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Abstract - In this study, we intend to investigate non-static plane symmetric spacetime in a framework of f(R,T) gravity, in an 

attempt to explain the accelerated expansion of the universe. Using the constant deceleration parameter approach, we 

obtain an exact solution of the cosmological model. The paper analyses some physical parameters such as the Hubble 

parameter, the equation of state, energy density, and the expansion scalar, which give information about the evolution of the 

universe. According to our findings, the deceleration parameter remains constant at 𝑞 = −0.45, which means the constant 

acceleration of the universe. The model shows a transition from a rapid early expansion phase to a more moderate, yet still 

accelerating phase, aligning well with observational data. Moreover, we examine the deviations from the equation of state 

parameter, demonstrating a progressive increase over cosmic time, highlighting the dynamic nature of dark energy. The 

outcomes recommend that the proposed model is a viable alternative to standard cosmological theories and presents a 

deeper understanding of the underlying mechanics driving cosmic acceleration. 

Keywords - Non static plane symmetric space-time, f(R,T) gravity, Cosmology, Constant deceleration parameter. 

1. Introduction 
Observations of many astronomical bodies [1-5] have reported that the universe is now facing a period of increased 

growth. Although General Relativity (GR) has been successful in various aspects, it single-handedly fails to provide the source 

of this acceleration. This has elicited controversies, especially considering the Type Ia Supernovae (SNeIa) data, which are the 

foundation of most of the hypotheses of the expanding universe. Due to these failures, a  number of theoretical frameworks 

were formulated. A notable suggestion is to propose a hypothetical type of energy, so -called dark energy, into GR. This idea 

has been well supported by both the theoretical analyses and observational data sets [6-8]. 

 

Instead, the gravitational framework has been altered, giving birth to Modified Theories of Gravity. These methods entail 

reformulation or generalization of the Einstein-Hilbert action to include the phenomena that cannot be well described by the 

standard GR. These changes tend to bring new geometric or dynamical structures, providing new insights into the dynamics of 

gravitational interactions and the large-scale dynamics of the universe. 

 

Among the first, as well as most prominent, of such alternatives is 𝑓(𝑅) gravity theory. This approach, which has been 

presented by Buchdahl [9], involves substituting linear “Ricci scalar R” in action with “non-linear function  𝑓(𝑅) ”. His 

original work showed that a variation in the structure of the gravitational Lagrangian could have significant effects when it  

came to the dynamics of cosmology, and therefore, it could be possible to eliminate the tension that could not be explained by 

classical GR. One of the seminal works in this direction was made by Starobinsky [10], who suggested the 𝑅 + 𝑅2 model. The 

given higher-order curvature term naturally leads to an inflationary period in the early universe, which efficiently addresses 

problems of flatness and the horizon. This model is now referred to as Starobinsky inflation, since its predictions are very 

similar to those measured in the nearly scale-invariant spectrum of “primordial fluctuations” in “CMB (Cosmic Microwave 

Background)”. 

 

𝑓(𝑇) Gravity is another significant branch of modified gravity, in which “torsion scalar T” is used instead of Ricci scalar 

as the key geometric quantity. In this regard, Shekh et al. [11] introduced a model 𝑓(𝑇)which is designed to reproduce the late-
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time behavior of standard ΛCDM cosmology, and describes observed acceleration by torsion and not the curvature. They used 

a redshift-dependent deceleration parameter 𝑞(𝑧) in their formulation, they were consistent with a number of cosmological 

observations. Building on this, Shekh et al. [12] further explored Tsallis 𝑓(𝑇)gravity by reconstructing a transition scale factor 

(TSF) to capture the universe's shift from decelerated to accelerated expansion. Employing MCMC (Markov Chain Monte 

Carlo) simulations, they constrained model parameters utilising Hubble parameter measurements, supernova data, and baryon 

acoustic oscillation (BAO) datasets. The results revealed that these models mimic quintessence -like behavior at the present 

epoch (𝑧 =  0) and gradually converge toward ΛCDM characteristics in the distant past (𝑧 = −1). 

Another promising alteration is 𝑓(𝑅, 𝑇) gravity, where “gravitational Lagrangian” depends on “Ricci scalar R”, also on trace of 

“stress-energy tensor T”. Harko et al. [13] introduced this framework and formulated the corresponding field equations, 

demonstrating how a matter content influences the gravitational dynamics. Their work also explored specific solutions, 

including those involving scalar fields, with implications for cosmology. Chirde and Shekh [14] applied this theory to “non-

static plane symmetric” spacetime occupied with a perfect fluid, deriving the state parameter equation and analyzing its role in 

cosmic acceleration. Their outcomes show that 𝑓(𝑅, 𝑇) gravity could effectively describe observed late-time accelerated 

expansion. 

 

In recent progress, Moraes [15] went further in developing the induced matter approach into a five-dimensional 𝑓(𝑅, 𝑇) 

gravity framework, where he came up with exact cosmological solutions. In his analysis, he found that “non-conservation” of 

“energy-momentum tensor” is inherent in 𝑓(𝑅, 𝑇) gravity, allowing dynamical reduction of extra dimension. This mechanism 

is suggested as one of the possible explanations of the acceleration of the expansion of our four-dimensional observable 

universe. 

 

On this framework, Moraes et al. [16] explored one specific type of 𝑓(𝑅, 𝑇)  in which the dependence on the trace T is of a 

polynomial form. Their results indicate that such a formulation is capable of generating a natural transition between decelerated 

and accelerated cosmic growth, and the same is consistent with the observations. In a related manner, Singh et al. [17] 

investigated a “Friedmann–Lemaître–Robertson–Walker (FLRW)” model within the same modified gravity, as well as studied 

cases where different spatial curvature (𝑘  =  0, ±1) could occur. They demonstrated that one can incorporate into the model a 

smooth transition between various stages of expansion of the universe by a parameterized scale factor.  

All these research papers give evidence that 𝑓(𝑅, 𝑇) gravity is an intriguing substitute for dark energy, and it can explain the 

current accelerated expansion without requiring the assumption of some exotic components. It is on the basis of such 

considerations that the present work is carried out within the context of  “𝑓(𝑅, 𝑇) gravity”. 

 

2. Formation of 𝒇(𝑹, 𝑻) Gravity 
We begin by considering a revised theory of gravity suggested by Harko et al. (2011), where action takes the form. 

 

𝑠 =
1

16𝜋
∫ 𝑓(𝑅, 𝑇)√−𝑔 𝑑 4𝑥 + ∫ 𝐿𝑚 √−𝑔 𝑑 4𝑥,        (1) 

 

with 𝑓(𝑅, 𝑇) representing a generic function dependent on “Ricci scalar 𝑅" alongside “trace T” of matter “energy-momentum 

tensor” 𝑇𝑖𝑗 , while 𝐿𝑚  is Lagrangian describing a matter content. 

“Energy-momentum tensor” associated with matter is described through a relation. 

 

𝑇𝒊𝒋 = −
𝟐

√−𝒈

𝜹(√−𝒈𝑳𝒎)

𝜹𝒈𝒊𝒋 ,           (2) 

 

alongside its trace by 𝑇 = 𝑔𝑖𝑗 𝑇𝑖𝑗  respectively, which can also be rewritten as 

 

𝑇𝑖𝑗 = 𝑔𝑖𝑗 𝐿𝑚 − 2
𝜕𝐿𝑚

𝜕𝑔𝑖𝑗.           (3) 

 

If we assume 𝐿𝑚   to be a function solely of the metric tensor 𝑔𝑖𝑗 , not its derivatives. 

 

To obtain field equations corresponding to the 𝑓(𝑅, 𝑇) framework, we perform a variation of the action on the metric 

tensor, 𝑔𝑖𝑗 , resulting in 

 

𝑓(𝑅, 𝑇)𝑅𝑖𝑗 −
1

2
𝑓(𝑅, 𝑇)𝑔𝑖𝑗 + 𝑓𝑅

(𝑅 , 𝑇)(𝑔𝑖𝑗 𝛻𝑖 𝛻𝑖 − 𝛻𝑖 𝛻𝑗 ) = 8𝜋𝑇𝑖𝑗 − 𝑓𝑇
(𝑅, 𝑇)𝑇𝑖𝑗 − 𝑓𝑇

(𝑅 , 𝑇)𝜃𝑖𝑗 ,   (4) 

where 
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𝜃𝑖𝑗 = −2𝑇𝑖𝑗 + 𝑔𝑖𝑗 𝐿𝑚 − 2𝑔𝑙𝑘 𝜕2𝐿𝑚

𝜕𝑔𝑖𝑗𝜕𝑔𝑙𝑚 ,         (5) 

 

Where 𝑓𝑅 =
𝛿 𝑓(𝑅 ,𝑇)

𝛿𝑅
, 𝑓𝑇 =

𝛿 𝑓(𝑅,𝑇)

𝛿𝑇
 and 𝛻𝑖  is “covariant derivative”. If one chooses a function of the form 𝑓(𝑅, 𝑇) ≡ 𝜑(𝑅), 

then the above relation becomes the field equation of the 𝑓(𝑅)  gravity theory. 

 

When modelling matter as a perfect fluid with “energy density ρ”, “pressure p”, as well as “four-velocity 𝑢𝑖” there is 

ambiguity in selecting the matter Lagrangian.  

 

For simplicity, we consider a form of “energy-momentum tensor” as  

𝑇𝑖𝑗 = (𝜌 + 𝑝)𝑢𝑖𝑢𝑗 − 𝑝𝑔𝑖𝑗 ,           (6) 

 

and matter “Lagrangian” could be denoted as 𝐿𝑚 = −𝑝  

also we have      𝑢𝑖𝑢𝑖 = 1.                    (7) 

 

Using equation (5), we get a  “variation of stress-energy tensor” of a  “perfect fluid” is 

 

𝜃𝑖𝑗 = −2𝑇𝑖𝑗 − 𝑝𝑔𝑖𝑗 .           (8) 

 

Furthermore, in some cases, field equations are also affected by a specific form of 𝜃𝑖𝑗 , which depends on the physical features 

of matter. Choice of 𝑓(𝑅, 𝑇)  impacts the resulting dynamics. A frequently studied model is 

 

𝑓(𝑅, 𝑇) = 𝑅 + 2𝐹(𝑇),           (9) 

 

as 1st choice, here 𝐹(𝑇) is “arbitrary function of trace” of “stress-energy tensor of matter”. By inserting this expression into the 

general field equations, we derive. 

 

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = 8𝜋𝑇𝑖𝑗 − 2𝐹′(𝑇)𝑇𝑖𝑗 − 2𝐹′(𝑇)𝜃𝑖𝑗 + 𝐹(𝑇)𝑔𝑖𝑗 ,       (10) 

 

Here, prime indicates differentiation for argument. Using equation (8), above equation (10) becomes 

 

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = 8𝜋𝑇𝑖𝑗 + 2𝐹′(𝑇)𝑇𝑖𝑗 + [2𝑝𝐹′ (𝑇) + 𝐹(𝑇)]𝑔𝑖𝑗 .       (11) 

 

3. Field equations and their solution 
Let us consider “Riemannian spacetime” defined by “line element” 

 

𝑑𝑠2 = 𝑒2ℎ (𝑑𝑡2 − 𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑠2𝑑𝑧2),         (12) 

 

Where 𝑟, 𝜃, 𝑧 are usual “cylindrical polar coordinates”, along with h & s, are functions of t alone. This line element's 

“plane symmetry” is well recognized. 

 

The gravitational field equation is 

 

𝐺𝑖𝑗 = 𝑅𝑖𝑗 −
1

2
𝑅 𝑔𝑖𝑗 = 8𝜋𝑇𝑖𝑗 − 2𝑓′ (𝑇)𝑇𝑖𝑗 − 2𝑓′ (𝑇)𝛩𝑖𝑗 + 𝑓(𝑇)𝑔𝑖𝑗 ,      (13) 

 

“Energy-momentum tensor” for “anisotropic dark energy” is represented by 
 

           𝑇𝑗
𝑖 = 𝑑𝑖𝑎𝑔[𝜌, −𝑝𝑥 , −𝑝𝑦 , −𝑝𝑧 ] 

     = 𝑑𝑖𝑎𝑔[1, −𝑤𝑥, −𝑤𝑦 , −𝑤𝑧 ],          (14) 

 

Where 𝜌 is “energy density of fluid” &  𝑝𝑥 , 𝑝𝑦 ,  𝑝𝑧  are pressure along 𝑥, 𝑦, 𝑧 axes correspondingly. 

 

“Energy momentum tensor” could be computed as   

𝑇𝑗
𝑖 = 𝑑𝑖𝑎𝑔[1, , −(𝑤 + 𝛿), −(𝑤 + 𝛿), −𝑤]𝜌.         (15) 
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To simplify, we select 𝑤𝑥 = 𝑤 and a “skewness parameter”, 𝛿  denotes deviations from w on x & y axes, correspondingly.  

Then the field equation (13) could be denoted as 

 

𝑅𝑗
𝑖 −

1

2
𝑅 𝛿𝑗

𝑖 = 8 𝜋 𝑇𝑗
𝑖 − 2𝑓′ (𝑇)  𝑇𝑗

𝑖 + [ 2𝑝 𝑓(𝑇) + 𝑓(𝑇) ] 𝛿𝑗
𝑖.       (16) 

 

We now select a  function 𝑓(𝑇) as a trace of “matter’s stress energy tensor” so that, 𝑓(𝑇) = 𝜇 𝑇 here, 𝜇 is an “arbitrary 

constant”. Using equations (13) and (15), the field equation (16) can be written as 

 

𝑒−2ℎ (2ℎ̈ + ℎ̇2 +
2ℎ̇ �̇�

𝑠
+

�̈�

𝑠
) = (8𝜋 + 2𝜇)(𝜔 + 𝛿)𝜌 − 𝜇(1 − 3𝜔 − 2𝛿)𝜌 − 2𝜇𝑝,     (17) 

 

𝑒−2ℎ (2ℎ̈ + ℎ̇2) = 8𝜋(𝜔) 𝜌 − 𝜇(1 − 3𝜔 − 2𝛿)𝜌 − 2𝜇𝑝,       (18) 

 

𝑒−2ℎ (
2ℎ̇�̇�

𝑠
+ 3ℎ̇2) = −(8𝜋 + 2𝜇)𝜌 − 𝜇(1 − 3𝜔 − 2𝛿)𝜌 − 2𝜇𝑝.      (19) 

 

Here, the dot represents the derivative for t.  

Equations (17) to (19), representing Einstein's field equations, constitute an interdependent set of nonlinear differential 

relations. Deriving viable and physically relevant solutions from this system is crucial for their utilization in astrophysic al and 

cosmological investigations. In pursuit of such solutions, we proceed by introducing:  

 

• A relationship between the metric potentials given by 

 𝑒ℎ = 𝛽𝑠𝑛 ,               (20) 

• The ω is assumed to have a direct proportional relationship with the δ, expressed as  

   𝑤 + 𝛿 = 0 .               (21) 

 

With the above conditions, terms of “physical parameters”, “energy density”, “equation of state parameter”, alongside 

deviation from the equation of state parameter, respectively, are obtained as” 

 

𝜌 = (
1

(8𝜋+2𝜇 )
) {2ℎ̈ − 2ℎ̇2 +

�̈�

𝑠
} 𝑒 −2ℎ          (22) 

 

𝜔 = (
−1

(8𝜋 +2𝜇)𝜌
) {2

ℎ̇ �̇�

𝑠
−

�̈�

𝑠
} 𝑒 −2ℎ          (23) 

 

𝛿 = (
1

(8𝜋+2𝜇 )𝜌
) {2

ℎ̇ �̇�

𝑠
−

�̈�

𝑠
} 𝑒−2ℎ           (24) 

 

4. Solution of the Field Equations 
Cosmological models are often categorized based on how the “Hubble parameter” and “deceleration parameter” evolve 

over time. These parameters can exhibit sign changes during cosmic evolution, indicating transitions between distinct phases of 

the universe. A central goal in cosmology is to trace this temporal behaviour and uncover the mechanisms driving it. In 

scenarios where “Hubble parameter” stays constant, “deceleration parameter” maintains a steady value of -1, which is 

characteristic of models such as “de Sitter and steady-state universes”. Classification of such models typically hinges on 

whether they represent accelerating or decelerating, expanding or contracting cosmic behaviours. Current observational 

evidence strongly favours a model of the universe undergoing accelerated expansion. 

As proposed by Berman [18,19], a  specific relationship connects the “deceleration parameter” 𝑞 with a scale factor 𝑎, given by 

the expression:  

  

𝑞 =
𝑎�̈�

�̇�2              (25) 

 

Here 𝑎 represents “scale factor” and 𝑞  denotes “deceleration parameter”. 

 

The sign of 𝑞  determines the inflationary nature of the model. A negative 𝑞  suggests an inflationary phase, while recent 

“Type Ia supernovae” observations represent that the universe is presently accelerating, with 𝑞  estimated within the range 

 −1 ≤ 𝑞 ≤ 0. “Deceleration parameter” remains constant if “Hubble parameter” 𝐻 is linked to “scale factor” as follows: 
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𝐻 = 𝑏𝑎−𝑚 = 𝑏𝑉−𝑚/3            (26) 

 

Where 𝑏 and 𝑚 are constants. 

 

From equation (25), the parameter for deceleration is provided by: 

𝑞 = −1 + 𝑚             (27) 

 

This equation provides a constant value for 𝑞 , which could be “positive or negative”. “Positive value” corresponds to 

“decelerating universe”, while a “negative value” denotes an “accelerating model”. By solving equation (26), we get 

 

𝑎 = (𝑎1𝑡 + 𝑎2
)

1

(1+𝑞)           (28) 

 

From equation (28), it is evident that the average “scale factor” of the model depends on cosmic time. When 𝑞 > −1, the 

scale factor increases over time, whereas for 𝑞 < −1, it decreases. However, the scale factor is undefined at 𝑞 = −1. 

Additionally, it is seen that for 𝑞 > −1, these parameters begin at a  constant value, except at a  specific point. 𝑡𝑠 = −
𝑎2

𝑎1
. At this 

point, the scale factor starts from 0, indicating the presence of a singularity (point-type) [20] at  𝑡𝑠. 

Hence, the metric potentials are obtained as 

 

𝑠 = (𝑎1𝑡 + 𝑎2
)

1

(1+𝑞)(4𝑛+1)           (29) 

 

ℎ =
𝑛

(1+4𝑛) (1+𝑞)
Log(𝑎1𝑡 + 𝑎2 )          (30) 

 

The given Figure illustrates the evolution of metric potentials 𝑠(𝑡) & ℎ(𝑡) in a non-static plane-symmetric spacetime as 

functions of cosmic time t, both showing a monotonically increasing behavior (See Figure 1). This suggests an expanding 

spacetime geometry, where distances grow over time. The close proximity of the two curves indicates nearly isotropic 

expansion, though a slight difference between them hints at some anisotropic effects. In a cosmological context, such behavio r 

is typically associated with the large-scale evolution of the universe, influenced by matter, radiation, or dark energy. The 

smooth and continuous growth of the metric potentials implies a gradual and steady expansion without abrupt transitions. This  

expansion could indicate a universe evolving towards isotropy, where any initial anisotropies diminish over time due to cosmic 

evolution. 

 
Fig. 1 The behaviour of the metric potentials of the universe versus time (t). 
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To extend this interpretation, the increasing nature of the metric potentials aligns with general relativistic models of 

cosmological evolution, such as Bianchi-type anisotropic models or plane-symmetric solutions that describe the early universe. 

If spacetime were static, the metric potentials would remain constant; their variation with time signifies dynamic  geometry, 

possibly driven by evolving “energy-momentum tensor”. Presence of anisotropy, as suggested by slight deviation between 𝑠(𝑡) 

and ℎ(𝑡), could be due to directional dependencies in pressure or shear effects. Such models are essential in understanding 

deviations from the standard isotropic and homogeneous cosmologies, shedding light on early universe conditions and possible 

remnants of primordial anisotropies. 

 

With these metric potentials, “physical” and the “kinematical parameters” are obtained as the “energy density” of the 

derived model and are gained as 

𝜌 =
𝑎1

2(𝑞+2𝑛(3+5𝑛+3𝑞+4𝑛𝑞))(𝑎1𝑡+𝑎2)
−2−

2𝑛

1+4𝑛+𝑞+4𝑛𝑞

2(1+4𝑛)2(1+𝑞)2(4𝜋 +𝜇)
        (31) 

 

The graph depicting the energy density (ρ) in a “non-static plane-symmetric space time” reveals a  rapid decline from an 

initially high value, asymptotically approaching zero as time (t) progresses. This behavior is clearly seen in Figure 2 and the 

characteristic of an expanding universe, where the same amount of energy is distributed over an increasingly larger volume, 

leading to a dilution effect. This aligns with the “Big Bang model”, which posits that the universe initiated from a hot, dense 

state and has been growing as well as cooling ever since. The smooth and continuous decay of energy density suggests a 

gradual and consistent expansion, devoid of abrupt changes.  

 
Fig. 2 Behaviour of energy density (ρ) of the universe versus time (t). 

 

Although this specific graph does not make any direct consideration of dark energy, a thorough cosmological model would 

have to factor in the effect of dark energy, since it is believed that the accelerated expansion that is being experienced in the 

universe today is a resultant effect of dark energy. Moreover, the fact that there are no oscillations or variations in the e nergy 

density implies that the universe is relatively “homogeneous and isotropic”, at least in the domain characterized by this plane-

symmetric space time. Such a simplified model can serve to give interesting insights into the generally evolving energy conte nt 

of the universe, but would probably need additional refinements to correspond to the actualities of the real cosmos, such as the 

structures that form and the distribution of matter. 

 

The parameter of the equation of state is represented as 

 

𝜔 =
(𝑞+𝑛(6+4𝑞))(𝑎1𝑡+𝑎2)

2𝑛

1+4𝑛+𝑞+4𝑛𝑞

𝑞 +2𝑛(3+5𝑛 +3𝑞+4𝑛𝑞)
.          (32) 
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Graph 3, which illustrates the behaviour of the equation of “state parameter” (𝜔) in a “non-static plane-symmetric space 

time”, shows an interesting as well as possibly disturbing image of the universe’s future. The parameter, ω, that connects 

pressure as well as energy density of “dark energy”, is dynamically changing; it has a smooth negative evolution that depends 

on “cosmic time (𝑡)”. At first, the value of 𝜔 is definitely greater than -1, which makes it fall in the context of quintessence-like 

“dark energy”. Such a form of dark energy, though accelerating the expansion, does so at a  rate that is manageable. 

Nevertheless, 𝜔 continues to decrease as time goes by, and at some point, it passes the critical threshold of -1. This "phantom 

divide line" is the border between quintessence and a more dreadful type of dark energy  called phantom dark energy. 

 

When ω falls below -1, the universe transitions to a period of super-accelerated expansion. Growth in this case not only 

increases but also at an increasing rate. Consequences of “phantom dark energy” are dire, and they might cause a "Big Rip" 

scenario. In this catastrophic destiny, the growth becomes violent to the extent that it will eventually rip apart all the structures 

that are held together, including galaxies and stars, to atoms and even space time itself. 

 

The negative decrease seen in the value of ω indicates that “dark energy,” which is causing expansion of this space-time, is 

not a constant cosmological constant but a dynamic entity. The adverse pressure that drives rapid growth increases with time. 

This begs very fundamental questions on the nature and origin of the “dark energy” and the eventual fate of the universe. 

 

 
Fig. 3 The behaviour of the state parameter (𝝎) of the universe versus time (t). 

 

Although this graph can offer a persuasive insight into the potential development of dark energy and its implications, it 

should be borne in mind that it is merely a simplified model. The actual universe is far more complicated, and our knowledge 

of dark energy is still developing. However, this visualization is a graphic illustration of the absolute strength of the dark 

energy and the overwhelming impact it has on the cosmic landscape. It emphasizes the need to conduct more studies to unveil 

the secrets of “dark energy” and ascertain the real direction of growth of our universe. 

 

Deviation from the equation of state parameter is 

𝛿 = −
(𝑞+𝑛(6+4𝑞))(𝑎1𝑡+𝑎2)

2𝑛
1+4𝑛+𝑞+4𝑛𝑞

𝑞 +2𝑛(3+5𝑛 +3𝑞+4𝑛𝑞)
          (33) 

 

Our analysis of the deviation (δ) of a standard cosmological parameter in a dark energy scenario revealed a uniform 

positive and increasing trend in keeping with the cosmic time evolution  (See Figure 4). Starting at a  rough value of 0.9 at the 

early epoch, this deviation shows that there was an early departure from a standard cosmological parameter. As the universe 

developed, the deviation increased slowly, peaking at about 1.6 at some time in the middle.  When it got to the current period, 

the value was close to 2.2, which indicates an increased diversification in terms of the expected behaviour. This smooth 

increase emphasizes the dynamic nature of the parameter, which means that it was not fixed in cosmic times, and it did not 

have a concrete value. 
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Moreover, the identified deviation indicates the potential for non-homogeneity of the universe development. In an 

absolutely homogeneous isotropic universe, one would expect a uniform parameter, but the point of divergence is directional, 

and therefore, there could be a non-uniform distribution. This non-uniformity can be due to a lot of different things and can be 

a consequence of effects of the phenomena in the early universe, asymmetric expansion patterns, or the effect of interaction 

between “dark energy” and other elements that form the universe. The existence of this non-uniformity throughout the 

universe’s history is a good chance to explore the main peculiarities of the dark energy and its contribution to the formation of 

large-scale structures. Investigation of non-uniform behavior has an essential role in the development of “cosmological 

models” and the identification of the accuracy of different “theories of gravity”. 

 
Fig. 4 Behaviour of the deviation (δ) of the universe versus time (t) 

 

Under the assumption of a constant “deceleration parameter”, which we have used to build our proposed cosmological 

scenario, the “deceleration parameter q” is kept at a  constant value of −0.45, and hence, the model parameter choice of m = 

0.55. This constant negative value of q implies the universe, which is continually gaining speed in the course of cosmic time. 

As naive as it is, the constant deceleration parameter approach is a strong analytical tool. It allows us to get precise solutions of 

equations of “gravitational field”, and this allows us to better comprehend the dynamics of expansion of the universe without 

the complexity of having time-dependent behaviour of deceleration. Although this model is not likely to account exhaustively 

for that detailed evolution implied by current observational data, it provides a  conceptual foundation and a starting point 

against which more detailed models can be compared. The time evolution of “Hubble parameter” as well as “expansion scalar 

θ” is shown in graphical representation (See fig. 5). Both quantities exhibit monotonic decrease as cosmic time increases, 

showing that the universe is experiencing acceleration in its expansion, but the expansion rate reduces as time passes. In the 

beginning, H and θ are large, representing the rapid expansion of the universe. With time, both parameters slowly decrease and 

asymptotically approach a constant value, indicating a passage to a steady-state expansion in the far future. This implies that 

the universe is moving out of a phase of fast growth into moderate or faster-but-still-accelerating growth, as is predicted by the 

current negative constant value of “deceleration parameter” 𝑞 =  −0.45. 

 

Findings of current study, where the real-life scenario of a “non-static plane symmetric space time” was examined within a 

framework of 𝑓(𝑅, 𝑇) gravity having constant “deceleration parameter” is in concurrence with number of other studies in the 

recent past, which have been dedicated to the dynamics of accelerated expansion of universe.  For example, Shekh et al. [21] 

studied a late-time 𝑓(𝑇) gravity model with a redshift-dependent deceleration parameter and showed that it  is consistent with 

observational data, which is quite similar to the constant q approach used here. Likewise, Shekh et al. [22] in their 

reconstruction of Tsallis 𝑓(𝑇) gravity using transition scale factors and MCMC constraints had evolving EoS parameters that 

crossed the phantom divide, an effect which the present model sees in its dynamic ω. Değer et al. [23] constructed FLRW-

based 𝑓(𝑅, 𝑇) cosmologies that admit decelerated and accelerated phases through parametric forms of the scale factor, which is 

similar to what has been done in this article, a  methodology analogous to the Berman-type variation. Moreover, Moraes and 

collaborators [24] showed that polynomial 𝑓(𝑅, 𝑇) models naturally yield late-time acceleration, paralleling the asymptotically 

stable expansion behavior demonstrated here. Recent findings by Beesham and Jokweni [25] further con firm that anisotropic 
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spacetimes in 𝑓(𝑅, 𝑇) gravity can replicate realistic cosmic histories without invoking dark energy, supporting this article’s 

emphasis on matter-geometry coupling effects. Compared to these recent works, the current study's use of a plane symmetric 

non-static configuration offers an alternative geometric framework that upholds the broader viability of 𝑓(𝑅, 𝑇) models 

describing “late-time cosmic acceleration”. 

 
Fig. 5 Behaviour of Hubble parameter (𝑯) and expansion scalar (𝜽)  of the universe versus time t. 

 

5. Results and Conclusion  
In the current paper, we assume a cosmological model that is not static but formulated as a “plane-symmetric model” in 

the framework of “𝑓(𝑅, 𝑇) gravity” based on the assumption of a  constant parameter of deceleration. Evidences suggest that 

the universe undergoes a long-term accelerated growth with a definite deceleration parameter 𝑞 = −0.45. Such a simplified 

picture presents a model that is analytically tractable and that exhibits salient aspects of cosmic evolution.  

 

According to our analysis of the physical behavior of the model, the “Hubble parameter”, as well as the expansion scalar, 

will decrease in time, which indicates a shift between the initial phase of rapid expansion and some more constant, but still  

accelerating, cosmic evolution. The energy density is displayed that decays asymptotically, which is in line with the 

expectations of an expanding universe where matter is diluted more. Moreover, the parameter of the Equation of State (EoS) is 

dynamic; it changes with cosmic time. It is initially at the quintessence regime and then slowly traverses the phantom divide , 

which is an indicator of a more accelerated phase. Such time dependence of the EoS parameter is an illustration of the 

dynamical behavior of “dark energy” and a confirmation of the notion of non-constancy of its influence. 

 

Compared to the existing observational data, it may be noted that the model agrees with the contemporary cosmological 

constraints, and hence it can be considered as an alternative explanation of “late-time acceleration of the universe”. Such 

results are important because they give the possibility of having new explanations of the cosmological phenomena through 

modified gravity theories like 𝑓(𝑅, 𝑇). In the future, this framework can be refined by using more detailed data sets of 

observations and experimenting with the different versions of the 𝑓(𝑅,𝑇) function to come up with a better understanding of 

how the universe evolved. 
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