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Abstract - In this paper, the Diophantine equations (𝑥1𝑥2𝑥3…6)𝑥 + (𝑦1𝑦2𝑦3…1)𝑦 = 𝑧2 and (𝑥1𝑥2𝑥3…4)2𝑥 +

(𝑦1𝑦2𝑦3 …2)5𝑦 = 𝑧2 have been discussed for positive integer solutions. Here 𝑥1, 𝑥2, 𝑥3… and 𝑦1, 𝑦2, 𝑦3 … are digits 0, 1, 

2,…9. 
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1. Introduction 

Several authors discussed the exponential Diophantine equations.  Poonen, B. (1998) studied some Diophantine equations 

of the form. 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑚. Sroysang, B. (2013) discussed the Diophantine equation 5𝑥 + 11𝑦 = 𝑧2. It was shown that this 

Diophantine equation has the solutions (𝑥, 𝑦, 𝑧) = (1, 1, 4) and (2, 1, 6). Burshtein, N. (2018) discussed the Diophantine 

equations 𝑝3 + 𝑞3 = 𝑧2 and 𝑝3 − 𝑞3 = 𝑧2 where p q are primes for possible integer solutions. Burshtein, N. (2019) obtained 

the solutions to the Diophantine equations 5𝑥 + 103𝑦 = 𝑧2 and 5𝑥 + 11𝑦 = 𝑧2 with positive integers x, y, z. Burshtein, N. 

(2019) discussed the Diophantine equations 6𝑥 + 11𝑦 = 𝑧2 and 6𝑥 − 11𝑦 = 𝑧2 in positive integers x, y, z. 

Here the Diophantine equations (𝑥1𝑥2𝑥3…6)𝑥 + (𝑦1𝑦2𝑦3…1)𝑦 = 𝑧2 and (𝑥1𝑥2𝑥3…6)2𝑥 + (𝑦1𝑦2𝑦3…2)5𝑦 = 𝑧2 have 

been discussed for positive integer solutions where 𝑥1, 𝑥2, 𝑥3… and 𝑦1, 𝑦2 , 𝑦3… are digits 0, 1, 2,…9. This is some 

generalization of Burshtein, N. [3] and further extension. 

 

2. Preliminaries 

2.1. Lemma 1(Sroysang, B. (2013)): The Diophantine equation 5𝑥 + 11𝑦 = 𝑧2 has the solutions (𝑥, 𝑦, 𝑧) = (1, 1, 4) and 

(2, 1, 6). 

2.2. Lemma 2(Burshtein (2019)): The exponential Diophantine equation 6𝑥 + 11𝑦 = 𝑧2 has no positive integer solution.  

2.3. Lemma 3(Burshtein (2019)): The exponential Diophantine equation 6𝑥 − 11𝑦 = 𝑧2 has the solution (𝑥, 𝑦, 𝑧) = (2, 1, 5). 

3. Analysis 

3.1. Theorem 1: The Diophantine equation (𝑥1𝑥2𝑥3…6)𝑥 + (𝑦1𝑦2𝑦3…1)𝑦 = 𝑧2 has no positive integer solution in x, y, z 

where 𝑥1, 𝑥2, 𝑥3… and 𝑦1, 𝑦2, 𝑦3… are digits 0, 1, 2,…9. 

Proof: It is obvious that the term (𝑥1𝑥2𝑥3…6)𝑥 Has the last digit equal to 6 for each positive integer value of x. Similarly the 

term (𝑦1𝑦2𝑦3…1)𝑦  Has the last digit equal to 1 for each positive integer value of y? Therefore, the sum of these two terms 
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(𝑥1𝑥2𝑥3…6)𝑥 + (𝑦1𝑦2𝑦3…1)𝑦 It is an odd integer whose last digit is equal to 6 + 1 = 7. However, there is no odd square. 𝑧2 

which has seven as the last digit. Therefore, the given Diophantine equation (𝑥1𝑥2𝑥3…6)𝑥 + (𝑦1𝑦2𝑦3 …1)𝑦 = 𝑧2 has no 

solution in x, y, z. 

3.2. Particular Cases 

3.2.1. Case 1: The Diophantine equation 16𝑥 + 11𝑦 = 𝑧2 has no positive integer solution in x, y, z. 

Proof: It is evident that the term 16𝑥 Has the last digit equal to 6 for each positive integer value of x. Similarly the term 11𝑦 

Has the last digit equal to 1 for each positive integer value of y? Thus the term 16𝑥 + 11𝑦It is an odd integer, and its last digit 

equals 6 + 1 = 7. But no odd square 𝑧2 has the last digit equal to 7. Therefore, the Diophantine equation 16𝑥 + 11𝑦 = 𝑧2 has 

no positive integer solution in x, y, z. 

3.2.2. Case 2: The Diophantine equation 116𝑥 + 111𝑦 = 𝑧2 has no positive integer solution in x, y, z. 

Proof: It is evident that the term 116𝑥 Has the last digit equal to 6 for each positive integer value of x. Similarly the term 111𝑦 

Has the last digit equal to 1 for each positive integer value of y? Thus the term 116𝑥 + 111𝑦It is an odd integer, and its last 

digit equals 6 + 1 = 7. But no odd square 𝑧2 has the last digit equal to 7. Therefore, the Diophantine equation 116𝑥 + 111𝑦 =

𝑧2 has no positive integer solution in x, y, z. 

3.2.3. Case 3: The Diophantine equation 126𝑥 + 211𝑦 = 𝑧2 has no positive integer solution in x, y, z. 

Proof: It is evident that the term 126𝑥 Has the last digit equal to 6 for each positive integer value of x. Similarly the term 211𝑦 

Has the last digit equal to 1 for each positive integer value of y? Thus the term 126𝑥 + 211𝑦It is an odd integer, and its last 

digit equals 6 + 1 = 7. But no odd square 𝑧2 has the last digit equal to 7. Therefore, the Diophantine equation 126𝑥 + 211𝑦 =

𝑧2 has no positive integer solution in x, y, z.  

3.3. Theorem 2: The Diophantine equation (𝑥1𝑥2𝑥3…4)2𝑥 + (𝑦1𝑦2𝑦3…2)5𝑦 = 𝑧2 has no positive integer solution in x, y, z 

where 𝑥1, 𝑥2, 𝑥3… and 𝑦1, 𝑦2, 𝑦3… are digits 0, 1, 2,…9. 

Proof: It is obvious that the term (𝑥1𝑥2𝑥3…6)2𝑥 has the last digit equal to 6 for each positive integer value of x. Similarly the 

term (𝑦1𝑦2𝑦3…1)5𝑦 has the last digit equal to 2 for each positive integer value of y. Therefore, the sum of these two terms 

(𝑥1𝑥2𝑥3…6)2𝑥 + (𝑦1𝑦2𝑦3…1)5𝑦 is an even integer whose last digit is equal to 6 + 2 = 8. But there is no even square 𝑧2 

which has eight as the last digit. Therefore, the given Diophantine equation (𝑥1𝑥2𝑥3…6)2𝑥 + (𝑦1𝑦2𝑦3…1)5𝑦 = 𝑧2 has no 

positive integer solution in x, y, z. 

3.4. Particular Cases 

3.4.1 Case 1: The Diophantine equation 142𝑥 + 125𝑦 = 𝑧2 has no positive integer solution in x, y, z. 

Proof: It is obvious that the term 142𝑥 has the last digit equal to 6 for each positive integer value of x. Similarly the term 125𝑦 

has the last digit equal to 2 for each positive integer value of y. Thus the term 142𝑥 + 125𝑦is an even integer, and its last digit 

is equal to 6 + 2 = 8. But no even square 𝑧2 has the last digit equal to 8. Therefore, the Diophantine equation 142𝑥 + 125𝑦 =

𝑧2 has no positive integer solution in x, y, z. 

3.4.2. Case 2: The Diophantine equation 1142𝑥 + 1125𝑦 = 𝑧2 has no positive integer solution in x, y, z. 

Proof: It is obvious that the term 1142𝑥 has the last digit equal to 6 for each positive integer value of x. Similarly the term 

1125𝑦 has the last digit equal to 2 for each positive integer value of y. Thus the term 1142𝑥 + 1125𝑦 is an even integer, and its 

last digit is equal to 6 + 2 = 8. But no odd square 𝑧2 has the last digit equal to 8. Therefore, the Diophantine equation 1142𝑥 +

1125𝑦 = 𝑧2 has no positive integer solution in x, y, z. 
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3.4.3. Case 3: The Diophantine equation 1242𝑥 + 2125𝑦 = 𝑧2 has no positive integer solution in x, y, z. 

Proof: It is obvious that the term 1242𝑥 has the last digit equal to 6 for each positive integer value of x. Similarly the term 

2125𝑦 has the last digit equal to 2 for each positive integer value of y. Thus the term 1242𝑥 + 2125𝑦 is an even integer, and its 

last digit is equal to 6 + 2 = 8. But no odd square 𝑧2 has the last digit equal to 8. Therefore, the Diophantine equation 1242𝑥 +

2125𝑦 = 𝑧2 has no positive integer solution in x, y, z. 

4. Conclusion 

Here, it has been shown that the Diophantine equations (𝑥1𝑥2𝑥3…6)𝑥 + (𝑦1𝑦2𝑦3…1)𝑦 = 𝑧2 and (𝑥1𝑥2𝑥3…6)2𝑥 +

(𝑦1𝑦2𝑦3 …2)5𝑦 = 𝑧2 have no positive integer solution in x, y, z. Some particular solutions have also been discussed. 
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