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1. Introduction

Several researchers have determined the level of approximation of function f, belonging to various summability methods
such as Riesz mean, Norlund mean, Matrix mean,and generalized Matrix mean, etc., through different spaces. The Besov spaces
extend the scope of basic functional spaces such as Lipschitz, Holder, and generalized Holder spaces. The Besov spaces are
significant in assessing the regularity characteristics of functions. Therefore, in the present work, we obtain the degree of
approximation of a function in a Besov space using Eular means.

We will discuss the degree of approximation of functions in the H, Class of Fourier series in the supremum norm. This
topic has been extensively studied by P. Chandra [5], P. Chandm and R.N. Mahapatm [7], T. Singh [9], and Z. Krasniqi and B.
Szal[11] in relation to the approximation of functions using H 6lder metrics.

2. Definitions and Notations
2.1. Modulus of Continuity (DeVore et al [3])
Let A =R, R,,[a,b], or T (which is usually taken to be R with the identification of points modulo 2m).

The modulus of continuity w(f,t) = w(t) of a function f on A can be defined as

w(t) =w(f,t) =  sup Alf(x)—f(}’)l 62 0. 2.1

|x-y|stx,y€e

2.2. Modulus of Smoothness (DeVore et al [3])
The k™ The order modulus of smoothness of a function f:A — R is defined by

wi (f,t) = Os%pt{mﬁ(f,x)l:x,x + kh € A}, t = 0. (2.2)
<hs

A, x) = Sk, (ic)f(x +ih), k €N. 23)

For k =1, w,(f, )1t is called the modulus of continuity of f. The function w is continuous at t = 0 if and only if f is
uniformly continuous on A, that is f € C(A). The k'™ order modulus of smoothness of f € L, A,
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0<p<oorof feC(A),if p=oo,is defined by

wi(f 1), = Os%ptHA}g(f, |l ,t= 0. (2.4)
<hs<

if p =1,k =1 then wi(f,t), =w(f,t), Itisa modulus of continuity (or integral modulus of continuity). If p = oo,
k =1 and f is continuous, the wy (f,t), reduces to the modulus of continuity w, (f, t) (or w(f,t)).

2.3. Lipschitz Space (DeVore et al [3])
Let f € C(A) and
w(ft) =0(t%), 0<a<1. (2.5)

then we write f € Lip a,If w(f,t) =0(t) as t = 0+ (in particular (3.5) holds for a > 1) then f reduces to a constant.
If feL,(4),0<p< o and
w(f, D), =0(t%), 0 <a <1. (2.6)

then we write f € Lip (a,p), 0 <p <o0,0<a < 1.
The case a > 1 is of no interest as the function reduces to a constant whenever

w(,), =0(t) as t> 0+ 2.7
We note that if p = o and f € C(A), then Lip(a,p) class reduces to Lip a class.

2.4. Generalized Lipschitz Space (DeVore et al [3])
Let a > 0 and suppose that k = [a] + 1. For f € L,(A), 0 <p < oo, if

wi(ft) =0(t*),t> 0, (2.8)
Then we write
feLip*(a,p),a>0, 0<p< oo, 2.9

and say that f belongs to generalized Lipschitz space. The seminorm is then.

|f|Lip*(a,L )y = Sup (t_awk U:' t)p)
P t>0

It is known ([3], p-52) that the space Lip* (a, L,) contains Lip(a,L,). For 0 < a < 1, the spaces coincide. (for p = o , it is

necessary to replace Lo, By the C of uniformly continuous functions on A. For 0 < a < 1 and p = oo the space Lip*(a,L,)
coincide with Lip a.

For a = 1,p = o, we have
Lip(1,C) =Lip 1 (2.10)
but
Lip*(1,C)=2Z (2.11)
is the Zygmund space [1] which is characterized by (2.8) with k = 2.

2.5. Holder (H,) Space (M. Mohanty et al. [4] )
For0<a<1,let

H, ={f € Cyr: w(f,t) = O(t)}. (2.12)
It is known [8] that H, is a Banach Space with the norm ||.||, defined by

M fle=Nfllc+supt™®w)0<a<l, (2.13)
t>0
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I f o=l f ¢

Hy SHg € Cp, 0<P<as<l (2.14)

and

2.6. Besov Space ( DeVore et al [3])
Let a > 0 be given and let k = [a] + 1. For 0 < p,q < oo, the Besov space([3],p-54) Bj (L,) is defined as follows:

By (Lp) ={f € Lp:Iflsg ) = Wk (f, Illaqyis finite}
where

1
[y @ we(£,£),)7 517, 0 < g <
sup W (f,t)p), q=
>
Itis known ([3], p-55) that ||w (f, )| (aq) 1t is a seminormif 1 < p,q < o and a quasi-seminorm in other cases.
The Besov norm for By (L) is

”Wk (fl ')”(a,q) = {

fllsg,y = HEllp + IWi(f Dl oq) 2.15)
1
It is known ([10], p-237) that for 2m -periodic function f , the integral [fo (™ wi (f, ) )1 %]q is replaced by

1
T, _ dt.=
o (e wie(f,0),)7 10,
We know ([3],[ 10]) the following inclusion relations.
For fixed a and p
By (Ly) € B (Ly), q<q;.
For fixed p and q

B
Bi(Ly) € B, (LB < a.
For fixed a and q

Bj(Ly) € Bi(Ly,), p1 <p-

2.7 Through out the paper we will use the following notations:
Let f bea 2m periodic function and f € L,[0,21], where p = 1. Then the Fourier series is given by
f(x) = %ao + 22, (a,cos nx + b, sin nx). (2.16)

Let S, (x) = S, (f,x) denote the n*" Partial sum of the Fourier series. Then as we know ([2]) that

1
Su(x) —f(0) ==~ Jy b @D, (w) du. (2.17)
where
o,(0) = d(x,u) = f(x + u) + f(x — u) — 2f(x) (2.18)
and the Dirichlet kernel
1 Zn sin(k+§)u
D,(u) = S+ 2ik=o COs ku = Zsmg (2.19)
The Eular mean of the Fourier series is given by:
El=1+q) "8, C, VK5, (2.20)
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and .
(O R R HENE) VI e A
Thus
T, () = Ef = () = 5-Jy ¢o(wK, (wdu,
where .
() = (14 @) By ™ 8
We need the following additional notations.
Grre (W) = (W), for 0<a<1,

PEED = g )+ e )~ 20,)  for 1<a<2
where ¢, (u) is as defined in (3.18) and f € B (L,) for k = [a]+ 1 and p = 1.

The k™ order modulus of smoothness is :

0. = wi(f,t), for 0<a<l,
Wi (f O = { w,(f,t), for 1<a<2.
and

T (x,t) ={

With the definition of T, (x,t) in (2.25) and wy (f,t), in (2.24),
Wi (Tn' t)p = | |Tn(xJ t) ”p

3. Theorems and Lemmas
Theorem 3.1 (P.Chandra [6])
Let f € Lip(a,p), 0 < a<1,p>1). Then

IIf —Ell,=0(n"* 0<a<l
Theorem 3.2 (P.Chandra [6])
Let f € Lip(a,1),(0 < a < 1). Then

lIf = Efll, = 0(n"“logn).
Lemma 3.1 (M. Mohanty et al. [4] )
Let 1< p<o and 0 <a<2Iff €L,[02r] thenfor 0 <t u <.
1. “(p("t!u)”p = 4Wk(f't)p
2. ”(p("t!u)”p = 4Wk(f'u)p
3 e, < 2w (f,u),

where k = [a] + 1.

Lemma 3.2 (M. Mohanty et al.[4] )
Let 0 < a < 2. Supposethat 0 < B < alf f € Bf(L,), p=1and 1 < q < o, then

e tu)llpdt -2

1 Jy 1K, I, Sadu=0W); @ rIK, W iidul"

84

T,(x+t)—T,(x) for 0<ax<l,
T,(x+t)—T,(x —t) — 2T, (x) for 1<a<2.

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

G.1)

(3.2)
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nll¢( tu )Ilp dt

2 I K, I wi—an<fﬁﬂmequW

where |K,, (w)| is defined as in equation (2.22).

Lemma 3.3 (M. Mohanty et al.[4])
Let 0 < a <2.Supposethat 0 < f < a. lf f €Bf(L,), p =1 and q =, then
sup t7Fl|p(x, t, )], = 0w F)

t<0,usm
Lemma 3.4

Let K, (u) The kernel of the Fourier series is defined in (2.22). Then
|IK,(W)| = 0(n) for 0<u<

K, (W) = 0C) for “<us<m

21

Proof of Lemma 3.4
K sin (k+§)u

Ky(w)=(1+q) "X, C q™

sinE
2
ifOSuS%andsin nu =n sinu
_ n _ksin(k+§)u
K, GOl = (1 + @) Ty " € q" o
2
2n+1
Ky ()] = (1 + )™= "C g N
|Kn (w)| = O(n).
if-<u<m, sin=>% And sin nu < 1.
n 2 T
—n\n N n_ksin(k+§)u
K@l = 1(1+ @) " Zio " € g
2
1
K, ()] = 0.
4. Main Theorem
Let 0<a<2and 0< B <alf f €BJ(Ly,) p =1 then
ITa (Ol = 0() for 1<q <o, @.1)
q \"P n q
and
1
1Tyt , ) = 0o for q = . (42)
Note:

(@) Our results generalizes the result of P. Chandra for 0 < a < 1 in Theorem 3.1, as Conditions (4.1) and (4.2) include
condition (3.1) in both cases when 1 < q < o and when q = oo.

(b) Our results also generalizes the result of P. Chandra for 0 < a <1 in Theorem 3.2, as Conditions (4.1) and (4.2) include
condition (3.2) in both cases when 1 < q < © and when q = oo,

5. Proof of the Main Theorem
Case l
We consider 1 < q <oo. Wehave p 21, 0 < < a <2

IITn(-)IIBg(Lp) = Ty + [lwie (T ) .00 G.D
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applying Lemma 4.1

IOl < 2007 162 1K, )] du

2
“Tn(')”p < =0 |Kn(u)| Wk(f'u)pdu
applying hélder inequality

2w ats L 1L m o we(Fuw)p q 1
T2l < 21U 1K (™ ey ) 7o [f]) E2r2)du)a
u p
By the definition of Besov space,

T2 (Ol < O (1K o) )3 du) s

Il < 0T + 4 (Kl @y da]

[By the inequality (x +y)" <x" +y"for 0<r <1]
T (Oll, = 0D +]]  (let)
Now

z 149 _L
1= [J (K, )u @)a1du] s
from Lemma 4.4 (case )

1= oy @ Td' e

= 0(:7) (5.2)
= 1 (il o dag
] = U @y
J=0(2) 5.3)
By (5.2) and (5.3),
Tl = 0C2) (54)

Now, by using the Besov space,

1
T _ dt. =
Wi (T, Ollgqy = Uy € Fwie(To, 0,)7 1

Ly (e g

o )Tl
From the definition of wy (T, t),,

Wi (Tnl t)p = | |Tn(x! t)”p

© NTn@Dllp,  dt,~
”Wk(Tn!t)”(ﬁ,q) = [fo ( B )q T]q
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T T ﬂ d l
= s s I 0IPdxy —s]e
Since T, (x,t) = = J;" ¢ (x, t, WK, (w)dw,

T To1 (T a g L
Wi (T, Ollgy < Uy Uy 120y o0t WK, (WdulPdxyr e

By repeated application of generalized Minkowski inequality,

dat

==l Uy Uy 19,60 P 1K, @) Pdx)pdu)? 5s]a

dt

<=y Uy 1K @llg0x twlldw? —asle

1

<=l o 1K @I @t )1 o) du

n||¢(xtu)||pdt 2

o 1K (wldu(/; T

||¢(Xfu)||p dat. =

o 1K (ldu[(fy + )52

u I|¢(xtu)||pdt n||¢(Xtu)||pdt =

o 1K, (Wldulf; L fo K (W) dul ], ik

By Lemma 4.2

1-1
q

1—l 1 q_1
- o) (Jy (K, @l )7 ) q+<fo"(|1<n(u>|u“"“a)q du>

Wy (T, Dl p.qy = O+ '] (let)

Now, proceed to estimate I’

=y (1K o) ™ PyaT du]
= [ + I K, (=)'
= 0 (uoFyidw) T + 00 (& (ueF-1yid)

I'=r,+r,

Let
z 4 I
I'y =0m)J@ wsFyardu) a
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1

Iy = 0 (E @ Fyaidn' e

Put the value of I'; and I', In equation (5.6),

2 Fg
Now

J = U (K@ oy duy

J'= 107+ B AR, ol ayiTan)

<=0 [fo% (ua_ﬁ%)qq:du] Pé + O(i)[fzn (ua_mi)qq:du]l_i

]’ = ]’1 +]’2
Let
z oc—B+l 4 1—l
J'1=0m[p @ ydu] e
J'y = 00) (o)
],1 = 0(71;_3)
Let

I = OO @ ayidu
J'2 = 0C) )

1
n“‘ﬁ)

]’2 = 0(

Put the value of J'; and ]', In equation (5.8), we have

1
n“‘ﬁ)

J'=0(
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from equation (5.5)

1

1
Wi (T Ol g.0) = 0 (—51) + 0 (o) (5.10)
n q
by equations (5.1) ,(5.4) and (5.9)
T, =0(=)+0(—) + 0(—
” n(.)”Bf(Lp) - (na) (na_B_%) (na—ﬁ)
1
”Tn(')”Bf(Lp) = O(na—B—%) for 1<qg<ow (5.11)
This completes the proof'in case L.
case Il
For q = oo,
Now, consider the case q = .
T (Ol ga )y = MO + Wi (T, Dl .0y (5.12)
1 rm
T,(0) = ~J; W) Ky(w)du
applying Lemma 4.1 (iii) in T, (x),
1 rm
Tl = —Jo (W, 1K )] du
2 (m
Tl = ZJo 1K (W] Wi (f, w)p du
<oy K] udu]
<OIU7 +J2) 1K, (W) u*du]
<o) Jy udu+o()fr u*'du
n
1
T Ollp =02 for g=o (5.13)

Now

[ITn(x0)]lp
Wi (To, Ol (8,00) = Stlil(’) B

-B 1
=sup —[f Iy oCxt,w) K,(wdu|dx]?
t>0 T
applying generalized Minkowski’s inequality,
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1
|15 (T Ollgs.q) = SuP Jo© dully 1 (x, £, w)|P |K, w)| P dx]?
>
t=B rm
= sup— J; IK, (W 119, t,0)]l, du
t>0
1 _
< Iy 1Ky wldusup t7)1¢ (x, £ wllp)
t>0
Using Lemma 4.3,
s —
Wi (T I pooy < 0D Jy u*PIK, (W] du
= o()Up + Jr HusFIK, (W) du

=0(1) fof u*PIK, (w)|du+ 0(1) Jz u*P|K,w)|du

=0(m) Jr utPdu+0(1) Jr u* P 'du

1
Wi (T I g0y = O(W) (5.14)

using equations (5.12), (5.13) and (5.14),

1 1
ITuOllgs ) = 0G) + 0 Gap)

T2yt ) = 0Gap) (5.15)

This completes the proof of Case II.

Hence, the proof of the main theorem.
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