Original Article

On the Diophantine Equations $(x_1 x_2 x_3 \dots 6)^x + (y_1 y_2 y_3 \dots 1)^y = z^2$ and $(x_1 x_2 x_3 \dots 4)^{2x} + (y_1 y_2 y_3 \dots 2)^{5y} = z^2$

Smiti Aggarwal¹, Meenakshi Panchal²

^{1,2}G.V.M. Girls College, Sonepat, Haryana, India.

¹Corresponding Author : smitiaggarwal10@gmail.com

Received: 20 March 2025	Revised: 25 April 2025	Accepted: 14 May 2025	Published: 27 May 2025
-------------------------	------------------------	-----------------------	------------------------

Abstract - In this paper, the Diophantine equations $(x_1x_2x_3...6)^x + (y_1y_2y_3...1)^y = z^2$ and $(x_1x_2x_3...4)^{2x} + (y_1y_2y_3...2)^{5y} = z^2$ have been discussed for positive integer solutions. Here $x_1, x_2, x_3...$ and $y_1, y_2, y_3...$ are digits 0, 1, 2,...9.

Keywords - Exponential, Diophantine equation and integral solution.

1. Introduction

Several authors discussed the exponential Diophantine equations. Poonen, B. (1998) studied some Diophantine equations of the form. $x^n + y^n = z^m$. Sroysang, B. (2013) discussed the Diophantine equation $5^x + 11^y = z^2$. It was shown that this Diophantine equation has the solutions (x, y, z) = (1, 1, 4) and (2, 1, 6). Burshtein, N. (2018) discussed the Diophantine equations $p^3 + q^3 = z^2$ and $p^3 - q^3 = z^2$ where p q are primes for possible integer solutions. Burshtein, N. (2019) obtained the solutions to the Diophantine equations $5^x + 103^y = z^2$ and $5^x + 11^y = z^2$ with positive integers x, y, z. Burshtein, N. (2019) discussed the Diophantine equations $6^x + 11^y = z^2$ and $6^x - 11^y = z^2$ in positive integers x, y, z.

Here the Diophantine equations $(x_1x_2x_3...6)^x + (y_1y_2y_3...1)^y = z^2$ and $(x_1x_2x_3...6)^{2x} + (y_1y_2y_3...2)^{5y} = z^2$ have been discussed for positive integer solutions where $x_1, x_2, x_3...$ and $y_1, y_2, y_3...$ are digits 0, 1, 2,...9. This is some generalization of Burshtein, N. [3] and further extension.

2. Preliminaries

2.1. Lemma 1(Sroysang, B. (2013)): The Diophantine equation $5^{x} + 11^{y} = z^{2}$ has the solutions (x, y, z) = (1, 1, 4) and (2, 1, 6).

2.2. Lemma 2(Burshtein (2019)): The exponential Diophantine equation $6^x + 11^y = z^2$ has no positive integer solution.

2.3. Lemma 3(Burshtein (2019)): The exponential Diophantine equation $6^x - 11^y = z^2$ has the solution (x, y, z) = (2, 1, 5).

3. Analysis

3.1. Theorem 1: The Diophantine equation $(x_1x_2x_3 \dots 6)^x + (y_1y_2y_3 \dots 1)^y = z^2$ has no positive integer solution in *x*, *y*, *z* where $x_1, x_2, x_3 \dots$ and $y_1, y_2, y_3 \dots$ are digits 0, 1, 2,...9.

Proof: It is obvious that the term $(x_1x_2x_3...6)^x$ Has the last digit equal to 6 for each positive integer value of x. Similarly the term $(y_1y_2y_3...1)^y$ Has the last digit equal to 1 for each positive integer value of y? Therefore, the sum of these two terms

 $(x_1x_2x_3...6)^x + (y_1y_2y_3...1)^y$ It is an odd integer whose last digit is equal to 6 + 1 = 7. However, there is no odd square. z^2 which has seven as the last digit. Therefore, the given Diophantine equation $(x_1x_2x_3...6)^x + (y_1y_2y_3...1)^y = z^2$ has no solution in *x*, *y*, *z*.

3.2. Particular Cases

3.2.1. Case 1: The Diophantine equation $16^x + 11^y = z^2$ has no positive integer solution in x, y, z.

Proof: It is evident that the term 16^x Has the last digit equal to 6 for each positive integer value of x. Similarly the term 11^y Has the last digit equal to 1 for each positive integer value of y? Thus the term $16^x + 11^y$ It is an odd integer, and its last digit equals 6 + 1 = 7. But no odd square z^2 has the last digit equal to 7. Therefore, the Diophantine equation $16^x + 11^y = z^2$ has no positive integer solution in *x*, *y*, *z*.

3.2.2. Case 2: The Diophantine equation $116^{x} + 111^{y} = z^{2}$ has no positive integer solution in x, y, z.

Proof: It is evident that the term 116^x Has the last digit equal to 6 for each positive integer value of x. Similarly the term 111^y Has the last digit equal to 1 for each positive integer value of y? Thus the term $116^x + 111^y$ It is an odd integer, and its last digit equals 6 + 1 = 7. But no odd square z^2 has the last digit equal to 7. Therefore, the Diophantine equation $116^x + 111^y = z^2$ has no positive integer solution in *x*, *y*, *z*.

3.2.3. Case 3: The Diophantine equation $126^x + 211^y = z^2$ has no positive integer solution in x, y, z.

Proof: It is evident that the term 126^x Has the last digit equal to 6 for each positive integer value of x. Similarly the term 211^y Has the last digit equal to 1 for each positive integer value of y? Thus the term $126^x + 211^y$ It is an odd integer, and its last digit equals 6 + 1 = 7. But no odd square z^2 has the last digit equal to 7. Therefore, the Diophantine equation $126^x + 211^y = z^2$ has no positive integer solution in *x*, *y*, *z*.

3.3. Theorem 2: The Diophantine equation $(x_1x_2x_3...4)^{2x} + (y_1y_2y_3...2)^{5y} = z^2$ has no positive integer solution in *x*, *y*, *z* where $x_1, x_2, x_3...$ and $y_1, y_2, y_3...$ are digits 0, 1, 2,...9.

Proof: It is obvious that the term $(x_1x_2x_3 \dots 6)^{2x}$ has the last digit equal to 6 for each positive integer value of x. Similarly the term $(y_1y_2y_3 \dots 1)^{5y}$ has the last digit equal to 2 for each positive integer value of y. Therefore, the sum of these two terms $(x_1x_2x_3 \dots 6)^{2x} + (y_1y_2y_3 \dots 1)^{5y}$ is an even integer whose last digit is equal to 6 + 2 = 8. But there is no even square z^2 which has eight as the last digit. Therefore, the given Diophantine equation $(x_1x_2x_3 \dots 6)^{2x} + (y_1y_2y_3 \dots 1)^{5y} = z^2$ has no positive integer solution in x, y, z.

3.4. Particular Cases

3.4.1 Case 1: The Diophantine equation $14^{2x} + 12^{5y} = z^2$ has no positive integer solution in x, y, z.

Proof: It is obvious that the term 14^{2x} has the last digit equal to 6 for each positive integer value of x. Similarly the term 12^{5y} has the last digit equal to 2 for each positive integer value of y. Thus the term $14^{2x} + 12^{5y}$ is an even integer, and its last digit is equal to 6 + 2 = 8. But no even square z^2 has the last digit equal to 8. Therefore, the Diophantine equation $14^{2x} + 12^{5y} = z^2$ has no positive integer solution in *x*, *y*, *z*.

3.4.2. Case 2: The Diophantine equation $114^{2x} + 112^{5y} = z^2$ has no positive integer solution in x, y, z.

Proof: It is obvious that the term 114^{2x} has the last digit equal to 6 for each positive integer value of x. Similarly the term 112^{5y} has the last digit equal to 2 for each positive integer value of y. Thus the term $114^{2x} + 112^{5y}$ is an even integer, and its last digit is equal to 6 + 2 = 8. But no odd square z^2 has the last digit equal to 8. Therefore, the Diophantine equation $114^{2x} + 112^{5y} = z^2$ has no positive integer solution in *x*, *y*, *z*.

3.4.3. Case 3: The Diophantine equation $124^{2x} + 212^{5y} = z^2$ has no positive integer solution in x, y, z.

Proof: It is obvious that the term 124^{2x} has the last digit equal to 6 for each positive integer value of x. Similarly the term 212^{5y} has the last digit equal to 2 for each positive integer value of y. Thus the term $124^{2x} + 212^{5y}$ is an even integer, and its last digit is equal to 6 + 2 = 8. But no odd square z^2 has the last digit equal to 8. Therefore, the Diophantine equation $124^{2x} + 212^{5y} = z^2$ has no positive integer solution in x, y, z.

4. Conclusion

Here, it has been shown that the Diophantine equations $(x_1x_2x_3...6)^x + (y_1y_2y_3...1)^y = z^2$ and $(x_1x_2x_3...6)^{2x} + (y_1y_2y_3...2)^{5y} = z^2$ have no positive integer solution in *x*, *y*, *z*. Some particular solutions have also been discussed.

5. Acknowledgement

The authors thank the reviewer for the fruitful suggestions.

References

- [1] Nechemia Burshtein, "On Solutions to the Diophantine Equations $5^x + 103^y = z^2$ and $5^x + 11^y = z^2$ with Positive Integers *x*, *y*, *z*," Annals of Pure and Applied Mathematics, vol. 19, no. 1, pp. 75-77, 2019. [CrossRef] [Google Scholar] [Publisher Link]
- [2] Nechemia Burshtein, "On Solutions of the Diophantine Equations $p^3 + q^3 = z^2$ and $p^3 q^3 = z^2$ when *p*, *q* are Primes," *Annals of Pure and Applied Mathematics*, vol. 18, no. 1, pp. 51-57, 2018. [CrossRef] [Google Scholar] [Publisher Link]
- [3] Nechemia Burshtein, "A Short Note on Solutions of the Diophantine Equations $6^x + 11^y = z^2$ and $6^x 11^y = z^2$ in Positive Integers *x*, *y*, *z*," *Annals of Pure and Applied Mathematics*, vol. 19, no. 2, pp. 55-56, 2019. [CrossRef] [Google Scholar] [Publisher Link]
- [4] Bjorn Poonen, "Some Diophantine Equations of the Form $x^n + y^n = z^m$," *Acta Arithmetica*, vol. 86, pp. 193-205, 1998. [CrossRef] [Google Scholar] [Publisher Link]
- [5] Banyat Sroysang, "On the Diophantine Equation $5^{x} + 11^{y} = z^{2}$," *International Journal of Pure and Applied Mathematics*, vol. 89, no. 1, pp. 115-118, 2013. [CrossRef] [Publisher Link]