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Abstract - Congruence is a very powerful concept in the study of Number Theory, Cryptography and Modular Arithmetic. For 

a given positive integer n, any two integers u1 and u2 are said to be congruent modulo n if they have the same remainder upon 

division by n. In this paper we discuss properties of congruence, Fermat’s theorem and Wilson's theorem. We also discuss 

various examples of real life applications of these concepts, especially the various divisibility tests and computations related 

to calendar. 
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1. Introduction 
The theory of congruence was introduced by the great mathematician Carl Friedrich Gauss(1777-1855) in his book 

“Disquisitiones Arithmeticae”. In  “Disquisitiones Arithmeticae”,  he put forth the concept and notation of congruence. The 

book also highlights the fact that congruence is  a powerful technique in mathematics. Gauss was induced to adopt the 

symbol(≡) because of the close analogy of congruence  with  the algebraic equality. The development of primality testing and 

factoring methods have been crucial for advancements in number theory and cryptography, particularly with the advent of 

algorithms like Miller-Rabin and the AKS primality test as discussed by M. Richard [3] in his work. F. Umar  and S. Muhammad 

[1] utilize mathematical principles to determine Julian dates and calendar-related computations. The paper also focuses on a 

systematic approach to calculating Julian dates, which is a key element in understanding the Julian calendar and its relationship 

to the Gregorian calendar. The properties of congruence and their  applications to the divisibility theory are investigated in the 

research work by M. Lemma and D. Allard[2]. Some interesting developments in primality testing that have extensive 

applications in cryptography have been explored by C. Pomerance[6]. 

 

In this article we study the role of Fermat’s theorem and the Wilson’s theorem in various applications in Number theory. 

 

Definition 1.1.[5]  Two integers u1  and u2  are said to be congruent modulo n , where  n >1 is an integer if 𝑛 divides the 

difference u1 - u2. This is symbolized by u1 ≡ u2(mod n) .  For example – 37 ≡ 2(mod 13) as – 37 − 2 = −39 which is divisible 

by 13. If u1 - u2 is not divisible by 𝑛, then we say that u1 is incongruent  to u2  modulo 𝑛 and in this case we write u1 ≢ u2(mod 

n) .  For example 37 ≢  5(𝑚𝑜𝑑 15) as 37 − 5 is not divisible by 15. 

 

1.2. Properties of Congruence.[5] 

Let n > 1 be fixed and u1, u2, u3 and u4  be  arbitrary  integers, then the following properties hold. 

(i) u1 ≡ u1(mod n) 

(ii) If u1 ≡ u2(mod n) , then u2 ≡ u1(mod n) 

(iii) If u1 ≡ u2(mod n) and u3 ≡ u4(mod n), then u1±u3 ≡ u2 ± u4(mod n)  and u1u3 ≡ u2 u4(mod n)  

It is important to note that the cancellation law does not hold in congruence. This means that  if  u1u3 ≡ u2 u3(mod n) where 

𝑛 > 1 and u1, u2 and  u3   ∈ ℤ, then  u1 ≡ u2(mod n)  may not hold. For example 

 3 × 4 ≡ 3 × 6(mod 6).  But 4 ≢ 6(mod 6) 

 

In fact, we have the following theorem. 

Theorem 1.3.  Let 𝑛 > 1 be a fixed integer and u1, u2 and  u3   ∈ ℤ. If u1u3 ≡ u2 u3(mod n), then u1 ≡ u2(𝑚𝑜𝑑
𝑛

𝑑
) where d= 

gcd(u3, n). 

http://www.internationaljournalssrg.org/
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We now state some important theorems related to congruence.  

 

Theorem 1.4. Let u ∈ ℤ and u ≡ r(mod n) where 0 ≤ r <  n, then 𝑟 is the remainder when u is  divided by 𝑛. 

For example −11 ≡ 6(mod 17), 6 is the remainder when we divide – 11 by 17. 

 

Theorem 1.5.  u1 ≡ u2(mod n) if and only if  each of u1  and u2 leave the same remainder when divided by n. 

 

It may be further noted that upon using division algorithm for n > 1 , for any integer u we have u =nq + r where  r 

and q   are integers such that 0 ≤ r < n.  
⇒   u ≡ r(mod n). 

This means that any integer 𝑢 is congruent to r mod n where 0 ≤ r < n. Hence every integer is congruent mod n to exactly 

one of the values from  0, 1, 2, … , n − 1.This leads to the following definitions:  

 

Definition 1.6.  Any collection of n integers 𝑢1,𝑢2,…,𝑢𝑛 is said to form a complete set of residues modulo n if every integer 

is congruent modulo n to one and only one of the 𝑢𝐾. 

Further, the set of integers 0, 1, 2, … , 𝑛 − 1 is called the set of least non negative residue 𝑚𝑜𝑑 𝑛. 

  

2. Fermat’s Theorem and its applications 
Theorem 2.1.(Fermat’s Theorem): Let q be a prime and  𝑞 does not divide u , then  𝑢𝑞−1 ≡ 1(mod q). 

 

This directly leads to the important result that for a   prime number  q, 𝑢q ≡ u(mod q). Fermat’s theorem has many 

applications and is central to most of the work  done in number theory. In the least, it can be a labor saving device in certain 

calculations. We illustrate this using the following example.  

 

Example 2.2. Find the remainder when 538 is divisible by 17. 

 

Solution.Using Fermat’s theorem 

⇒ 516 ≡ 1(mod 17) 

⇒ (516)2 ≡ 1(mod 17) 

⇒ 532 ≡ 1(mod 17) 

Now    52 ≡ 8(mod 17) 

⇒ (52)2  ≡ (8)2 ≡ −4(mod 17) 

⇒ 54 × 52   ≡ −4 × 8 ≡ 2(mod 17) 

⇒ 56 ≡ −4 × 8 ≡ 2(mod 17) 

⇒ 532  × 56  ≡  2 × 1(mod 17) 

Hence remainder is 2. 

 

Another use of Fermat’s theorem is as a tool in testing the non- primality of a given integer n. If it could be shown that the 

congruence 𝑢𝑛 ≡ 𝑢(mod n) fails to hold for some choice of  𝑢, then n, is necessarily composite. We illustrate this application 

using the following example. 

 

Example 2.3. Show that 1763 is composite. 

 

Solution. Fermat’s theorem tells us that if 𝑞 is prime and 𝑞 does not divide 𝑢, then 𝑢𝑞−1 ≡ 1(𝑚𝑜𝑑 𝑞). Hence for proving that 

1763 is composite it is sufficient to show that 21762 ≢ 1(mod 1763). 

Now  

211 ≡ 285(mod 1763) 

⇒ (211)2 ≡ 285 × 285 ≡ 127(mod 1763) 

⇒ (222)2 ≡ 127 × 127 ≡ 262(mod 1763) 

⇒ 244 × 244 ≡ 262 × 262 ≡ 1650(mod 1763) 

⇒ 288 × 244 ≡ 1650 × 262 ≡ 365(mod 1763) 

⇒ (2132)2 ≡ 365 × 365 ≡ 1000(mod 1763) 

⇒ (2264)2 ≡ 1000 × 1000 ≡ 379(mod 1763) 

⇒ (2528)3 ≡ 379 × 379 × 379 ≡ 262(mod 1763) 
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⇒ 21584 × 2132 × 244 ≡ 262 × 365 × 262 ≡ 1067(mod 1763) 

⇒ 21760 × 22 ≡  1067 × 4 ≡ 792(mod 1763) 

Hence 21762 ≢ 1(mod 1763) . This gives that 1763 is a composite number. 

 

 

3. Wilson’s Theorem and its applications 
Theorem 3.1.(Wilson’s Theorem): If 𝑞 is  a prime number then 

(𝑞 − 1)! ≡ −1(mod q). 

 

The converse of Wilson Theorem is also true i.e.,If (𝑛 − 1)! ≡ −1(mod n), then n is prime. 

Taken together, Wilson’s theorem and its converse provide a necessary and sufficient condition for determining primality. 

Further we also give here an important result which is a consequence of the Wilson’s theorem. 

 

Corollary 3. 2. The quadratic congruence 𝑦2 + 1 ≡ 0(𝑚𝑜𝑑 𝑞), where 𝑞 is an odd prime has a solution iff 𝑞 ≡ 1(𝑚𝑜𝑑 4). 

 

Proof.     Let k be any solution of 𝑦2 + 1 ≡ 0(mod q),this gives that  𝑘2 ≡ −1(mod q). Also as q does not divide k, from 

Fermat’s theorem, we have 

 

1  ≡  𝑘𝑞−1 ≡ (𝑘2)
𝑞−1

2 ≡ (−1)
𝑞−1

2 (𝑚𝑜𝑑𝑞) 

⇒            1 ≡ (−1)
𝑞−1

2 (𝑚𝑜𝑑𝑞). This means that  
 𝑞−1

2
 must be even. Hence 

𝑞−1

2
= 2𝑚. 

⇒ 𝑞 − 1 = 4𝑚 

⇒ 𝑞 ≡ 1(mod 4). 

Now for the converse part, consider  

(𝑞 − 1)! = 1 × 2 × 3 × … ×
𝑞−1

2
×

𝑞+1

2
× … × (𝑞 − 2)(𝑞 − 1)     (1) 

We know that 

𝑞 − 1 ≡ −1(mod q) 

𝑞 − 2 ≡ −2(mod q) 

. 

. 

. 
𝑞 + 1

2
≡ − (

𝑞 − 1

2
) (mod q) 

Using above congruence in (1), we have 

(𝑞 − 1)! ≡ 1 × (−1) × 2 × (−2) × … × (
𝑞 − 1

2
) × − (

𝑞 − 1

2
) (mod q)

≡ (−1)
𝑞−1

2 [1 × 2 × 3 × … (
𝑞 − 1

2
)]

2

(𝑚𝑜𝑑 𝑞) 

≡ (−1)
𝑞−1

2  (
𝑞 − 1

2
) !   

2 (𝑚𝑜𝑑 𝑞) 

Since  𝑞 ≡ 1(𝑚𝑜𝑑 4), 

⇒ 𝑞 − 1 = 4𝑚for some m 

⇒ 
   𝑞−1 

2
 is even 

Hence      (𝑞 − 1)! ≡  (
𝑞−1

2
) !   

2 (𝑚𝑜𝑑 𝑞)       (2) 

Using Wilson theorem, we have 
(𝑞 − 1)! ≡ −1(𝑚𝑜𝑑 𝑞)                   (3) 

Using (2) and (3) we have 

  (
𝑞−1

2
) !   

2
≡ −1(𝑚𝑜𝑑 𝑞). 

Hence the given quadratic congruence has a solution 𝑦 = (
𝑞−1

2
) ! . 

We illustrate the applications of the above theorems using the following example. 

 

Example 3.3. Find the solution of   𝑦2 + 1  ≡  0(𝑚𝑜𝑑 29). 
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Solution . Since 29 ≡ 1(𝑚𝑜𝑑4), therefore the given quadratic congruence has a solution say 

 

(
29  − 1 

2
) ! = 14! 

 

 

Now 

14! = 14 × 13 × 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 

≡ (14 × 2) × (13 × 3) × (12 × 4) × (11 × 5) × (10 × 6) × (9 × 8) × 7(𝑚𝑜𝑑 29) 

≡ −1  × 10 × (−10) × (−3) × (2) × (−15) × 7(𝑚𝑜𝑑 29) 

≡ −1 × 20 × 18(𝑚𝑜𝑑 29) 

≡ 12(𝑚𝑜𝑑 29) 

and 

 122 + 1 ≡ 0(𝑚𝑜𝑑 29) 

Hence 𝑦 = 12 is a solution of the given quadratic congruence. 

 

The following theorem  is the another consequence  of Wilson’s theorem. 

 

Theorem 3.4.[4] Every prime number 𝑞 such that  𝑞 ≡ 1(𝑚𝑜𝑑 4) , can be written as the sum of the square of two integers. 

That is we can write 𝑞 = 𝑢2 + 𝑣2 where u and v are positive integers. 

 

Proof. Let 𝑞 be a prime number such that 𝑞 ≡ 1(𝑚𝑜𝑑 4) . Then from  Corollary (3.2)  there exists integer k such that 

𝑘2 + 1 ≡ 0(𝑚𝑜𝑑 𝑞)          (4) 

Let us define  𝑓(𝑥, 𝑦) = 𝑥 + 𝑘𝑦 where 0 ≤ 𝑥, 𝑦 ≤ 𝐿 and 𝐿 = [√𝑞]  ([ ] stands for the greatest integer function.) 

Since √𝑞   is not an integer it gives  𝐿 < √𝑞 < 𝐿 + 1. 

Now 𝑥 and 𝑦 each take any of  the  𝐿 + 1 values (0,1,2,…L), the pair(𝑥, 𝑦) has (𝐿 + 1)2 possible  values . Further as 

(𝐿 + 1)2 > 𝑞 we get thats 𝑓(𝑥, 𝑦) has more than 𝑝 possible values. 

Using the definition of complete residue modulo 𝑝, there are two different pairs (𝑥1, 𝑦1) and (𝑥2, 𝑦2) such that 

𝑓(𝑥1, 𝑦1) ≡ 𝑓(𝑥2, 𝑦2)(𝑚𝑜𝑑 𝑝) 

⇒ 𝑥1 + 𝑘𝑦1 ≡ 𝑥2 + 𝑘𝑦2(𝑚𝑜𝑑 𝑞) 

⇒ (𝑥1 − 𝑥2) ≡ 𝑘(𝑦2 − 𝑦1)(𝑚𝑜𝑑 𝑞) 

⇒ (𝑥1 − 𝑥2)2 ≡ 𝑘2(𝑦2 − 𝑦1)2(𝑚𝑜𝑑 𝑞) 

⇒ (𝑥1 − 𝑥2)2 ≡ −1(𝑦2 − 𝑦1)2(𝑚𝑜𝑑 𝑞) (Using(4)) 

⇒ 𝑞|(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2|         (5) 

Since the pair(𝑥1, 𝑦1) and (𝑥2, 𝑦2)are distinct this gives 

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2  > 0    
and 0 ≤  𝑥1, 𝑥2 < 𝐿   which gives 

−𝐿 <  𝑥1 − 𝑥2 < 𝐿    
⇒            0 ≤ (𝑥1 − 𝑥2)2 < 𝐿2 < 𝑞 

Similarly, 

0 ≤ (𝑦1 − 𝑦2)2 < 𝑞 

Using the above discussion we have 

0 < (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 < 2𝑞                                                                                                              (6) 

Using (5) and (6) we have 

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 = 𝑞 

 

Remark  3.5 . As an illustration of the above result we may note that as 13, 17,29,37,41 are prime integers which are congruent 

to 1 𝑚𝑜𝑑 4 we can express them as  

13   = 22 + 32  37  = 12 + 62 

17   = 12 + 42  41  = 52 + 42 

29   = 22 + 52 

On the other hand  the numbers 3, 31, 43 are congruent to 3 modulo 4. We can easily check there do not exist any integers 𝑎 

and 𝑏 such 𝑞 = 𝑎2 + 𝑏2. 
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The Wilson’s theorem is very helpful in checking the primality of a number. This application is called the Primality Test. 

 

Example 3.6. (Primality Test).  With the help of Wilson theorem show that 19 is a prime number. 

 

Solution. Consider  (19 − 1)! = 18! (𝑚𝑜𝑑 19) 

18! =  18 × 17 × 16 × 15 × 14 × 13 × 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 

= (18 × 1) × (17 × 2) × (16 × 3) × (15 × 4) × (14 × 5) × (13 × 6) 

× (12 × 7) × (11 × 8) × (10 × 9) 

≡ (−1)(−4)(10)(3)(−6)(2)(8)(−7)(−5)(𝑚𝑜𝑑19) 

≡ (−1)(120)(96)(35)(𝑚𝑜𝑑19) 

≡ (−1)(6)(1)(−3) 

≡ 18 ≡ −1(𝑚𝑜𝑑19) 

Hence using Wilson’s theorem 19 is a prime number. 

 

Now below is another use of congruence. Here with the help of congruence we can check if a number is not a perfect square. 

Theorem 3.7. [4]Show that  𝑢2 ≡ 1  or  0(𝑚𝑜𝑑 4) where 𝑢 ∈ 𝑍. 

 

Proof. Since {−1,0,1,2} is a complete residue system  of 𝑚𝑜𝑑 4,  for any integer a exactly one of the following is true. 

 𝑢 ≡ −1 (𝑚𝑜𝑑 4),  𝑢 ≡ 0 (𝑚𝑜𝑑 4),  𝑢 ≡ 1(𝑚𝑜𝑑 4),  𝑢 ≡ 2 (𝑚𝑜𝑑 4) 

⇒ 𝑢2 ≡ 1 (𝑚𝑜𝑑 4),  𝑢2 ≡ 0 (𝑚𝑜𝑑 4),  𝑢2 ≡ 1(𝑚𝑜𝑑 4),  𝑢2 ≡ 4 ≡ 0 (𝑚𝑜𝑑 4)  
Hence any perfect square gives the remainder 0 and 1 when divided by 4. But the converse is not true as we can see that  13 ≡
1(𝑚𝑜𝑑4), but 13 is not a perfect square. 

 

Example 3.8. Is 22051946 a perfect square? 

Solution. 22051946 = 220519 × 100 + 46 ≡ 46(𝑚𝑜𝑑4) ≡ 2(𝑚𝑜𝑑4) 

Hence 22051946 is not a perfect square. 

 

Example 3.9 .Is 3190491 a perfect square? 

 

Solution.   3190491 = 31904 × 100 + 91  ≡ 91(𝑚𝑜𝑑4) ≡ 13 × 7(𝑚𝑜𝑑4) 

≡ 1 × 3(𝑚𝑜𝑑4) 

≡ 3(𝑚𝑜𝑑4) 

Hence 3190491 is not a perfect square. 

 

One of the another application of congruence, is the non existence of Integral roots of a polynomial 𝑓(𝑥). This can be seen in 

the following result. 

Remark 3.10[4]: Non Existence of Integral Roots of a  polynomial with integral coefficients. 

Let a polynomial 𝑓(𝑥) with integral coefficients has an integer root say 𝛼. It follows that 𝑓(𝛼) = 0 which gives 𝑓(𝛼) ≡  0 

(modn) for all integer (𝑛 > 1). If it could be shown that for all integer 𝛼 ∈ 𝑍,  𝑓(𝛼) ≢ 0(𝑚𝑜𝑑 𝑛) for some 𝑛. It gives 𝑓(𝑥) has 

no integral  root. 

 

Example 3.11.Prove that the polynomial 𝑓(𝑥) = 𝑥5 − 𝑥2 + 𝑥 − 3 has not integer roots. 

 

Solution.    Consider𝑓(𝑥)(𝑚𝑜𝑑4). Now {−1,0,1,2} is complete set of residue modulo 4 and 

          𝑓(0) = −3 ≢ 0(𝑚𝑜𝑑4),                   𝑓(1) = −2 ≢ 0(𝑚𝑜𝑑4) 

          𝑓(−1) = −4  ≢ 0(𝑚𝑜𝑑4),               𝑓(2) = 27 ≢ 0(𝑚𝑜𝑑4) 

Hence there does not exist any integer α such that 

𝑓(𝛼) ≡ 0(𝑚𝑜𝑑4) 

This gives that the polynomial 𝑓(𝑥) has no integral root. 

 

Example.3.12  Prove that the polynomial 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 + 3 has no  integral root. 

 

Solution.   𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 + 3 . We can easily check that 

𝑓(1) ≡ 0(𝑚𝑜𝑑2),    𝑓(0) ≡ 0(𝑚𝑜𝑑3),       𝑓(1) ≡ 0(𝑚𝑜𝑑4),     
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therefore, we take 𝑛 = 5 and {−2, −1,0,1,2} is a complete set of residue modulo 5  and 

𝑓(0) = 3 ≢ 0(𝑚𝑜𝑑5),    𝑓(1) = 4 ≢ 0(𝑚𝑜𝑑5),  𝑓(−1) = 4 ≢ 0(𝑚𝑜𝑑5),   

 𝑓(2) = 13 ≢ 0(𝑚𝑜𝑑5)  𝑓(−2) = 1 ≢  0(𝑚𝑜𝑑 5) 

               Hence 𝑓(𝛼) ≢ 0(𝑚𝑜𝑑 5) for all 𝛼 ∈ 𝑍 

                ⇒        𝑓(𝑥) has no integral root. 

 

4. Divisibility Test 
One of the most interesting applications of congruence theory involves finding special criterion under which a given integer 

is divisible by another integer. Let us observe this in the following theorem. 

 

Theorem 4.1. Let 𝑄(𝑥) = ∑ 𝐶𝑘
 
  𝑥𝑘 be a polynomial function of x with integral coefficients 𝐶𝑘. If 𝑢 ≡ 𝑣(𝑚𝑜𝑑𝑛), then 

𝑄(𝑢) ≡ 𝑄(𝑣)(𝑚𝑜𝑑𝑛). 

 

Solution. Since 𝑢 ≡ 𝑣(𝑚𝑜𝑑 𝑛) 

⇒ 𝑢𝑘  ≡ 𝑣𝑘(𝑚𝑜𝑑 𝑛) 

⇒ 𝐶𝑘𝑢𝑘  ≡ 𝐶𝑘𝑣𝑘(𝑚𝑜𝑑 𝑛) 

⇒ ∑ 𝐶𝑘
 
  𝑢𝑘 ≡ ∑ 𝐶𝑘

 
  𝑣𝑘(𝑚𝑜𝑑𝑛) 

⇒  𝑄(𝑢) ≡ 𝑄(𝑣)(𝑚𝑜𝑑𝑛) 

 

Theorem 4.2. (Divisibility by 𝟐𝒌). Let 𝐼  =  𝛼𝑘10𝑘 + 𝛼𝑘−110𝑘−1 + ⋯ + 𝛼110 + 𝛼0   . Then 2𝑘 divides 𝐼 iff the number 

represented by the last k digits is divisible by 2𝑘. 

 

Solution. Let𝑓(𝑥)  =  𝛼𝑘𝑥𝑘 + 𝛼𝑘−110𝑘−1 + ⋯ + 𝛼110 + 𝛼0, then 

𝑓(10) = 𝐼 and   𝑓(0) = 𝛼0.  

Since 10 ≡ 0(𝑚𝑜𝑑 2).Hence by Theorem 4.1,𝑓(10) ≡ 𝑓(0)(𝑚𝑜𝑑 2)  which gives  

I ≡ 𝛼0(𝑚𝑜𝑑 2). 

I ≡ 0(𝑚𝑜𝑑 2) if and only if 𝛼0 ≡ 0(𝑚𝑜𝑑 2) 

Now we observe that 

10𝑖  ≡ 0(𝑚𝑜𝑑4) for all 𝑖 ≥ 2 

⇒ 10𝑖𝛼𝑖  ≡ 0(𝑚𝑜𝑑4) for all 𝑖  ≥ 2 

this gives   that   𝐼 = ∑ 10𝑖𝛼𝑖  +  10𝛼1 + 𝛼0 
𝑘
𝑖=2 ≡  0 + 10𝛼1 + 𝛼0(𝑚𝑜𝑑4) 

⇒           𝐼  ≡  0(𝑚𝑜𝑑22)  if and only if 10𝛼1 + 𝛼0 ≡ 0(𝑚𝑜𝑑22). 

Likewise we can prove that I is divisible by 23, iff the number 𝛼2102 + 𝛼110 + 𝛼0 is divisible by 23 or the number formed by 

the last three digits is divisible by 23. In general, we can prove that the integer I is divisible by 2𝑘 iff the number formed by the 

last k digits is divisible by 2𝑘. 

 

Divisibility Tests for 3, 9 and 11 

 

Theorem 4.3. Divisibility Tests for  3, 9 and 11 

Let 𝐼 = 𝛼𝑘10𝑘 + 𝛼𝑘−110𝑘−1 + ⋯ . +𝛼2102 + 𝛼110 + 𝛼0where 𝛼𝑘  ≠ 0 and 0 ≤ 𝛼𝑖 < 10 for  𝑖 = 0,1,2, … , 𝑘. 
Let  𝑆 = 𝛼0 + 𝛼1 + ⋯ + 𝛼𝑘 and 𝑇 = 𝛼0 − 𝛼1 + 𝛼2 + ⋯ + (−1)𝑘𝛼𝑘, then 

(i) 𝐼 is divisible by 3 and 9 iff 𝑆 is divisible by 3 and 9, respectively. 

(ii) 𝐼 is divisible by 11 iff 𝑇 is divisible by 11. 

 

Proof . (i)  Define 𝑓(𝑥)  =  𝛼𝑘𝑥𝑘 + 𝛼𝑘−110𝑘−1 + ⋯ + 𝛼110 + 𝛼0,   then 𝑓(10) = 𝐼 and 𝑓(1) = 𝑆. 

Since  

10 ≡ 1(𝑚𝑜𝑑 3) 

⇒  𝑓(10) ≡ 𝑓(1)(𝑚𝑜𝑑 3) 

⇒ 𝐼 ≡ 𝑆(𝑚𝑜𝑑 3) 

⇒  𝐼 ≡ 0(𝑚𝑜𝑑 3) iff  𝑆 ≡ 0(𝑚𝑜𝑑 3). 

Hence 𝐼 is divisible by 3 iff S is divisible by 3 

In the same manner we can prove that 𝐼 is divisible by 9 iff 𝑆 is divisible by 9. 

 

(ii) Since   10 ≡ −1(𝑚𝑜𝑑11) 
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⇒ 𝑓(10) ≡ 𝑓(−1)(𝑚𝑜𝑑11)and 𝑓(−1) = 𝑇 

⇒ 𝐼 ≡ 𝑇(𝑚𝑜𝑑11) 

which gives 𝐼 is divisible by 11 iff 𝑇 is divisible by 11. 

 

5. Application to the Calendar 
In this section, our goal is to determine the day of the week for a given date after the year 1582, following the adaption of 

the Gregorian calendar at that time. Define four integers 𝑁, 𝑀, 𝐶 and 𝑌 as follows: 

𝑁 be the number of the day in the month, 𝑀 be the number of month, 𝐶 denotes the number of the centuries and 𝑌 the year 

within the century. 

 

Let 𝑑 denotes the day of the week, then 

 𝑑 ≡ 𝑁 + [2.6𝑀 − 0.2] + 𝑌 + [
Y

4
] + [

𝐶

4
] − 2𝐶 − (1 + 𝐿) [

𝑀

11
] (𝑚𝑜𝑑7) 

where [ ] is greatest integer function 

 

day Sun Mon Tue Wed Thur Fri Sat 

d 0 1 2 3 4 5 6 

 

𝐿 = 1 for the leap year and 𝐿 = 0 for a non leap year. 

 

The leap year are those divisible by 4, except the year divisible by 100, which are leap years only if divisible by 400. For 

example, 1984, 2000, 2004 and  2400 each are leap years, but 1900, 2100, 1995 and  2401 are not. In Gregorian calendar the 

leap year day is added at the end of February,therefore we start counting of months from March.  

 

Month March April May June July Aug. Sep. Oct. Nov. Dec. Jan. Feb. 

M 1 2 3 4 5 6 7 8 9 10 11 12 

 

Example.5.1.  Determine the day of the week for Jan 1, 2011. 

 

Solution.Here 𝑀 = 11, 𝐶 = 20, 𝑌 = 11, 𝑁 = 1, 𝐿 = 0, then 

𝑑 ≡ 1 + [2.6 × 11 − 0.2] + 11 + [
11

4
] + [

20

4
] − 2 × 20 − (1 + 0) [

11

11
] (𝑚𝑜𝑑7) 

  ≡ 1 + [28.4] + 11 + 2 + 5 − 40 − 1(𝑚𝑜𝑑7) 

  ≡ 1 + 28 + 11 + 2 + 5 − 40 − 1(𝑚𝑜𝑑7) 

  ≡ 6(𝑚𝑜𝑑7) 

Hence the first day of 2011 falls on Saturday. 

 

Example.5.2.  For the year 2010, determine the 

(i) Calendar dates on which Mondays will occur in march 

(ii) The month in which the thirteen will fall on a friday. 

Solution. (i) Here𝑀 = 1, 𝐶 = 20, 𝑑 = 1, 𝐿 = 0, 𝑌 = 10, then using the formula 

1 ≡ 𝑁 + [2.6 × 1 − 0.2] + 10 + [
10

4
] + [

20

4
] − 2 × 20 − (1 + 0) [

1

11
] (𝑚𝑜𝑑7) 

1 ≡ 𝑁 + 2 + 10 + 2 + 5 − 40(𝑚𝑜𝑑7) 

1 ≡ 𝑁 − 21(𝑚𝑜𝑑7) 

𝑁 ≡ 22 ≡ 1(𝑚𝑜𝑑7) 

  𝑁  = 1,  8,  15,  22,  29 

Hence on 1, 8, 15, 22, 29 march Monday occurred. 

 

(ii) Here 𝑀 =?,𝐶 = 20, 𝑑 = 6, 𝐿 = 0, 𝑌 = 10, 𝑁 = 13. Using the formula 

⇒ 5 ≡ 13 + [2.6 × 𝑀 − 0.2] + 10 + [
10

4
] + [

20

4
] − 40 − (1 + 0) [

𝑀

11
] (𝑚𝑜𝑑7) 

⇒ 5 ≡ 23 + [2.6 × 𝑀 − 0.2] + 10 + 2 + 5 − 40 − [
𝑀

11
] (𝑚𝑜𝑑7) 

⇒ 5 ≡ −10 + [2.6𝑀 − 0.2] − [
𝑀

11
] (𝑚𝑜𝑑7) 
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⇒ 15 ≡ 1 ≡ [2.6𝑀 − 0.2] − [
𝑀

11
] (𝑚𝑜𝑑7) 

⇒ [
M

11
] ≡ [2.6𝑀 − 0.2] − 1(𝑚𝑜𝑑7) 

    ≡  [2.6𝑀 − 1.2](𝑚𝑜𝑑7)                     (7) 

⇒ [
𝑀

11
] = 1 if 𝑀 = 11 and 12,   [

𝑀

11
] = 0  when 1 ≤ 𝑀 ≤ 10 

But 𝑀 = 11, 12gives 

[2.6 × 11 − 1.2] = [28.6 − 1.2] = [27.4] = 27 ≡ 6(𝑚𝑜𝑑7) ≢ 1(𝑚𝑜𝑑7) 

[2.6 × 12 − 1.2] = 30 ≡ 2 ≢ 1 = [
𝑀

11
] (𝑚𝑜𝑑7) 

Hence equation (7) is not satisfied 

⇒     [
𝑀

11
] = 0 

Now 
[2.6𝑀 − 1.2] ≡ 0(𝑚𝑜𝑑7)          (8) 

⇒    [2.6𝑀 − 1.2] = 0  𝑜𝑟  7 

For 𝑀 = 6, equation (8) is satisfied. 

Hence Friday falls on 13th August. 

 

6. Conclusion 
With the help of various examples, we have seen that the simple concepts of congruence have  many applications in the 

field of arithmetic and day to day life. These concepts have extensive proofs at their back. However, several new applications 

have been emerging involving congruence modulo and modular arithmetic. 
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