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Abstract - Semigroups are an important class of algebraic structures. One of the most important subclasses of semigroups are 

groups. There are some subclasses of semigroups that are ″close″ to groups, such as regular semigroups, orthodox semigroups 

and inverse semigroups. Finding conditions for semigroups that turn them into groups is interesting and important. In this 

paper, we give our original proofs of some propositions, which show how certain semigroups turn into groups, satisfying some 

conditions. Among other things, we give a counterexample to show that there is a cancellative and infinite semigroup, which is 

not a group. 
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1. Introduction  
Semigroup theory plays an important role in the development of abstract algebra. Semigroups have many applications in 

science and technology. There are some special semigroups, such as regular semigroups [1], orthodox semigroups [3], [4] and 

inverse semigroups [5], [6], which are not so far from groups. It is of interest to find conditions which turn certain semigroups 

into groups. In this paper, we give our original versions for some statements that show when a semigroup is a group, and one 

can find different proof ways. 

2. Materials and Methods 
Let 𝑆 be a set and “∙” a binary operation on it. The structure (𝑆,∙) is called semigroup if this operation has the associative 

property, i.e., for each of the three elements 𝑎, 𝑏, 𝑐 ∈ 𝑆,  it holds (𝑎 ∙ 𝑏) ∙ 𝑐 =  𝑎 ∙ (𝑏 ∙ 𝑐). An element 𝑎 𝑆 is called an 

idempotent element [2] if 𝑎 ∙ 𝑎 = 𝑎. If 𝑎 is an element for which at least one element exists in S, then the element is called a 

regular element. If each element of the semigroup 𝑆 is regular, then 𝑆 it is called a regular semigroup. Let 𝐸 be the set of 

idempotent elements of the semigroup 𝑆. If 𝐸 it is a subsemigroup of S, then 𝑆 it is called an orthodox semigroup. 

Furthermore, if 𝐸 is a subsemigroup of 𝑆 and each two elements of 𝐸 commute with each other, then 𝑆 is called an inverse 

semigroup. From the above definitions, it is evident that the class of the inverse semigroups is a subclass of the class of the 

orthodox semigroups, and the last one is a subclass of the class of the regular semigroups. If a semigroup 𝑆 has an element 𝑒 

such that for each element 𝑎 of 𝑆, we have 𝑎 ∙ 𝑒 =  𝑒 ∙ 𝑎 =  𝑎, then the element e of S is called identity element of the 

semigroup 𝑆. If there is an element 𝑏 of 𝑆 such that 𝑎 ∙ 𝑏 =  𝑏 ∙ 𝑎 =  𝑒 where 𝑒 the identity element of the semigroup is, then it 

is called the inverse element 𝑎. A semigroup 𝐺 is called a group if it has the identity element and each element has a unique 

inverse element. This unique inverse of the element is usually denoted by 𝑎−1. The elements 𝑎 𝑎−1 are inverses of each other. If 

a semigroup 𝑆 has the property that for each of three elements 𝑎, 𝑏, 𝑐 ∈ 𝑆, it holds the implication 𝑐𝑎 = 𝑐𝑏 ⇒ 𝑎 = 𝑏, it is called 

left cancellative [2], while if 𝑎𝑐 = 𝑏𝑐 ⇒ 𝑎 = 𝑏, it is called right cancellative [2]. 

Furthermore, if it is both left and right cancellative [2], it is called cancellative semigroup. If ℒ and ℛ are the known 

Green’s relations [1], the semigroup 𝑆 is called left simple [1],[2] if it has the property ℒ = 𝑆 × 𝑆, right simple if ℛ = 𝑆 × 𝑆 

and simple if it is both left and right simple, i.e. ℒ = ℛ = 𝑆 × 𝑆, where 𝑆 × 𝑆 is the cartesian product of the set 𝑆. All 

unexplained concepts and statements were taken from [2] and [4]. 

 

3. Results and Discussion 
In this section, we present our approach to the proof of some propositions, which show when a certain semigroup turns 

into a group that satisfies some conditions. 
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Proposition 3.1. If a semigroup S is left and right simple, then it is a group. 

Proof. Let S be a left and right simple semigroup. Hence, we get ℒ = 𝑆 × 𝑆 and ℛ = 𝑆 × 𝑆, i.e. 𝑎ℒ𝑏 and 𝑎ℛ𝑏, for each of two 

elements 𝑎, 𝑏 of S. Hence, it follows that: 

ℋ = ℒ ∩ ℛ = (𝑆 × 𝑆) ∩ (𝑆 × 𝑆) = 𝑆 × 𝑆. 

From Green’s Theorem [4] (Theorem 2.2.5), we deduce that for each ℋ-class H on S, we have either 𝐻2 ∩ 𝐻 = ∅ or 𝐻2 = 𝐻, 
and if the last equality holds, then H is a subsemigroup of S. But, in our situation, where ℋ = ℒ ∩ ℛ = 𝑆 × 𝑆, we have only 

one H-class of equivalence that is 𝐻 = 𝑆, furthermore 𝐻2 ⊂ 𝑆 and obviously 𝐻2 ∩ 𝐻 = ∅. So, H is a group, and consequently, 

S is also a group. ■ 

Theorem 3.2 Let S be as finite semigroup. The following propositions are equivalent: 

a. S is a group 

b. S is left and right cancellative semigroup. 

Proof. Clearly, if S is a finite semigroup that is a group, then it is a left and right cancellative semigroup. 

Conversely, suppose that S is a finite, left and right cancellative semigroup. Let n be the number of elements of S. In these 

conditions, we must prove that S is a group. Let a be any element of S and consider the powers of this element: 
𝑎, 𝑎2, 𝑎3, … , 𝑎𝑟 , …. Since S is a finite semigroup, there exists a number 𝑘 ∈ 𝑁, such that the elements 𝑎, 𝑎2, 𝑎3, . . . . . , 𝑎𝑘 are all 

different from each other and 𝑎𝑘+1 will be one of these elements, i.e. 𝑎𝑘+1 = 𝑎𝑝 for some 𝑝 ∈ 𝑁 and 1 ≤ 𝑝 ≤ 𝑘. It is evident 

that 1 ≤ 𝑘 ≤ 𝑛. Let now see that 𝐺 = {𝑎, 𝑎2, 𝑎3, . . . . . , 𝑎𝑘} is a subgroup of S. Indeed, by the property of the number k, we have 

𝑎𝑘+1 = 𝑎𝑝 Where 1 ≤ 𝑝 ≤ 𝑘, and we can obtain: 

𝑎𝑘+1 = 𝑎𝑝 ⇒ 𝑎𝑝−1𝑎𝑘−𝑝+2 = 𝑎𝑝−1𝑎 

And from the last equality, since S is a left cancellative semigroup, we get 𝑎𝑘−𝑝+2 = 𝑎. Again, from the property of k, we have 

𝑘 − 𝑝 + 2 = 𝑘 + 1 or 𝑝 = 1 and hence. 𝑎𝑘+1 = 𝑎. Now, assume that. 𝑎𝑟 ∈ 𝐺 where 1 ≤ 𝑟 ≤ 𝑘. We have: 

arak=ar-1ak+1=ar-1a=ar  and  akar=ak+1ar-1=aar-1=ar. 

From the above equalities, we deduce that. 𝑎𝑘 = 𝑒 is the identity element of G. Furthermore, for each 𝑎𝑟 ∈ 𝐺 where 1 ≤ 𝑟 ≤
𝑘 − 1, we see that 𝑎𝑟𝑎𝑘−𝑟 = 𝑎𝑘 = 𝑒 and also 𝑎𝑘−𝑟𝑎𝑟 = 𝑎𝑘 = 𝑒. So, G is a subgroup of the semigroup S with respect to the 

operation of this semigroup. Now, if 𝐺 = 𝑆, we have proved that S is a group. If 𝐺 ≠ 𝑆, then there exists an element 𝑏 ∈ 𝑆 such 

that 𝑏 ∉ 𝐺. Similarly to the element a, we can prove that G'={b,b2,b3,.....,bq} is also a subgroup of the semigroup S, where 𝑏𝑞 =
𝑒′ will be the identity element of G’, and for each element 𝑏𝑟 ∈ 𝐺′, 𝑏𝑞−𝑟  For 1 ≤ 𝑟 ≤ 𝑞 will be its inverse element. Now, we 

prove that the groups G and G’ have the same identity element, i.e. 𝑒 = 𝑒′. Indeed: 

𝑎𝑘+1b =𝑎𝑘(𝑎b) = e (𝑎b) = 𝑎b ⇒b (𝑎𝑘+1b) = b (𝑎b)⇒(b𝑎𝑘)(𝑎b)= b (𝑎b) ⇒ b𝑎𝑘 = b                     (1) 

since S is a right cancellative semigroup. But, on the other hand, we have 

𝑏𝑞+1 = 𝑏                    (2) 

Hence, from (1) and (2) we obtain that 𝑏𝑞+1 = 𝑏𝑎𝑘 And since S is a left cancellative semigroup, it follows that. 𝑏𝑞 = 𝑎𝑘 or 

𝑒′ = 𝑒, which means the groups G  and 'G  have the same identity element e . So, we deduce that all the subgroups of type G 

have the same identity element; e is the identity element of S. On the other hand, each element 𝑠 ∈ 𝑆 will belong to one of the 

subgroups of the type G of S, therefore s has a unique inverse element as we showed above. Finally, we conclude that S is a 

group. ∎ 

Corollary 3.3 The property “finite” of the semigroup S in proposition 2 is necessary and might not be removed from this 

proposition. ∎ 

We can show this with a counterexample as follows: 

Counter example Let ℤ∗ Be the set of nonzero integers and “  ” the usual multiplication on it. Take into consideration the 

semigroup. (ℤ∗,⋅). This semigroup is both left and right-cancellative but not finite. Obviously, ℤ∗ is infinite. Let 𝑎, 𝑏, 𝑐 ∈ ℤ∗. 

We have to show that 𝑎𝑐 = 𝑏𝑐 ⇒ 𝑎 = 𝑏. We use contrapositive proof to prove the implication. There are four cases, as 

follows: 
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𝑎 > 𝑏 ∧ 𝑐 > 0 ⇒ 𝑎𝑐 > 𝑏𝑐
𝑎 > 𝑏 ∧ 𝑐 < 0 ⇒ 𝑎𝑐 < 𝑏𝑐
𝑎 < 𝑏 ∧ 𝑐 > 0 ⇒ 𝑎𝑐 < 𝑏𝑐
𝑎 < 𝑏 ∧ 𝑐 < 0 ⇒ 𝑎𝑐 > 𝑏𝑐.

 

In all cases, we have a contradiction with the fact that ac bc= . Hence, it remains that 𝑎 = 𝑏 and the semigroup (ℤ∗,⋅) is right 

cancellative. One can analogously show that 𝑐𝑎 = 𝑐𝑏 ⇒ 𝑎 = 𝑏, so ℤ∗ is also left cancellative. On the other hand, this 

semigroup has the identity element, which is number 1, but is not a group because not every element of ℤ∗ has the inverse 

element on it.  

Indeed, if 𝑎, 𝑏 ∈ ℤ∗ and different from 1, such that 𝑎 ⋅ 𝑏 = 1, we will have that 𝑎 = 𝑏 = 1 ∨ 𝑎 = 𝑏 = −1. Hence, we can 

deduce that every 𝑎 ∈ ℤ∗\{1, −1} has not inverse element in ℤ∗ and consequently (ℤ∗,⋅) is a left and right cancellative 

semigroup but not a group. 

Proposition 3.4 Let S be a semigroup satisfying the property that for every element a of S, there exists only one element b of S, 

for which it holds that  𝑎𝑏𝑎 = 𝑎, then S is a group. 

Proof: Let a be an element of the semigroup S, for which there exists only one element b of S such that 𝑎𝑏𝑎 = 𝑎. Then, we 

have: 

𝑎(𝑏𝑎𝑏)𝑎 = (𝑎𝑏𝑎)(𝑏𝑎) = 𝑎𝑏𝑎 = 𝑎 

Now, since b is the only element of S such that 𝑎𝑏𝑎 = 𝑎, it follows that 𝑏𝑎𝑏 = 𝑏; furthermore, a is also the only element 

of S such that 𝑏𝑎𝑏 = 𝑏, so S is an inverse semigroup. Denote by E be the semilattice of idempotents of S and let u, v be two 

elements of E. Then, since E is a commutative subsemigroup of S, we have: 

(𝑢𝑣)𝑢(𝑢𝑣) = (𝑢𝑣)(𝑢𝑢𝑣) = (𝑢𝑣)(𝑢𝑣) = (𝑢𝑣)2 = 𝑢𝑣          (7) 

(𝑢𝑣)𝑣(𝑢𝑣) = (𝑢𝑣𝑣)(𝑢𝑣) = (𝑢𝑣)(𝑢𝑣) = (𝑢𝑣)2 = 𝑢𝑣          (8) 

Now, from (7) and (8) and from the property of the semigroup S, we obtain 𝑢 = 𝑣. Hence, we deduce that 𝐸 = {𝑢}, i.e. S 

has a unique idempotent. On the other hand, since S is an inverse semigroup, for each element 𝑎 ∈ 𝑆, there exists a unique 

element 𝑏 ∈ 𝑆 such that 𝑎𝑏𝑎 = 𝑎 and 𝑏𝑎𝑏 = 𝑏; furthermore 𝑎𝑏 and 𝑏𝑎 are idempotents. Hence, ∀𝑎 ∈ 𝑆 we have 𝑎𝑏 = 𝑏𝑎 = 𝑒 

where 𝑏 is unique. Now, putting b=a-1 we have that S is a group. ∎ 

This paper aims to give some original proofs of propositions that help us show that, in certain circumstances, a semigroup 

turns into a group. In the future, examining the same issue for groupoids is interesting.   
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