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Abstract - Bitopological harmonious labeling for a graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) with 𝑛 vertices, is an injective function   

𝑓: 𝑉(𝐺) → 2𝑋 , where X is any non–empty set such that |𝑋| = 𝑚, 𝑚 <  𝑛 and {𝑓(𝑉(𝐺))}  forms a topology on 𝑋, that 

induces an injective function 𝑓∗ : 𝐸(𝐺)  →  2𝑋∗
, defined 𝑏𝑦 𝑓∗(𝑢𝑣)  =   𝑓(𝑢) ∩ 𝑓(𝑣) for every 𝑢𝑣 ∈ 𝐸(𝐺) such that 

{𝑓∗ (𝐸(𝐺))} forms a topology on 𝑋∗  where 𝑋 ∗ = 𝑋\{1,2, … . , 𝑚}. A graph that admits  bitopological harmonious labeling is 

called a bitopological harmonious graph. In this paper, we discuss bitopological harmonious labeling of some star-related 

graphs. 

Keywords - Bistar graph, Bitopological harmonious graph, Firecracker graph, Lilly graph, Spider graph. 

1. Introduction  
In this paper, we consider only simple, finite and undirected graphs. The graph G has a vertex set 𝑉 =  𝑉(𝐺) and edge set 

𝐸 =  𝐸(𝐺). For notations and terminology, we refer to Bondy and Murthy[5]. Acharya[1] established another link between 

graph theory and point set topology. Selestin Lina S and Asha S defined bitopological star labeling for a  graph 𝐺 = (𝑉, 𝐸) as 𝑋 

being any non-empty set if there exists an injective function 𝑓: 𝑉(𝐺) → 2𝑋  Which induces the function 𝑓∗ : 𝐸(𝐺) → 2𝑋 as  

𝑓∗ (𝑣1𝑣2)  =   [𝑓(𝑣1) ∪ 𝑓(𝑣2) ]𝑐  for every 𝑣1 ,𝑣2 ∈ 𝑉(𝐺), if {𝑓(𝑉(𝐺))}and {𝑓∗(𝐸(𝐺))𝐼𝑓 ∪ 𝑋  are topologies on X, then G is 

said to be a bitopological star graph. In this paper, we proved that some star-related graphs are bitopologically harmonious 

graphs. 

 

2. Basic Definitions  
2.1. Definition 

Bitopological harmonious labeling of a graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) With 𝑛 vertices, an injective function 𝑓: 𝑉(𝐺) → 2𝑋 , 

where X is any non–empty set such that |𝑋| = 𝑚, 𝑚 <  𝑛 and {𝑓(𝑉(𝐺))} Forms a topology on 𝑋, that induces an injective 

function 𝑓∗: 𝐸(𝐺) →  2𝑋∗
, defined by 𝑓∗ (𝑢𝑣)  =   𝑓(𝑢) ∩ 𝑓(𝑣) for every 𝑢𝑣 ∈ 𝐸(𝐺) such that {𝑓∗(𝐸(𝐺))} forms a topology 

on 𝑋∗ where 𝑋∗ = 𝑋\{1,2, … . , 𝑚}. A graph that admits  bitopological harmonious labeling is called a bitopological 

harmonious graph.  
 

2.2. Definition  

Bistar graph  𝐵𝑚,𝑛 is  obtained from 𝐾2 by attaching 𝑚 pendant edges to one end of 𝐾2 and 𝑛 pendant edges to the other 

end of 𝐾2. 

 

2.3. Definition  

A spider graph 𝑆𝑃(1𝑛22𝑚 )  is a  star graph 𝐾1,𝑛 +𝑚 such that each of which 𝑚 vertices is joined to a new vertex. 

 

2.4. Definition  

Lilly graph 𝐿𝑛 , 𝑛 ≥ 2, is obtained from 2 stars 2𝐾1,𝑛 ,𝑛 ≥ 2, by joining 2 paths 2𝑃𝑛 , 𝑛 ≥ 2 with sharing a common vertex. 
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2.5. Definition  

Firecracker graph 𝐹𝑛 ,𝑘 Is the graph obtained by concatenation of 𝑛 𝑘 − stars by linking one leaf from each. 

 

3. Main Results 
Theorem 3.1 

The bistar graph 𝐵𝑚,𝑛 , 𝑚, 𝑛 ≥ 1 is a  bitopological harmonious graph. 

 

Proof: 

Let 𝐺 = 𝐵𝑚,𝑛 . 

Let 𝑉(𝐺) = {𝑢, 𝑣} ∪ {𝑢𝑖/1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑣𝑖 /1 ≤ 𝑖 ≤ 𝑛}.   
Let 𝐸(𝐺) = {𝑢𝑣} ∪ {𝑢𝑢𝑖 /1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑣𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛}.   
|𝑉(𝐺)| = 𝑚 + 𝑛 + 2, |𝐸(𝐺)| = 𝑚 + 𝑛 + 1. 
Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 
Define a function 𝑓: 𝑉(𝐺)  →  2𝑋  As follows: 

𝑓(𝑢1
) = 𝜙;     

𝑓(𝑢𝑖) = {1,2, . . . , 𝑖 − 1}  for  2 ≤  𝑖 ≤  𝑚; 
𝑓(𝑢) = {1,2, . . . , 𝑚}; 
𝑓(𝑣𝑖 ) = {1,2, . . . , 𝑚 + 𝑖}   for 1  ≤  𝑖 ≤  𝑛; 
 𝑓(𝑣) = {1,2, . . . , 𝑚 + 𝑛 + 1}.  
Here, all the vertex labels are distinct and form a topology on X. 

Then the induced function 𝑓∗: 𝐸(𝐺)  →  𝑋∗  It is given as follows: 

𝑓∗ (𝑢𝑣) = 𝑓(𝑢)  ∩  𝑓(𝑣) for all 𝑢𝑣 ∈  𝐸(𝐺).  
𝑓∗ (𝑢𝑢𝑖

) = 𝑓(𝑢𝑖
)   for 1 ≤ 𝑖 ≤ 𝑚. 

𝑓∗ (𝑣𝑣𝑖
) = 𝑓(𝑣𝑖

)   for 1 ≤ 𝑖 ≤ 𝑛. 
𝑓∗ (𝑢𝑣) = 𝑓(𝑣). 
Since 𝑓 is 1-1 and so 𝑓∗ . Also {𝑓∗(𝐸(𝐺))}  forms a topology on 𝑋 ∗. 

Hence, 𝑓 is a  bitopological harmonious labeling and 𝐺 is a  bitopological harmonious graph. 

 

Example 3.2 

 
Fig. 1 Bitopological harmonious labelling of 𝐁𝟓,𝟔  

 

Theorem 3.3 

The Spider graph 𝑆𝑃(1𝑛2𝑚 ), 𝑚, 𝑛 ≥ 1 is a  bitopological harmonious graph. 

Proof: 

Let 𝐺 = 𝑆𝑃(1𝑛2𝑚 ). 

Let 𝑉(𝐺) = {𝑣𝑖 , 𝑢𝑗/0 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 2𝑚} where 𝑣0 be the centre vertex. 

Let 𝐸(𝐺) = {𝑣0𝑣𝑖/1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣0 𝑢2𝑖−1/1 ≤ 𝑖 ≤ 𝑚}} ∪ {𝑢2𝑖−1𝑢2𝑖/1 ≤ 𝑖 ≤ 𝑚}.  .   
𝑇ℎ𝑒𝑛  |𝑉(𝐺)| = 𝑛 + 2𝑚 + 1, |𝐸(𝐺)| = 𝑛 + 2𝑚. 
Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 
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Define a function 𝑓: 𝑉(𝐺)  →  2𝑋  As follows: 

𝑓(𝑣1
) = 𝜙;     

𝑓(𝑣𝑖 ) = {1,2, . . . , 𝑖 − 1}   for  2 ≤  𝑖 ≤  𝑛; 
𝑓(𝑢2𝑖

) = {1,2, … , 𝑛 + 2𝑖 − 2}  for 1 ≤  𝑖 ≤  𝑚; 
𝑓(𝑢2𝑖−1) = {1,2, . . . , 𝑛 + 2𝑖 − 1}   for 1 ≤  𝑖 ≤  𝑚; 
𝑓(𝑣0

) = {1,2, . . . , 𝑛 + 2𝑚}. 
Here, all the vertex labels are distinct and form a topology on X. 

Then the induced function 𝑓∗: 𝐸(𝐺) → 2𝑋∗
 It is given as follows: 

𝑓∗ (𝑢𝑣) = 𝑓(𝑢) ∩ 𝑓(𝑣) for all 𝑢𝑣 𝜖 𝐸 (𝐺).  
Here 𝑓∗ (𝑣0𝑣𝑖

) = 𝑓(𝑣𝑖
) for 1 ≤ 𝑖 ≤ 𝑛; 

𝑓∗ (𝑣0𝑢2𝑖−1
) = 𝑓(𝑢2𝑖−1

) for 1 ≤ 𝑖 ≤ 𝑚; 
𝑓∗ (𝑣2𝑖−1𝑢2𝑖

) = 𝑓(𝑢2𝑖) for 1 ≤ 𝑖 ≤ 𝑚. 
Since 𝑓 is 1-1 and so 𝑓∗ . Also {𝑓∗ (𝐸(𝐺))}  forms a topology on 𝑋∗. 

Hence, 𝑓 is a  bitopological harmonious labeling and 𝐺 is a  bitopological harmonious graph.  

 

Example 3.4 

 
Fig. 2 Bitopological harmonious labelling of 𝐒𝐏(𝟏𝟓𝟐𝟔)  

 

Theorem 3.5 

Lilly graph 𝐿𝑛 ,𝑛 ≥ 2  is a  bitopological harmonious graph. 

Proof: 

Let 𝐺 = 𝐿𝑛 . 

Let  𝑉(𝐺) = {𝑢𝑖/ 1 ≤ 𝑖 ≤ 2𝑛 − 1} ∪ {𝑣𝑖/ 1 ≤ 𝑖 ≤ 2𝑛}. 
Let 𝐸(𝐺) = {𝑣𝑖𝑢𝑛/1 ≤ 𝑖 ≤ 2𝑛} ∪ {𝑢𝑖𝑢𝑖+1/1 ≤ 𝑖 ≤ 2𝑛 − 2}. 
|𝑉(𝐺)| = 4𝑛 − 1, |𝐸(𝐺)| = 4𝑛 − 2. 
Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 
Define a function 𝑓: 𝑉(𝐺)  →  2𝑋  As follows: 

𝑓(𝑣1
) = 𝜙;     

𝑓(𝑣𝑖 ) = {1,2, . . . , 𝑖 − 1}   for 2 ≤  𝑖 ≤  2𝑛; 
𝑓(𝑢𝑖

) = {1,2, … ,2𝑛 + 𝑖 − 1}  for 1 ≤  𝑖 ≤  2𝑛 − 1. 
Here, all the vertex labels are distinct and form a topology on X. 

Then the induced function 𝑓∗: 𝐸(𝐺) → 2𝑋∗
 It is given as follows: 

𝑓∗ (𝑢𝑣) = 𝑓(𝑢) ∩ 𝑓(𝑣) for all 𝑢𝑣 𝜖 𝐸 (𝐺).  
Here 𝑓∗ (𝑣𝑖𝑢𝑛

) = 𝑓(𝑣𝑖
) for 1 ≤ 𝑖 ≤ 2𝑛; 

𝑓∗ (𝑢𝑖𝑢𝑖+1
) = 𝑓(𝑢𝑖

) for 1 ≤ 𝑖 ≤ 2𝑛 − 1. 
Since 𝑓 is 1-1 and so 𝑓∗ . Also {𝑓∗ (𝐸(𝐺))}  forms a topology on 𝑋∗. 

Hence, 𝑓 is a  bitopological harmonious labeling and 𝐺 is a  bitopological harmonious graph. 

 



S. Chandrakala et al. / IJMTT, 71(7), 44-48, 2025 

 

47 

Example 3.6 

 
Fig. 3 Bitopological harmonious labelling of 𝑳𝟓  

 

Theorem 3.7 

The firecracker graph 𝐹𝑛 ,𝑘, 𝑛, 𝑘 ≥ 1 is a  bitopological harmonious graph. 

Proof: 

Let 𝐺 = 𝐹𝑛 ,𝑘 . 

Let  𝑉(𝐺) = {𝑣𝑖𝑗/ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘}. 

Let 𝐸(𝐺) = {𝑣𝑖1𝑣𝑖𝑗 /1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑘} ∪ {𝑣𝑖𝑘 𝑣𝑖+1𝑘 /1 ≤ 𝑖 ≤ 𝑛 − 1}. 

|𝑉(𝐺)| = 𝑛𝑘, |𝐸(𝐺)| = 𝑛𝑘 − 1. 
Let 𝑋 = {1,2, . . . , |𝑉(𝐺)| − 1}. 
Define a function 𝑓: 𝑉(𝐺)  →  2𝑋  As follows: 

𝑓(𝑣12
) = 𝜙;     

𝑓(𝑣1𝑗 ) = {1,2, . . . , 𝑗 − 2}   for   3 ≤  𝑗 ≤  𝑘 − 1; 

𝑓(𝑣𝑖1 ) = {1,2, . . . , 𝑘𝑖 − 2}   for   1 ≤  𝑖 ≤  𝑛; 
𝑓(𝑣𝑖𝑘 ) = {1,2, . . . ,𝑘𝑖 − 1}   for   1 ≤  𝑖 ≤  𝑛; 

𝑓(𝑣𝑖𝑗) = {1,2, … , 𝑘(𝑖 − 1) + 𝑗 − 2}  for 2 ≤  𝑖 ≤  𝑛, 2 ≤  𝑗 ≤  𝑘 − 1. 

Here, all the vertex labels are distinct, and they form a topology on X. 

Then the induced function 𝑓∗: 𝐸(𝐺) → 2𝑋∗
 It is given as follows: 

𝑓∗ (𝑢𝑣) = 𝑓(𝑢) ∩ 𝑓(𝑣) for all 𝑢𝑣 𝜖 𝐸 (𝐺).    

Here 𝑓∗ (𝑣𝑖1𝑣𝑖𝑗) = 𝑓(𝑣𝑖𝑗) for 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑘; 

𝑓∗ (𝑣𝑖𝑘 𝑣𝑖+1𝑘
) = 𝑓(𝑣𝑖𝑘

) for 1 ≤ 𝑖 ≤ 𝑛 − 1. 
 Since 𝑓 is 1-1 and so 𝑓 ∗. Also {𝑓 ∗(𝐸(𝐺))}  forms a topology on 𝑋∗. 

Hence, 𝑓 is a  bitopological harmonious labeling and 𝐺 is a  bitopological harmonious graph.  
 

Example 3.8 

 
Fig. 3 Bitopological harmonious labelling of 𝑭𝟒,𝟔 
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4. Conclusion  
In this paper, we proved that some star-related graphs, such as the bistar, spider graph, lilly graph and firecracker graph, 

are bitopologically harmonious graphs.  
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