   (3) 

 

Where 𝑛𝑠 is the number of amples, �̂�𝑖 is the predicted value of generating power, and 𝑦𝑖  is the actual value of 

generating power. 

 

3.2. Prediction of Solar and wind Power Generation in the LSTM Network 

First, we preprocess the data set, create features and target values, build an LSTM model, optimize the parameters to 

find the best hyperparameters, and finally compare the predicted and the real values. 

 

3.2.1. Data Preprocessing 

LSTM is a special recurrent neural network. When designing neural network prediction models, especially in 

processing dynamic data such as solar and wind power, the working range of non-linear activation functions must be 

carefully considered to prevent neurons from experiencing saturation. To this end, the normalization of the data is a 

necessary step, and the process ensures that all data points fall into a uniform range from 0 to 1 through scaling, which is 

essential to maintain the optimal efficiency of the activation function. It is worth noting that if the initial value of the data 

point exceeds the boundary of -1 to 1, it should be identified and eliminated in the preprocessing stage to ensure the 

effective implementation of normalization. In addition to normalization, data preprocessing includes reasonable 

classification of input data. For the case of wind power prediction, it is a standard operation to divide the data set into two 

independent parts: the training set and the test set, which not only helps the model to learn historical patterns but also 

evaluates the generalization ability of the model by retaining unknown data. Then, the model training starts, during which 

the architecture design and parameter configuration of the neural network are constantly fine-tuned, and optimization 

algorithms such as gradient descent are used to reduce the prediction error gradually. LSTM network, with its unique 

advantage in capturing long-term dependence on time series data, has become an ideal choice for this kind of prediction 

task. With the deepening of training, the LSTM network gradually refines its internal mechanism to maximize the 

consistency between the predicted output and the actual observations. Finally, the reserved test set is used to verify the 

trained LSTM model to test the accuracy and reliability of the model strictly to predict the future wind power rate. This 

series of fine operation flows combines the rigour of data preprocessing and the flexibility of model training to build a 

strong and accurate prediction system, which provides solid support for the efficiency analysis and strategic planning of 

solar and wind power generation. 

 

3.2.2. Determine the Parameters of the LSTM Neural Network 

Parameters are the most important learning goal of our training neural networks. The purpose of our training is to find 

a set of good model parameters to predict the results of the position. These parameters are generated automatically during 



Xinlong Zhang / IJMTT, 71(3), 33-53, 2025 

  

41 

model training. We adjust and combine the superparameters n_estimators and max_depth through the “grid method” and 

then find the best superparameters by the score of each parameter combination. 

 

3.2.3. Generation Power Prediction 

Photovoltaic power prediction system is a technology based on data analysis and model prediction. Through the 

comprehensive analysis of historical data, weather forecasts and power station parameters, the photovoltaic power 

generation power of photovoltaic power stations in the future can be predicted. It is like the “intelligent brain” of a power 

station, which can predict the generating capacity of the power station in advance. The optimized operation of the station 

provides an important basis. 

 

3.2.4. Model Evaluation 

The loss function is obtained by evaluating the fitting degree between the predicted value of the model and the initial 

data set and the MSE of the fitting degree of the error analysis. The smaller the value of the loss function, the better the 

model fitting and the more accurate the prediction. The calculation formula is as follows: 

                           𝑀𝑆𝐸 =
1

𝑛𝑠
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛𝑠
𝑖=1                         (4) 

 

4. Case Analysis 

The data set studied in this paper comes from the special competition of “Smart Energy Competition”. The training 

data in the data set are weather history data, weather forecast data, and power generation time series data for one field 

group. The time span of the sample is two years, and the time resolution is fifteen minutes, including solar power 

generation and wind power generation. The input variables are shown in Table 1. 

 

Table 1. Design of input parameters of regional field group power generation 

Prediction of solar power generation Prediction of wind power generation 

Field name Field Type Field name Field Type 

Time stamp string Time stamp string 

Historical photovoltaic 

power generation 
float64 Historical wind power float64 

Observation and 

irradiation of historical 

field station 

float64 

Observation of wind 

speed at historical 

stations 

float64 

Installed capacity of 

station 
float64 

Installed capacity of 

station 
float64 

Inclination angle float64 Temperature float64 

Azimuth angle float64 Air pressure float64 

Temperature float64 Wind speed float64 

Air pressure float64 Precipitation amount float64 

Precipitation amount float64   

Total cloud cover float64   

Total solar radiation float64   

Wind speed float64   
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The provided dataset includes meteorological information from two meteorologists, and the selection of features will 

be carried out according to the importance of the features in the study to optimize the accuracy of the forecast further. 

Random forest has the advantages of robustness, high accuracy, and the ability to process and analyze high-dimensional 

and large-scale data, and it is not easy to over-fit, which makes it one of the most powerful algorithms in machine learning. 

When using the random forest algorithm, we adjust its parameters, including the maximum depth of the decision tree 

max_depth and the number of decision trees n_estimators. The range of values is shown in Table 2. 

 

Table 2. Random forest parameters 

Parmeters max_depth N_estimators 

 None 10 

 5 20 

 10 30 

 15 40 

 20 50 

  60 

  70 

  80 

  90 

  100 

  150 

  200 

 

The parameters of LSTM are shown in Table 3. Batch_size indicates the number of samples included in each batch of 

training. When training the neural network, the data set is divided into several batches, and each batch has a certain number 

of samples. The gradient is calculated for each batch, and the model parameters are updated to improve the training speed 

and the stability of the model. Epochs represent the number of iterations of model training and the number of times the 

entire data set is entered into the model for training. In each epoch, the model carries forward propagation and 

backpropagation to the whole data set and updates the model parameters according to the gradient calculated by 

backpropagation. Optimizer is an optimization algorithm for updating model parameters. Common optimization algorithms 

include Stochastic Gradient Descent, Adam, Root Mean Square Propagation and so on. Choosing the appropriate 

optimization algorithm has an important impact on the convergence speed and performance of the model. 

 

4.1. Forecast of Solar Power 

4.1.1. Random Forest 

Solar energy has attracted much attention as the representative of new and clean energy. Although solar power now 

accounts for only six percent of power generation, according to foreign forecasts, solar energy will account for fifty percent 

or more of China’s electricity generation in 2050. 

 

The software used in the prediction process is Pycharm and is based on Python 3.10. Figure 4 shows the resulting 

diagram of parameter optimization of the random forest algorithm. As can be seen from the figure, the accuracy of the 

model prediction is high, above 90 per cent. The optimal parameter combination is max_depth = None, n_estimators = 150, 

and the accuracy is 96.72 percent. The test set is predicted using the optimal model, and the result is shown in Figure 4. As 

can be seen from Figure 5, the real and predicted values of solar power are concentrated in the middle part, indicating that 

this model can well predict the power generation power. 
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Fig. 4 Optimization of solar power parameters based on random forest. 

 

Fig. 5 Comparison between real value and predicted value of solar power generation based on random forest 

 

4.1.2. LSTM 

Table 3. LSTM Parameters 

Parameters Batch_size epochs optimizer 
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Fig. 6 Real and predicted solar power based on LSTM 

 
Fig. 7 Solar energy data visualization 
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LSTM has the advantages of dealing with long-term dependence, adapting to multiple sequence lengths, strong 

expression ability, end-to-end learning and flexible input and output, which makes it an effective tool for processing and 

predicting time series data. Next, you will use LSTM to predict the data. 

 

In order to understand our data set, each feature is drawn. This shows that between 2021 and 2023, there are different 

patterns for each feature. It also shows the location of exceptions that will be resolved during the normalization process. 

 

The number of data points of solar energy is 66913, and we divide the test set and training set according to 0.715, 

which is 71.5 percent. Five is the training set, and the rest is the test set. Track the data of the past 720 timestamps, which 

are used to pre-measure the power after 72 times tamps. Because each function has a different range, it is normalized to 

limit the eigenvalues within the range to train the neural network. This is done by subtracting the average and dividing by 

the standard deviation of each feature. 

 

In addition, the heat map of the dataset is shown in Figure 8. We will further select the features according to the heat 

map because some parameters are redundant. 

 

According to the set label, the training number starts from the 792nd observation value (720 + 72). The 

timeseries_dataset_from_array function is used to input equal intervals and time series parameters, such as sequence or 

window and so on, to generate batch sub-time series inputs and targets sampled from the main time series. The validation 

data set must not contain the last 792 rows because we do not have these records, so we must subtract 792 from the end of 

the data. 

 

Validating the tag dataset must start at 792 after train_split, so we must add past and future to label_start. As a result, 

the input and output input shapes (256, 120, 7) and target shapes (256, 1) are obtained. 

 

We will use callbacks to save checkpoints periodically, and callbacks that interrupt training when verification fails are 

no longer improved and save model_checkpoint.h5. 

 

In addition, we define the visualize_loss(history, title) function to visualize the loss of training and testing, as shown 

in Figure 9. Train loss continues to decline, and test loss continues to decline, indicating that the network is learning. Train 

loss continues to decline, test loss tends to be constant, indicating that network overfitting train loss tends to be unchanged, 

test loss tends to remain unchanged, indicating that learning encounters bottlenecks, need to reduce learning Erate or batch 

size train loss tends to be constant, test loss continues to decline, indicating that one hundred percent of data sets have 

problems train loss continues to rise, test loss continues to rise, eventually become NaN, may be due to improper network 

structure design and improper setting of training hyperparameters Caused by a problem such as a program bug. It can be 

seen from Figure 9 that the whole model is running normally. 

 

Finally, five groups of values are predicted and verified using the trained model, and the results are shown in Figure 

10. The changing characteristics, true values and predicted values of historical data can be seen in Figure 10. The real value 

and the predicted value are not exactly the same, indicating that the prediction model can not accurately predict some 

specific data values. Further tweaking and optimization are needed. 

 

Therefore, the model is further improved. let batch_size= 256, epochs = 20, optimizer = adam. We will further adjust 

these parameters, as shown in Table 3. The grid search function is used to optimize the parameters, and the best super 
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parameter is {batch_size’: 16, ‘epochs’: 8, ‘optimizer':'Adadelta’} Figure 6 is the solar power prediction result of the 

LSTM algorithm, and the model can achieve 97.37 percent prediction accuracy. The accuracy of LSTM’s model is higher 

than that of the random forest model. 

 

Fig. 8 Solar energy data heat map 

 

Fig. 9 Visualization of power function loss of solar power generation based on LSTM 
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Fig. 10 Single-step Prediction of Solar Power based on LSTM 
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4.2. Forecast of Wind Power 

4.2.1. Random Forest 

China’s wind power market is expanding after nearly a decade of development. However, the volatility and 

uncertainty of wind energy as a natural resource bring great challenges to wind power generation. In the following, we use 

the optimal model to predict the test set based on the parameter optimization of the random forest algorithm. 

 

Figure 11 draws the result diagram of parameter optimization based on the parameter combination of n_estimators 

and max_depth. The results shown in the road show that the model’s prediction accuracy is relatively high and stable at 

more than 90 percent. The optimal parameter combination is {max_depth=None, n_estimators 200cm}, and the accuracy is 

97.67 percent. The result of training the test set using the model of the optimal parameter is shown in Figure 12. It can be 

seen from Figure 12 that the real and predicted values of solar power are concentrated in the middle, indicating that this 

model achieves an excellent effect in predicting power generation. 

 

Fig. 11 Optimization of Wind Power parameters based on Random Forest 

 

Fig. 12 Comparison between real value and predicted value of wind power based on random forest 
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4.2.1. LSTM 

 

Fig. 13 Real and predicted solar power based on LSTM 

 

As the stochastic forest model has some limitations in dealing with the long-term dependence of time series data, we 

also introduce the LSTM model, and we will use LSTM to predict the power generation power of the wind data. 

 

 
Fig. 14 Visualization of wind data 
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First, we process the dataset’s data and facilitate visualization, as shown in Figure 14 below. Figure 14 shows how 

each data feature changes over time so that we can better understand the characteristics of the data. At the same time, 

according to the heat map shown in Figure 15, we further select the more important features as input. The selected features 

include ‘POWER’, ‘WS’, ‘WEATHER1_PRES’, ‘WEATHER1_RAINFALL’, ‘WEATHER1_WS’, 

‘WEATHER2_PRES’, ‘WEATHER2_RAINFALL’, ‘WEATHER2_WS’. 

 

The loss of wind power function can be visualized as shown in Figure 16, which shows that the current model is in 

the learning process and has no problems, such as fitting. Similarly, we make a single-step prediction of wind power, and 

the prediction results are shown in Figure 17 and the effect needs to be further optimized. 

 

Grid search is used to optimize the parameters, and the parameter setting is consistent with the solar power prediction. 

The best superparameter of the model is {‘batch_size’: 16,’ epochs’: 10, ‘optimizer’:’ Adadelta’}, and the prediction 

accuracy is 97.65 percent. As shown in Figure 13, the predicted value is close to the actual value. The prediction accuracy 

is close to that of the stochastic forest model. 

 

Fig. 15 Wind data heat map 

 

Fig. 16 Visualization of Wind Power function loss based on LSTM 
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Fig. 17 Single-step Forecast of Wind Power based on LSTM 
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5. Main Conclusions and Deficiencies  

5.1. Conclusion 

The purpose of this study is to predict the power of solar and wind power and to compare the prediction results of 

different machine learning models. The results show that both the random forest model and the LSTM model excel in 

predicting power generation, but the LSTM model performs better. 

 

In the process of solar power prediction, through parameter optimization, the optimal parameters of the random forest 

model are combined as ‘{max_depth=None, n_estimators=150}’, and the prediction accuracy reaches 96.72 percent. 

However, because the stochastic forest model has some limitations in dealing with the long-term dependence of time series 

data, we further introduce the LSTM model. 

 

LSTM model can capture the long-term dependence of data in time series, is suitable for various series lengths, and 

has a strong ability to express. After parameter optimization, the best parameter combination of the LSTM model is 

{‘batch_size’: 16,’ epochs’: 8, ‘optimizer’:’ Adadelta’}, and the prediction accuracy is improved to 97.37 percent, which is 

significantly better than that of random forest model. 

 

The introduction and optimization of the LSTM model significantly improve the prediction accuracy of solar power 

generation. Although the prediction on some specific data values still needs to be further optimized, it shows high 

prediction accuracy and overall stability. Using the same method to predict the power of wind power has also achieved 

good results. Considering this comprehensively, the advantage of the LSTM model in time series data prediction is fully 

reflected, which provides an effective method for predicting the power generation rate of new energy. 

 

To sum up, this study verifies the superior performance of the LSTM model in solar and wind power prediction. It 

provides a valuable reference for future applications in the field of new energy. 

 

5.2. The Deficiency of the Model 

In the process of parameter tuning, the parameter settings of random forest and LSTM, as well as their interaction and 

influence, should be considered simultaneously. This may make the parameter tuning process more difficult and require 

more time and experience. If the wind and solar environment continue to change, the tracking and prediction ability of the 

deep learning algorithm is insufficient. Future research will combine a variety of optimization algorithms to improve the 

prediction performance of deep learning and random forest algorithms. 
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