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Abstract - Bitopological harmonious labeling for a graph G = (V(G),E(G)) with n vertices, is an injective function
f:V(G) - 2%, where X is any non—empty set such that |X| =m, m < n and {f (V(G))} forms a topology on X, that
induces an injective function f*:E(G) — 2% defined by f*(uv) = f(u)n f(v) for every uv € E(G) such that
{f*(E(G))} forms a topology on X* where X* = X\{1,2, ....,m}. A graph that admits bitopological harmonious labeling is
called a bitopological harmonious graph. In this paper, we discuss bitopological harmonious labeling of some star-related
graphs.
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1. Introduction

In this paper, we consider only simple, finite and undirected graphs. The graph G hasa vertex set V = V(G) and edge set
E = E(G). For notations and terminology, we refer to Bondy and Murthy[5]. Acharya[l] established another link between
graph theory and point set topology. Selestin Lina S and Asha S defined bitopological star labeling fora graph G = (V,E) as X
being any non-empty set if there exists an injective function f:V(G) — 2%¥ Which induces the function f*:E(G) = 2% as
Fr(yv,) = [fwy) U f(v,)]¢ for every vy,v, € V(G), if {f(V(6))}and {f*(E(G))If UX are topologies on X, then G is
said to be a bitopological star graph. In this paper, we proved that some star-related graphs are bitopologically harmonious
graphs.

2. Basic Definitions
2.1. Definition

Bitopological harmonious labeling of a graph G = (V(G), E(G)) With n vertices, an injective function f: V(G) — 2%,
where X is any non—empty set such that |[X| = m, m < nand {f(V(G))} Forms a topology on X, that induces an injective
function f*: E(G) — 2%, defined by f*(w) = f(u) N f(v) forevery uv € E(G) such that {f*(E(G))} forms a topology
on X* where X* = X\{1,2, ...., m}. A graph that admits bitopological harmonious labeling is called a bitopological
harmonious graph.

2.2. Definition
Bistar graph B, , is obtained from K, by attaching m pendant edges to one end of K, and n pendant edges to the other

end of K,.

2.3. Definition
A spider graph SP(1"2%™) is a star graph K ,, ,,, such that each of which m vertices is joined to a new vertex.

2.4. Definition
Lilly graph L,, n = 2, is obtained from 2 stars 2K, ,,,n = 2, by joining 2 paths 2F,,n = 2 with sharinga common vertex.

This is an open access article under the CC BY -NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Chandrakala et al. / IJMTT, 71(7), 44-48, 2025

2.5. Definition
Firecracker graph F, , Is the graph obtained by concatenation of n k — stars by linking one leaf from each.

3. Main Results
Theorem 3.1
The bistar graph B, ,, m,n = 1 is a bitopological harmonious graph.

Proof:

Let G = By, 4.

LetV(G) ={lu, v} u{y/1<i<mju{y;/1<i<n}
Let E(G) ={w} U {uu; /1 <i<m}u {wy;/1<i<n}
V@) =m+n+2|EG)=m+n+1

LetX ={1,2,...,|V(G)| — 1}.

Define a function f: V(G) — 2% As follows:

fwy) =¢;
fw)={12,...,i—1}for2 < i < m
f={1.2,...,m};

fw)={12,....m+i} forl <i<mn

fw)={2,...m+n+1}

Here, all the vertex labels are distinct and form a topology on X.

Then the induced function f*: E(G) — X* Itis given as follows:

ffaw)=fw) n f(v) foralluv € E(G).

frau) = flw) forl<i<m

frv) =flw) forl<i<n

frw) = f(w).

Since f is 1-1 and so f*. Also {f*(E(G))} forms a topology on X *.

Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.2
[} {1,2,...,6}
U] U1
m i
Uz V2
{1,2} {1,2,..,5} {1.2,..,12} 1.2,..,8)
U w v vy
{123} {1,2...9)
Uy vy
{1.2,...4} {1.2,...,10}
Us Us
{1,211}
Vg
Fig. 1 Bitopological harmonious labelling of B ¢
Theorem 3.3
The Spider graph SP(1"2™), m,n = 1is a bitopological harmonious graph.
Proof:

Let G = SP(1"2™).

Let V(G) = {vi,u;j/0 <i<n,1<j< 2m} where v, be the centre vertex.

Let E(G) = {vyv;/1 < i <n}U wouy_1/1 <i <m}U {uy_quy/1 <i<m). .
Then |V(G)| =n+2m+ 1, |E(G)| =n+2m.

LetX ={1,2,...,[V(G)| — 1}.
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Define a function f: V(G) — 2% As follows:

fw,) = ¢;

fw)={12,...,i—1} for2< i < n

fuy,) ={1,2,..,n+2i—2} for1 < i < m;
fluy,—)={12,....n+2i—1} forl1< i < m

fy) =1{1,2,...,n +2m}.

Here, all the vertex labels are distinct and form a topology on X.
Then the induced function f*: E(G) = 2% Itis given as follows:
frw) = f n f@) foralluv e E (G).

Here f*(vov;) = f(v;) forl <i <n;

f*@ougiiy) = fluy_y) forl <i <m;

@y quy) = f(uy) forl < i< m.

Since f is 1-1 and so f*. Also {f*(E(G))} forms a topology on X*.
Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.4

{13 va {1,2,3}

(12,17}

Y1
us ug u; ug

11,2006 (12,8} ] {12,000 103[{1,2,..,12}] {1,2....14}[1.2,....16}

(1,2,,5) {1,207 {1,209 {1,211} §1,2,..,13} {1,2,...,15}

Fig. 2 Bitopological harmonious labelling of SP(1526)

Theorem 3.5

Lilly graph L,,n = 2 is a bitopological harmonious graph.

Proof:

LetG =L,.

Let V(G) ={u;/1<i<2n—-1}U {v;/1<i <2n}.

Let E(G) = {vju,/1 <i<2n}U{uu,/1 <i<2n-2}.
[V(G)| =4n —1,|E(G)| = 4n — 2.

LetX ={12,...,[V(G)| — 1}.

Define a function f:V(G) — 2% As follows:

fw,) = ¢;

fw)={12,...,i—1} for2 < i < 2n;
fw)=1{12,...2n+i—1} for1< i < 2n— 1.

Here, all the vertex labels are distinct and form a topology on X.
Then the induced function f*: E(G) — 2% Itis given as follows:
f*w) = f@ n f@) foralluv e E (G).

Here f*(vu,) = f(v) for1 < i < 2n;

) =f@w)for1 <i<2n-—1.

Since f is 1-1 and so f*. Also {f*(E(G))} forms a topology on X*.
Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.
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Example 3.6

¢ il {1;2} 123} 112,..4)

¥y Y2 ¥y Y4 Vs

{1,2,...,10} ‘2 {1.2...12} v, {12,141 ug {1206y v, {1218}
W12l w2130 {L2wal5) w1207
6 S\. ¥y “u,
112,50 (1206} {1,207} {1,208} {1.2.0..9)
Fig. 3 Bitopological harmonious labelling of Ls

Theorem 3.7
The firecracker graph F, ,,n,k = 1 is a bitopological harmonious graph.
Proof:
LetG =F, .

Let V(G) = {v;/1<i<n1<j<k}

Let E(G) = {vyv;;/1<i<n, 2<j<k}U{vgv,,/l1<i<n-—1}
[V(G)| = nk,|E(G)] = nk — 1.

LetX ={1,2,...,|V(G)| — 1}.

Define a function f:V(G) — 2% Asfollows:

f,) = ¢;

fy)=1{12,...,j—2} for 3<j< k—-1;
fw)={12,...,ki—2} for 1< i< n;

fwp)=1{12,...,ki—1} for 1< i< n

flo;) =12 kG-D+j-2} for2< i <n 2<j< k-1
Here, all the vertex labels are distinct, and they form a topology on X.
Then the induced function f*: E(G) — 2% Ttis given as follows:

) = f n f) foralluv € E (G).

Here f*(vyv;) = f(vy) for1<i<n, 2<j<k

f*yviy) = flog) fort <i<n-—1.

Since f is 1-1 and so f*. Also {f *(E(G))} forms a topology on X*.
Hence, f is a bitopological harmonious labeling and G is a bitopological harmonious graph.

Example 3.8
¥ 1,2}

{1,2,..,19}) {1,2,...,20}

(1,23} {1,2,...,6)

Vis

{1,2,0.,5} 1,200,113 1,217}
Fig. 3 Bitopological harmonious labelling of F, ¢
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4. Conclusion
In this paper, we proved that some star-related graphs, such as the bistar, spider graph, lilly graph and firecracker graph,
are bitopologically harmonious graphs.

References

[1] B.D. Acharya, and K.A. Germin, “Set Valuations and their Applications,” MRI Lecture Note in Applied Mathematics, no. 2, 1983.
[Google Scholar]

[2] S. Selestin Lina, and S. Asha, “On Topological Cordial Graphs,” Journal of Science and Technology, vol. 5, pp. 25-28, 2020.

[3] S. Selestin Lina, and S. Asha, “Topological Cordial Labeling of Some Graphs,” Malaya Journal of Matematik, vol. 9, no. 1, pp. 861-
863, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] S. Selestin Lina, and S. Asha, “Bitopological Labeling of Tree Related Graphs,” AIP Conference Proceedings, vol. 2385, no. 1, 2022.
[CrossRef] [Google Scholar] [Publisher Link]

[5] J.A Bondy, and U.S.R. Murthy, Graph Theory and Application, North Holland, New York, 1976. [Google Scholar] [Publisher Link]

[6] Joseph A Gallian, “A Dynamic Survey of Graph Labeling,” The Electronic Journal of Combinatorics, vol. 1, 2018. [Google Scholar]
[Publisher Link]

48


https://scholar.google.com/scholar?q=Set+valuations+and+their+applications,+MRI+Lecture+note+in+Applied+Mathematics,%5C&hl=en&as_sdt=0,5
https://doi.org/10.26637/MJM0901/0151
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Topological+Cordial+Labeling+of+Some+Graphs&btnG=
https://www.malayajournal.org/articles/MJM09010151.pdf
https://doi.org/10.1063/5.0070851
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bitopological+labeling+of+tree+related+graphs&btnG=
https://pubs.aip.org/aip/acp/article-abstract/2385/1/130016/2820562/Bitopological-labeling-of-tree-related-graphs
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+Theory+and+Application&btnG=
https://www.iro.umontreal.ca/~hahn/IFT3545/GTWA.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Dynamic+Survey+of+Graph+Labeling&btnG=
https://experts.umn.edu/en/publications/a-dynamic-survey-of-graph-labeling-3

