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Abstract - In this paper, we establish the non-existence of positive periodic solutions to the attractive singular Liénard 

equation with relativistic acceleration 

(

 
𝑥 ′

√1 −
𝑥 ′2

𝑣2)

 

′

+ 𝑓(𝑥)𝑥 ′ + 𝑎(𝑡)𝑥𝜇 +
𝑏(𝑡)

𝑥𝜌
= 𝑠 

Where 𝑣 is the speed of light in a vacuum? Distinct from the classical Liénard equation, the inertial term arises from the 

relativistic momentum, which introduces strong nonlinearity and imposes a natural velocity bound . 

Keywords -  Attractive singularity, Liénard equation, Non-existence, Relativistic acceleration. 

1. Introduction  
Singular differential equations have sign ificant applications in various scientific fields, such as cell cycle models in  

biomathematics [1] and the study of closed convex hypersurfaces in geometry [8 ]. The study of periodic solutions p lays an 

important role in the theory of singular differential equations, due to its close connection with a wide range of periodic 

phenomena observed in nature and society. 

The study of periodic solutions in singular d ifferential equations dates back to 1944, when Nagumo first  addressed this 

topic in the literature [9]. Later, Lazer and Solimini (1987) [7] made a major breakthrough by introducing topological degree 

theory into the analysis of periodic solutions for singular equations. Their work revealed the essential dist inction between 

repulsive and attractive singu larities and greatly advanced the development of the field. Inspired by their resu lts, many 

researchers have carried out extensive studies on the existence of periodic solutions to singular differential equations [2, 3, 6]. 

Among various types of singular equations, the Liénard equation has attracted considerable attention. In recent years, 

several important results have been obtained. In 2021, Xin and Cheng [12] investigated the non -existence of positive periodic 

solutions for the following 𝜙Laplacian generalized Liénard equation with a singularity 

 (𝜙(𝑥 ′)) ′ + 𝑓(𝑡, 𝑥)𝑥 ′ +
𝑏(𝑡)

𝑥𝜌
= ℎ(𝑡)𝑥𝑚, 

Where 𝜌 [?] is a  positive constant and  [?] is a  constant. More recently, in 2024, Yu et al. [13] considered the Liénard 

equation with an attractive singularity 

 𝑥″ + 𝑓(𝑥)𝑥 ′ + 𝑎(𝑡)𝑥𝜇 +
𝑏(𝑡)

𝑥𝜌
= 𝑠, (1.1) 

Where𝑓(𝑥) ∈ 𝐶((0, +∞); ℝ), 𝑎(𝑡), 𝑏(𝑡) ∈ 𝐶(ℝ/𝑇ℤ, ℝ), 𝜇, 𝜌 are positive constants, and𝑠 ∈ ℝ  is a  parameter. Using the 

upper and lower so lutions method, they established the multiplicity of period ic solut ions. The Liénard equations are not only of 

significant theoretical value, but also find wide applications in physical models, such as the classical bubble dynamics model 

discussed in the monograph by Professor Torres [11], and the Micro-electro-mechanical systems (MEMS) mass-spring model. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Motivated by the above works, in  this paper, we investigate the non-existence of periodic solutions to the relativistic 

Liénard equation with an attractive singularity 

 (
𝑥′

√1−
𝑥′2

𝑣2

)

′

+ 𝑓(𝑥)𝑥 ′ + 𝑎(𝑡)𝑥𝜇 +
𝑏(𝑡)

𝑥𝜌
= 𝑠 , (1.2) 

Where𝑓(𝑥) ∈ 𝐶((0, +∞); ℝ), 𝑎(𝑡) ∈ 𝐶(ℝ/𝑇ℤ, ℝ) [?] and  [?] are posit ive constants and  [?] is the speed of light in a 

vacuum.  Compared with the classical Liénard equation, the equation's main difference lies in the inertial term, which no longer 

takes the standard Newtonian form. Instead, it involves the relativistic modification (
𝑥′

√1−
𝑥′2

𝑣2

)

′

, which o riginates from the 

expression for relativistic momentum. From a mathematical viewpoint, this term introduces a strong nonlinearity as 𝑥 ′ → 𝑣 the 

denominator tends to zero, and thus the entire term becomes unbounded. This behavior reflects a nonlinear growth in inertia 

and imposes a natural upper bound on the admissible velocity. This phenomenon is a manifestation of relativistic effects. Suc h 

mechanisms are useful in modeling the dynamics of high-energy particles under strong-f ield conditions [10]. By using the 

styles defined in this document. 

2. Main Theorem and Proof  
We introduce some notations that will be used throughout the paper.  Let 𝐶𝑇 denote the space of continuous 𝑇 -periodic 

functions, i.e. 𝐶𝑇 = {𝑥 ∈ 𝐶(ℝ, ℝ)|𝑥(𝑡) = 𝑥(𝑡 + 𝑇), ∀𝑡 ∈ ℝ} . 𝐶𝑇
1  Is the space of 𝑇 periodic functions with continuous 

derivatives. For each𝑥 ∈ 𝐶𝑇, we define 𝑥̄:=
1

𝑇
∫ 𝑥
𝑇

0 (𝑡)𝑑𝑡.‖𝑥‖∞: = 𝑚𝑎𝑥
𝑡∈[0,𝑇]

|𝑥(𝑡)|, 𝑥𝑚𝑖𝑛 : = 𝑚𝑖𝑛
𝑡∈[0,𝑇]

𝑥(𝑡). The main result is as follows.  

Theorem 2.1.  If equation (1.1) has no positive𝑇 -periodic so lution, then there exists 𝑣∗ > 0 such that equation (1.2) (under the 

same choice of 𝑓(𝑥), 𝑎(𝑡), 𝑏(𝑡) and 𝜇, 𝜌, 𝑠) has no positive 𝑇 -periodic solution for any 𝑣 > 𝑣∗ . 

Remark 2.1. The non-existence of positive 𝑇 -periodic so lutions for equation (1.1) can be found in the literature [13, Theorem 

3.1]. 

We mainly prove Theorem 2.1 by establishing a priori bounds of solutions (which are independent of 𝑣) and passing to the 

limit using the Ascoli-Arzelà Theorem.  We first present one lemma essential for the proof of a priori bounds. 

Lemma 2.1. [5] For any 𝑥 ∈ 𝐶𝑇
1, it yields: 

 (𝑚𝑎𝑥
𝑡∈[0,𝑇]

𝑥(𝑡) − 𝑚𝑖𝑛
𝑡∈[0,𝑇]

𝑥(𝑡))
2

≤
𝑇

4
∫ |
𝑡

0 𝑥 ′(𝑡)|2𝑑𝑡. 

In what follows, we estimate a priori bounds of positive periodic solutions x(t) of equation (1.2). Specifically, any 𝑥(𝑡) 
has a natural bound ‖𝑥 ′‖∞ < 𝑣. 

Lemma 2.2. For all positive 𝑇 -periodic solutions𝑥(𝑡) of equation (1.2), there exists a positive constant 𝑀0  such that 

 𝑥(𝑡) > 𝑀0 ,   for 𝑡 ∈ [0, 𝑇]. 

Proof. Let be 𝑡0 ∈ (0, 𝑇) such that𝑥(𝑡0) = 𝑚𝑖𝑛
𝑡∈[0,𝑇]

𝑥(𝑡). Then 𝑥″(𝑡0) ≥ 0, 𝑥 ′(𝑡0) = 0 and 

 (
𝑥′ (𝑡)

√1−
𝑥′2(𝑡)
𝑣2

)

′

|

𝑡=𝑡0

+ 𝑓(𝑥(𝑡0))𝑥
′(𝑡0) + 𝑎(𝑡0)𝑥

𝜇(𝑡0) +
𝑏(𝑡0)

𝑥𝜌 (𝑡0)
= 𝑠 , 
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where (
𝑥′ (𝑡)

√1−
𝑥′2(𝑡)
𝑣2

)

′

|

𝑡=𝑡0

=
𝑥″(𝑡)

(1−
𝑥′2(𝑡)

𝑣2
)

3
2

|

𝑡=𝑡0

=
𝑥″(𝑡0)

(1−
𝑥′2(𝑡0)

𝑣2
)

3
2

≥ 0, 𝑓(𝑥(𝑡0))𝑥
′(𝑡0) = 0,  then 

 0 ≤ 𝑠 − 𝑎(𝑡0)𝑥
𝜇(𝑡0) −

𝑏(𝑡0)

𝑥𝜌 (𝑡0)
< 𝑠 + |𝑎𝑚𝑖𝑛|𝑥

𝜇(𝑡0) −
𝑏𝑚𝑖𝑛

𝑥𝜌 (𝑡0)
. (2.1) 

Suppose 𝑥(𝑡0) < (
𝑏𝑚𝑖𝑛

2|𝑎𝑚𝑖𝑛|+1
)

1

𝜇+𝜌
, then, it follows that 

 |𝑎𝑚𝑖𝑛 |𝑥
𝜇(𝑡0) <

𝑏𝑚𝑖𝑛

2𝑥𝜌 (𝑡0)
. 

Substituting into (2.1), we obtain 

 0 < 𝑠 +
𝑏𝑚𝑖𝑛

2𝑥𝜌 (𝑡0)
−

𝑏𝑚𝑖𝑛

𝑥𝜌 (𝑡0)
= 𝑠 −

𝑏𝑚𝑖𝑛

2𝑥𝜌 (𝑡0)
, 

which implies 

 𝑥(𝑡0) > (
𝑏𝑚𝑖𝑛

2𝑠
)

1

𝜌. 

Therefore, we conclude that. 

 𝑥(𝑡0) ≥ 𝑚𝑖𝑛 {(
𝑏𝑚𝑖𝑛

2𝑠
)

1

𝜌
, (

𝑏𝑚𝑖𝑛

2|𝑎𝑚𝑖𝑛|+1
)

1

𝜇+𝜌}. 

Consequently, a  sufficiently large constant  exists. 

 𝑥(𝑡0) > (
𝑏𝑚𝑖𝑛

2𝑘
)

1

𝜌
: = 𝑀0 > 0. 

Lemma 2.3. For all positive 𝑇periodic solutions 𝑥(𝑡) of equation (1.2), there exists a positive constant 𝑀1 such that 

 𝑥(𝑡) < 𝑀1 , for  𝑡 ∈ [0, 𝑇], (2.2) 

where 𝑀1 = (𝐴𝜅 +
𝑠

(1−𝜅)�̄�
)

1

𝜇
+ 𝑀0 , 𝜅 ∈ (0,1). 

Proof. In fact, to establish (2.2), it suffices to prove that 𝑀1 = (𝐴𝜅 +
𝑠

(1−𝜅)�̄�
)

1

𝜇
, 𝜅 ∈ (0,1). For the sake of contradiction, 

suppose this inequality does not hold. Then there exists 𝜅 ∈ (0,1) a  sequence {𝑥𝑛}𝑛=1
+∞  such that 

 𝑀𝑛 > (𝑛 +
𝑠

(1−𝜅)�̄�
)

1

𝜇
 , for  𝑛 ∈ ℕ (2.3) 

where 𝑀𝑛 : = 𝑚𝑎𝑥{𝑥𝑛(𝑡): 𝑡 ∈ [0, 𝑇]}, 𝑥𝑛 denote the positive 𝑇 -periodic solutions of equation (1.2). Then, from equation (2.3), 

we deduce 

 𝑙𝑖𝑚
𝑛→+∞

𝑀𝑛 = +∞. (2.4) 

Moreover, it follows from Lemma 2.1 and ‖𝑥 ′‖∞ < 𝑣 that 
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 𝑀𝑛 − 𝑚𝑛 ≤
𝑇𝑣

2
, 

Where 𝑚𝑛 : = 𝑚𝑖𝑛{ 𝑥𝑛(𝑡): 𝑡 ∈ [0, 𝑇]}.  Combining with equation (2.4), we obtain 

 𝑙𝑖𝑚
𝑛→+∞

𝑚𝑛

𝑀𝑛
≥ 𝑙𝑖𝑚

𝑛→+∞

𝑀𝑛−
𝑇𝑣
2

𝑀𝑛
≥ 1. 

On the other hand, by the definitions of the 𝑀𝑛 , 𝑚𝑛, it is evident that 

 𝑙𝑖𝑚
𝑛→+∞

𝑚𝑛

𝑀𝑛
≤ 1. 

Combining the above estimates, we conclude that. 

 𝑙𝑖𝑚
𝑛→+∞

𝑚𝑛

𝑀𝑛
= 1. 

Therefore, based on the above equation and the condition �̄� > 0, it can be deduced that there exists a  constant 𝑁 > 0 such that 

 𝑚𝑛 > (
𝜅[𝑎]−+(1−𝜅)[𝑎]+

[𝑎]+
)

1

𝜇

𝑀𝑛 ,  for 𝑛 > 𝑁. (2.5) 

Given that 𝑥𝑛(𝑡) ∈ 𝐶𝑇
1, it satisfies 

 

(

 
 𝑥𝑛

′ (𝑡)

√1−
𝑥′𝑛
2
(𝑡)

𝑣2

)

 
 

′

+ 𝑓(𝑥𝑛(𝑡))𝑥𝑛
′ (𝑡) + 𝑎(𝑡)𝑥𝑛

𝜇
(𝑡) +

𝑏(𝑡)

𝑥𝑛
𝜌
(𝑡)
= 𝑠, (2.6) 

Integrating (2.6) over [0, 𝑇] yields 

 ∫

(

 
 𝑥𝑛

′ (𝑡)

√1−
𝑥′𝑛
2
(𝑡)

𝑣2
)

 
 

′

𝑇

0 𝑑𝑡 + ∫ 𝑓
𝑇

0 (𝑥𝑛(𝑡))𝑥𝑛
′ (𝑡)𝑑𝑡 + ∫ 𝑎

𝑇

0 (𝑡)𝑥𝑛
𝜇
(𝑡)𝑑𝑡 + ∫

𝑏(𝑡)

𝑥𝑛
𝜌
(𝑡)

𝑇

0 𝑑𝑡 = 𝑠 ∫ 𝑑
𝑇

0 𝑡. 

Therefore 

 ∫ 𝑎
𝑇

0 (𝑡)𝑥𝑛
𝜇
(𝑡)𝑑𝑡 + ∫

𝑏(𝑡)

𝑥𝑛
𝜌
(𝑡)

𝑇

0 𝑑𝑡 = 𝑇𝑠 ,  for  𝑛 ∈ ℕ. (2.7) 

Since 𝑏(𝑡) > 0 then 𝑡 ∈ [0, 𝑇], it follows that 

 𝑇𝑠 ≥ ∫ [𝑎
𝑇

0 ]+(𝑡)𝑥𝑛
𝜇
(𝑡)𝑑𝑡 − ∫ [𝑎

𝑇

0 ]−(𝑡)𝑥𝑛
𝜇
(𝑡)𝑑𝑡  

   ≥ 𝑇[𝑎]+𝑚𝑛
𝜇
− 𝑇[𝑎]

−
𝑀𝑛
𝜇

    for  𝑛 ∈ ℕ. (2.8) 

Substituting (2.3) and (2.5) into the inequality above and noting that �̄� > 0with 𝜅 ∈ (0,1), we conclude 

 𝑠 ≥ [𝑎]+𝑚𝑛
𝜇
− [𝑎]−𝑀𝑛

𝜇
 

 ≥ (𝜅[𝑎]− + (1 − 𝜅)[𝑎]+)𝑀𝑛
𝜇
− [𝑎]−𝑀𝑛

𝜇
 

 = (1 − 𝜅)�̄�𝑀𝑛
𝜇

 
 ≥ 𝑛(1 − 𝜅)�̄� + 𝑠 > 𝑠   for  𝑛 > 𝑁. 
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This leads to a contradiction, and hence the desired conclusion is established. 

Lemma 2.4. For all positive 𝑇 -periodic solutions 𝑥(𝑡) of equation (1.2), there exists a positive constant 𝑀2 such that 

 |𝑥 ′(𝑡)| < 𝑀2. 

Proof. Since 𝑥(0) = 𝑥(𝑇) there is a point 𝑡2 ∈ (0, 𝑇) such that 𝑥 ′(𝑡2) = 0. Integrating (1.2) from𝑡2to𝑡 yields 

 ∫ (
𝑥′ (𝜎)

√1−
𝑥′2(𝜎)
𝑣2

)

′

𝑡

𝑡2
𝑑𝜎 +∫ 𝑓

𝑡

𝑡2
(𝑥(𝜎))𝑥 ′(𝜎)𝑑𝜎 + ∫ 𝑎

𝑡

𝑡2
(𝜎)𝑥𝜇(𝜎)𝑑𝜎 +∫

𝑏(𝜎)

𝑥𝜌 (𝜎)

𝑡

𝑡2
𝑑𝜎 = 𝑠∫ 𝑑

𝑡

𝑡2
𝜎 , 

Where 𝑡 ∈ [𝑡2, 𝑡2 + 𝑇]. It follows from (2.7), Lemmas 2.2 and 2.3 that. 

 |𝑥 ′(𝑡)| ≤ |
𝑥′ (𝑡)

√1−
𝑥′2(𝑡)

𝑣2

| 

        = |𝑠(𝑡 − 𝑡2) − 𝐹(𝑥(𝑡)) + 𝐹(𝑥(𝑡2)) − ∫ 𝑎
𝑡

𝑡2

(𝜎)𝑥𝜇(𝜎)𝑑𝜎 − ∫
𝑏(𝜎)

𝑥𝜌(𝜎)

𝑡

𝑡2

𝑑𝜎|  

        ≤ 𝑇𝑠 + 2 𝑚𝑎𝑥
𝑥∈[𝑀0 ,𝑀1 ]

|𝐹(𝑥)| + |∫ 𝑎
𝑡

𝑡2

(𝜎)𝑥𝜇(𝜎)𝑑𝜎 + ∫
𝑏(𝜎)

𝑥𝜌(𝜎)

𝑡

𝑡2

𝑑𝜎|  

        ≤ 𝑇𝑠 + 2 𝑚𝑎𝑥
𝑥∈[𝑀0 ,𝑀1 ]

|𝐹(𝑥)| + ∫ |
𝑡2+𝑇

𝑡2

𝑎(𝜎)|𝑥𝜇(𝜎)𝑑𝜎+ ∫
𝑏(𝜎)

𝑥𝜌(𝜎)

𝑡2+𝑇

𝑡2

𝑑𝜎  

        = 𝑇𝑠 + 2 𝑚𝑎𝑥
𝑥∈[𝑀0 ,𝑀1 ]

|𝐹(𝑥)| + 𝑇𝑠 + ∫ (−𝑎(
𝑡2+𝑇

𝑡2

𝜎) + |𝑎(𝜎))|𝑥𝜇(𝜎)𝑑𝜎  

        ≤ 𝑇𝑠 + 2 𝑚𝑎𝑥
𝑥∈[𝑀0 ,𝑀1 ]

|𝐹(𝑥)| + 𝑇𝑠 + 2𝑇[𝑎]−𝑀1 

        < 2 𝑚𝑎𝑥
𝑥∈[𝑀0 ,𝑀1]

|𝐹(𝑥)| + 2𝑇𝑠 + 2𝑇[𝑎]−𝑀1+ 1: = 𝑀2  

Where 𝐹is the primitive function of 𝑓? 

We now proceed to prove Theorem 2.1 by contradiction.  Suppose a sequence  and corresponding  -periodic so lutions  of 

(1.2) exist 𝑣 = 𝑣𝑛 . Accord ing to Lemmas 2.3 and 2.4, the sequences 𝑥𝑛(𝑡) and 𝑥𝑛
′ (𝑡) are uniformly bounded. Moreover, 

equation (1.2) can be written as 

 
𝑥″

(1−
𝑥′2

𝑣2
)
3
2

+ 𝑓(𝑥)𝑥 ′ + 𝑎(𝑡)𝑥𝜇 +
𝑏(𝑡)

𝑥𝜌
= 𝑠, (2.9) 

By Lemmas 2.2, 2.3 and 2.4, the sequence 𝑥𝑛
″ (𝑡)  is also uniformly bounded. Then by the Ascoli-Arzelà Theorem, 

subsequences exist  such that both are uniformly convergent and convergent to a certain 𝑥∞(𝑡) in𝐶𝑇
1.  It is important to note 

that all the bounds above are independent of 𝑣𝑛each other
. 

The final step is to write the equation as an integral and take the limit. Starting from (2.9), we write. 

 𝑥″ − 𝑥 = (1 −
𝑥′2

𝑣2
)
3

2 (𝑠 − 𝑓(𝑥)𝑥 ′ − 𝑎(𝑡)𝑥𝜇 −
𝑏(𝑡)

𝑥𝜌
) − 𝑥 . 

Then the problem of finding a 𝑇periodic solution of (1.2) is reduced to finding a 𝑇periodic solution of the integral equation. 

 𝑥 = ∫ 𝐺
𝑇

0 (𝑡, 𝑠) [(1 −
𝑥′2 (𝑠)

𝑣2
)
3

2 (𝑠 − 𝑓(𝑥(𝑠))𝑥 ′(𝑠) − 𝑎(𝑠)𝑥𝜇(𝑠) −
𝑏(𝑠)

𝑥𝜌 (𝑠)
) − 𝑥(𝑠)] 𝑑𝑠, 
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Where 𝐺(𝑡, 𝑠) is the Green function of the linear operator 𝑥″ − 𝑥 with  periodic conditions uniformly bounded on the square 

[0, 𝑇] × [0, 𝑇]? Consequently, 𝑥𝑛𝑗  satisfies 

 𝑥𝑛𝑗 = ∫ 𝐺
𝑇

0 (𝑡, 𝑠) [(1 −
𝑥′
𝑛𝑗

2
(𝑠)

𝑣𝑛𝑗
2 )

3

2 (𝑠 − 𝑓(𝑥𝑛𝑗(𝑠))𝑥𝑛𝑗
′ (𝑠) − 𝑎(𝑠)𝑥𝑛𝑗

𝜇
(𝑠) −

𝑏(𝑠)

𝑥𝑛𝑗

𝜌
(𝑠)
)− 𝑥𝑛𝑗(𝑠)] 𝑑𝑠. 

Taking the limit  and using the uniform boundedness 𝐺(𝑡, 𝑠), we can pass the limit inside the integral. Hence 

 𝑥∞ = ∫ 𝐺
𝑇

0 (𝑡, 𝑠) [(𝑠 − 𝑓(𝑥∞(𝑠))𝑥∞
′ (𝑠) − 𝑎(𝑠)𝑥∞

𝜇(𝑠) −
𝑏(𝑠)

𝑥∞
𝜌
(𝑠)
− 𝑥∞(𝑠)] 𝑑𝑠. 

Or equivalently, 𝑥∞(𝑡) it is a  𝑇periodic solution of (1.1). This completes the proof. 

3. Application to MEMS  
In this section, we consider the application of equation (1.2) to the MEMS mass-spring model with relativistic acceleration. 

 𝑚(
𝑦′

√1−
𝑦′2

𝑣2

)

′

+ 𝑐𝑦 ′ + 𝑘𝑦 =
𝜀0𝐴

2

𝑉2(𝑡)

(𝑑−𝑦)2
,  

By applying time scale transformation and translation transformation 𝑥 = 𝑑 − 𝑦, it is transformed into the following form 

 (
𝑥′

√1−
𝑥′2

𝑣2

)

′

+
𝑐

𝑚
𝑥 ′ +

𝑘

𝑚
𝑥 +

𝜀0𝐴

2𝑚

𝑉2 (𝑡)

𝑥2
=

𝑘𝑑

𝑚
, (3.1) 

Where 𝑘 > 0 is the stiffness coefficient of a linear spring? 𝑉(𝑡) = 𝑣𝑑𝑐 + 𝑣𝑎𝑐 𝑐𝑜𝑠 𝜔 𝑡 The applied voltage 𝑉(𝑡) > 0 𝑑 > 0 

is the initial d istance between two parallel capacitor plates, y represents the vertical displacement of the movable plate (𝑦 

always less than 𝑑), 𝑚 > 0 is its mass, 𝑐 > 0is a  viscous damping coefficient, 𝜀0 > 0  is the absolute dielectric constant of 

vacuum and𝐴 > 0 is the area of the capacitor plates. 

The equation (3.1) is a special case of (1.2) where 𝑓(𝑥) =
𝑐

𝑚
, 𝑎(𝑡) =

𝑘

𝑚
, 𝑏(𝑡) =

𝜀0𝐴𝑉
2(𝑡)

2𝑚
, 𝜇 = 1, 𝜌 = 2, 𝑠 =

𝑘𝑑

𝑚
. By applying 

Theorem 2.1, we obtain that when the equation. 

 𝑥″ +
𝑐

𝑚
𝑥 ′ +

𝑘

𝑚
𝑥 +

𝜀0𝐴

2𝑚

𝑉2 (𝑡)

𝑥2
=
𝑘𝑑

𝑚
, 

Admits no positive 𝑇 -periodic solut ion [4], there exists 𝑣∗ > 0 such that equation (3.1) also admits no positive 𝑇 -periodic 

solution for any 𝑣 > 𝑣∗ . 
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