Original Article

Bitopological Harmonious Labeling of Some Star-Related Graphs

M. Subbulakshmi¹, S. Chandrakala², G. Siva Prijith³

¹PG and Research Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti. ²PG and Research Department of Mathematics, Tirunelveli Dakshina Mara Nadar Sangam College, T.Kallikulam. ³Research Scholar, Reg. No. 19222052092004, G. Venkataswamy Naidu College, Kovilpatti. Affiliated to Manonmaniam Sundaranar University, Tirunelveli.

²Corresponding Author: chandrakalakamaraj@gmail.com

Received: 22 May 2025 Revised: 29 June 2025 Accepted: 14 July 2025 Published: 27 July 2025

Abstract - Bitopological harmonious labeling for a graph G = (V(G), E(G)) with n vertices, is an injective function $f:V(G) \to 2^X$, where X is any non-empty set such that |X| = m, m < n and $\{f(V(G))\}$ forms a topology on X, that induces an injective function $f^*: E(G) \to 2^{X^*}$, defined by $f^*(uv) = f(u) \cap f(v)$ for every $uv \in E(G)$ such that $\{f^*(E(G))\}\$ forms a topology on X^* where $X^*=X\setminus\{1,2,\ldots,m\}$. A graph that admits bitopological harmonious labeling is called a bitopological harmonious graph. In this paper, we discuss bitopological harmonious labeling of some star-related graphs.

Keywords - Bistar graph, Bitopological harmonious graph, Firecracker graph, Lilly graph, Spider graph.

1. Introduction

In this paper, we consider only simple, finite and undirected graphs. The graph G has a vertex set V = V(G) and edge set E = E(G). For notations and terminology, we refer to Bondy and Murthy[5]. Acharya[1] established another link between graph theory and point set topology. Selestin Lina S and Asha S defined bitopological star labeling for a graph G = (V, E) as X being any non-empty set if there exists an injective function $f:V(G)\to 2^X$ Which induces the function $f^*:E(G)\to 2^X$ as $f^*(v_1v_2) = [f(v_1) \cup f(v_2)]^c$ for every $v_1, v_2 \in V(G)$, if $\{f(V(G))\}$ and $\{f^*(E(G)) \mid f \in X \text{ are topologies on } X$, then G is said to be a bitopological star graph. In this paper, we proved that some star-related graphs are bitopologically harmonious graphs.

2. Basic Definitions

2.1. Definition

Bitopological harmonious labeling of a graph G = (V(G), E(G)) With n vertices, an injective function $f: V(G) \to 2^X$, where X is any non-empty set such that |X| = m, m < n and $\{f(V(G))\}$ Forms a topology on X, that induces an injective function $f^*: E(G) \to 2^{X^*}$, defined by $f^*(uv) = f(u) \cap f(v)$ for every $uv \in E(G)$ such that $\{f^*(E(G))\}$ forms a topology on X^* where $X^* = X \setminus \{1, 2, ..., m\}$. A graph that admits bitopological harmonious labeling is called a bitopological harmonious graph.

2.2. Definition

Bistar graph $B_{m,n}$ is obtained from K_2 by attaching m pendant edges to one end of K_2 and n pendant edges to the other end of K_2 .

A spider graph $SP(1^n2^{2m})$ is a star graph $K_{1,n+m}$ such that each of which m vertices is joined to a new vertex.

2.4. Definition

Lilly graph L_n , $n \ge 2$, is obtained from 2 stars $2K_{1n}$, $n \ge 2$, by joining 2 paths $2P_n$, $n \ge 2$ with sharing a common vertex.

2.5. Definition

Firecracker graph $F_{n,k}$ Is the graph obtained by concatenation of n k – stars by linking one leaf from each.

3. Main Results

Theorem 3.1

The bistar graph $B_{m,n}$, m, $n \ge 1$ is a bitopological harmonious graph.

Proof:

```
Let G = B_{m,n}.
Let V(G) = \{u, v\} \cup \{u_i/1 \le i \le m\} \cup \{v_i/1 \le i \le n\}.
Let E(G) = \{uv\} \cup \{uu_i / 1 \le i \le m\} \cup \{vv_i / 1 \le i \le n\}.
|V(G)| = m + n + 2, |E(G)| = m + n + 1.
Let X = \{1, 2, ..., |V(G)| - 1\}.
Define a function f: V(G) \to 2^X As follows:
f(u_1) = \phi;
f(u_i) = \{1, 2, ..., i - 1\} for 2 \le i \le m;
f(u) = \{1, 2, \dots, m\};
f(v_i) = \{1, 2, \dots, m + i\} \text{ for } 1 \le i \le n;
f(v) = \{1,2,\ldots,m+n+1\}.
Here, all the vertex labels are distinct and form a topology on X.
Then the induced function f^*: E(G) \to X^* It is given as follows:
f^*(uv) = f(u) \cap f(v) for all uv \in E(G).
f^*(uu_i) = f(u_i) for 1 \le i \le m.
f^*(vv_i) = f(v_i) for 1 \le i \le n.
f^*(uv) = f(v).
Since f is 1-1 and so f^*. Also \{f^*(E(G))\} forms a topology on X^*.
```

Example 3.2

Fig. 1 Bitopological harmonious labelling of B_{5.6}

Theorem 3.3

```
The Spider graph SP(1^n 2^m), \ m,n \geq 1 is a bitopological harmonious graph. Proof: Let G = SP(1^n 2^m). Let V(G) = \{v_i, u_j/0 \leq i \leq n, 1 \leq j \leq 2m\} where v_0 be the centre vertex. Let E(G) = \{v_0v_i/1 \leq i \leq n\} \cup \{v_0u_{2i-1}/1 \leq i \leq m\}\} \cup \{u_{2i-1}u_{2i}/1 \leq i \leq m\}. Then |V(G)| = n + 2m + 1, |E(G)| = n + 2m. Let X = \{1, 2, \ldots, |V(G)| - 1\}.
```

Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

```
Define a function f: V(G) \rightarrow 2^X As follows:
f(v_1) = \phi;
f(v_i) = \{1, 2, \dots, i-1\} for 2 \le i \le n;
f(u_{2i}) = \{1, 2, ..., n + 2i - 2\} \text{ for } 1 \le i \le m;
f(u_{2i-1}) = \{1, 2, ..., n + 2i - 1\} \text{ for } 1 \le i \le m;
f(v_0) = \{1, 2, \dots, n + 2m\}.
Here, all the vertex labels are distinct and form a topology on X.
Then the induced function f^*: E(G) \to 2^{X^*} It is given as follows:
f^*(uv) = f(u) \cap f(v) for all uv \in E(G).
Here f^*(v_0 v_i) = f(v_i) for 1 \le i \le n;
f^*(v_0u_{2i-1}) = f(u_{2i-1}) for 1 \le i \le m;
f^*(v_{2i-1}u_{2i}) = f(u_{2i}) for 1 \le i \le m.
Since f is 1-1 and so f^*. Also \{f^*(E(G))\} forms a topology on X^*.
Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.
```

Example 3.4

Fig. 2 Bitopological harmonious labelling of $SP(1^52^6)$

Theorem 3.5

```
Lilly graph L_n, n \ge 2 is a bitopological harmonious graph.
```

```
Proof:
Let G = L_n.
Let V(G) = \{u_i / 1 \le i \le 2n - 1\} \cup \{v_i / 1 \le i \le 2n\}.
Let E(G) = \{v_i u_n / 1 \le i \le 2n\} \cup \{u_i u_{i+1} / 1 \le i \le 2n - 2\}.
|V(G)| = 4n - 1, |E(G)| = 4n - 2.
Let X = \{1, 2, ..., |V(G)| - 1\}.
Define a function f: V(G) \rightarrow 2^X As follows:
f(v_1) = \phi;
f(v_i) = \{1, 2, \dots, i-1\} \text{ for } 2 \le i \le 2n;
f(u_i) = \{1, 2, ..., 2n + i - 1\} for 1 \le i \le 2n - 1.
Here, all the vertex labels are distinct and form a topology on X.
Then the induced function f^*: E(G) \to 2^{X^*} It is given as follows:
f^*(uv) = f(u) \cap f(v) for all uv \in E(G).
Here f^*(v_i u_n) = f(v_i) for 1 \le i \le 2n;
f^*(u_i u_{i+1}) = f(u_i) for 1 \le i \le 2n - 1.
Since f is 1-1 and so f^*. Also \{f^*(E(G))\} forms a topology on X^*.
```

Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.6

Fig. 3 Bitopological harmonious labelling of L_5

Theorem 3.7

The firecracker graph $F_{n,k}$, $n, k \ge 1$ is a bitopological harmonious graph.

Proof:

Let $G = F_{n,k}$.

Let $V(G) = \{v_{ij} / 1 \le i \le n, 1 \le j \le k\}.$

Let $E(G) = \{v_{i1}v_{ij}/1 \le i \le n, 2 \le j \le k\} \cup \{v_{ik}v_{i+1k}/1 \le i \le n-1\}.$

|V(G)| = nk, |E(G)| = nk - 1.

Let $X = \{1, 2, ..., |V(G)| - 1\}.$

Define a function $f: V(G) \rightarrow 2^X$ As follows:

 $f(v_{12}) = \phi;$

 $f(v_{1j}) = \{1, 2, \dots, j-2\}$ for $3 \le j \le k-1$;

 $f(v_{i1}) = \{1, 2, \dots, ki - 2\}$ for $1 \le i \le n$;

 $f(v_{ik}) = \{1, 2, ..., ki - 1\}$ for $1 \le i \le n$;

 $f(v_{ij}) = \{1, 2, \dots, k(i-1) + j - 2\} \text{ for } 2 \le i \le n, \ 2 \le j \le k-1.$

Here, all the vertex labels are distinct, and they form a topology on X.

Then the induced function f^* : $E(G) \to 2^{X^*}$ It is given as follows:

 $f^*(uv) = f(u) \cap f(v)$ for all $uv \in E(G)$.

Here $f^*(v_{i1}v_{ij}) = f(v_{ij})$ for $1 \le i \le n$, $2 \le j \le k$;

 $f^*(v_{ik}v_{i+1k}) = f(v_{ik})$ for $1 \le i \le n-1$.

Since f is 1-1 and so f^* . Also $\{f^*(E(G))\}$ forms a topology on X^* .

Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Fig. 3 Bitopological harmonious labelling of $F_{4.6}$

4. Conclusion

In this paper, we proved that some star-related graphs, such as the bistar, spider graph, lilly graph and firecracker graph, are bitopologically harmonious graphs.

References

- [1] B.D. Acharya, and K.A. Germin, "Set Valuations and their Applications," MRI Lecture Note in Applied Mathematics, no. 2, 1983. [Google Scholar]
- [2] S. Selestin Lina, and S. Asha, "On Topological Cordial Graphs," Journal of Science and Technology, vol. 5, pp. 25-28, 2020.
- [3] S. Selestin Lina, and S. Asha, "Topological Cordial Labeling of Some Graphs," *Malaya Journal of Matematik*, vol. 9, no. 1, pp. 861-863, 2021. [CrossRef] [Google Scholar] [Publisher Link]
- [4] S. Selestin Lina, and S. Asha, "Bitopological Labeling of Tree Related Graphs," *AIP Conference Proceedings*, vol. 2385, no. 1, 2022. [CrossRef] [Google Scholar] [Publisher Link]
- [5] J.A Bondy, and U.S.R. Murthy, *Graph Theory and Application*, North Holland, New York, 1976. [Google Scholar] [Publisher Link]
- [6] Joseph A Gallian, "A Dynamic Survey of Graph Labeling," *The Electronic Journal of Combinatorics*, vol. 1, 2018. [Google Scholar] [Publisher Link]