
International Journal of Mathematics Trends and Technology                                                      Volume 71 Issue 7, 49-58, July 2025 

ISSN: 2231-5373/ https://doi.org/10.14445/22315373/IJMTT-V71I7P106                                              © 2025 Seventh Sense Research Group®             

  

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  
 

Cosmological Dynamics of Bianchi Type VI0 Universe in 

Higher Dimensions within Lyra Geometry  
Rajni Gupta1, Riddhi Jain2  

1Department of Mathematics, IIS (Deemed to be University), Jaipur(Rajasthan), India.  
2Department of Mathematics, IIS (Deemed to be University), Jaipur, India.  

1Corresponding Author : rajni.gupta@iisuniv.ac.in  

 
Received: 23 May 2025                       Revised: 29 June 2025                         Accepted: 15 July 2025                        Published: 28 July 2025 

 

 

Abstract - In this study, we analyze a higher-dimensional Bianchi Type VI0 cosmological model within the General Relativity 

and Lyra geometry frameworks. The field equations are solved analytically under the assumption that the shear scalar is 

proportional to the scalar Expansion. Specific choices of the constants α, β, γ lead to the construction of Bianchi Type I, III, 

and V models, each of which is examined in detail. The physical and geometrical properties of these cosmological solutions 

are discussed. A fractional cosmological model is also developed , and its consequences are discussed.  

Keywords - Energy Momentum Tensor, Fractional Cosmological Model, Higher Dimensional Bianchi Type VI0, Last Step 

Modification, Lyra Geometry.  

1. Introduction  

The Bianchi type models are a class of solutions to the equations of general relativity that describe the 

Spatially homogeneous and anisotropic universe. These models were first introduced by Luigi Bianchi, an 

An Italian mathematician in the early 20th century. Researchers have explored different Bianchi-type models, such as Bianchi 

type I, II, VI, IX, and others, in multiple theoretical frameworks, including general relativity, Lyra geometry, Scalar-Tensor 

theories, string cosmology, etc. Among all of them, the Lyra geometry framework is the most commonly used framework 

because it can include extensions with string, bulk viscosity, extra dimensions, dark energy, and fractional calculus  (Lyra 1951). 

[12].  These models have provided insights into the early universe, inflationary scenarios, and the formation of large -scale 

structures. Lyra’s modification of Riemannian geometry introduces a displacement vector field, which replaces the arbitrary 

gauge of Weyl geometry. When constant, the displacement vector acts much like the cosmological constant  in Einstein’s 

general theory of relativity. To develop an equivalent of the Einstein field equations in which the scalar and tensor fields both 

have inherent geometrical relevance, Lyra geometry was used by Sen and Dunn (1971). [20]. A symmetric model within the 

framework of Lyra ’s manifold mainly explores the behavior of the specific model under certain conditions, including the 

presence of a bulk viscous fluid and strings of a  single dimension, which has been studied by Reddy and Innaiah (1986). [17]. 

However, this limitation of the constant displacement field has no  underlying rationale and is only a matter of convenience. 

Many researchers studied various cosmological models within Lyra’s geometry, assuming a time-dependent displacement field 

(Alkaoud et al, 2024; Bishi et al, 2023; Desikan K, 2020; Megied et al, 2016). [2, 4, 7, 13].  

The study of higher dimensions is crucial nowadays due to significant advancements. Theoretical studies in higher 

dimensions offer insights into complex phenomena, driving researchers to investigate the mysteries of the universe through 

multi-dimensional frameworks. It offers a path towards unifying physics and provides deeper insights into the universe’s 

structure and origins. The extended vacuum Bianchi type-VIh universe with perfect fluid, which examines the influence and 

effect of extra dimensions, 𝐷 ≥ 1 (𝑁 = 1 + 𝑑 + 𝐷),  was explored by Lorenz-Petzold (1985). [11]. Another higher-

dimensional cosmological model with variable gravitational constant and bulk viscosity in Lyra geometry was presented by 

Singh et al (2004). [23]. Further, a  spatially homogeneous Kaluza -Klein model with magnetized fluid in the scalar-tensor theory 

of gravitation was proposed by Katore et al (2014). [9]. Inspired by the scope in higher-dimensional studies, many researchers 

explored higher-dimensional cosmological models under the various theories, including Lyra geometry (Adhav et al, 2011; 

Daimary and Baruah, 2022; Sahu et al, 2018; Trivedi and Bhabor, 2021). [1, 6, 19, 25].  
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In the context of cosmology, the fractional derivative has been explored as a tool to study the evolution of the universe in  

a non-local or non-classical framework. The application of fractional derivatives in Bianchi-type models is an active area of 

research, but it is not yet widely explored. El-Nabulsi Ahmad Rami (2005) [15] developed the Fractional Friedman Dynamical 

Equations for a static universe. Although he faced challenges in solving these equations, his efforts raised  numerous questions 

that intrigued researchers and motivated further exploration. Fractional calculus has been used in various  applications to explain 

non-local spacetime effects. Incorporating fractional derivatives in the field of gravity is a  demanding task, for which two 

approaches have been proposed: the First Step Modification (FSM) and the Last Step Modification (LSM) by Mark D. Robert 

(2009). [18]. The FSM entails expressing all of the geometrical elements of general relativity in terms of fractional derivatives, 

including the covariant derivative, connection, metric and Riemann tensor. This method substitutes a new fractional time 

derivative, which assumes a lower terminal at 0, for the time derivative that appears in the Friedman equation using the 

Riemann-Liouville fractional derivative. On the other hand, the LSM modifies the field equations of gravity by substituting a 

similar fractional derivative for the covariant derivative order. The classic Friedmann and scalar field equations were expa nded 

(V. K. Shchigolev 2011) [21] by including fractional derivatives of the scale factor. He offered a number of accurate answers 

to these fractional cosmological questions with a focus on accurate models of accelerated cosmological Expansion and 

equations, and he raised the question of how useful fractional differential calculus ideas are in the field of cosmology. Recently, 

he presented the application of a  fractional differential approach in cosmology (V. K. Shchigolev 2021). [22]. He explores 

cosmological theories that incorporate a fractional scalar field, and the variational principle for the Einstein-Hilbert action is 

used to present a novel method for fractional differentiation and integration in cosmology. The authors expect that additional 

research will reveal the utility of fractional differential calculus in cosmology by providing exact solutions to modified 

Friedmann and scalar field equations that could be helpful for present cosmology. Using the Last Step Modification method, 

Ernesto Barrientos et al (2021) [3] provided an experimental model that expanded the Friedmann equations by incorporating 

fractional derivatives. Some researchers (Calcagni et al. 2020; Jalalzadeh et al. 2022; Micolta et al. 2023).[5, 8, 14] have 

proposed using fractional derivatives to study the dynamics and stability of anisotropic cosmological models. These 

investigations seek to comprehend how anisotropic perturbations behave and how the evolution of the cosmos is affected by 

fractional derivatives. 

The study of higher-dimensional cosmological models is vital because it provides deeper insights into the structure and 

origins of the universe. Adding extra dimensions gives cosmologists more flexibility to construct models consistent with 

observational data and leads to new constraints on physics beyond the standard models . Motivated by this, the current work 

introduces a higher-dimensional Bianchi type VI0 cosmological model based on Lyra geometry parameterized by a set of a  few 

constants, allowing continuous reduction to Bianchi type I, III and V. On top of this unified structure, fractional derivative 

dynamics is employed to construct fractional field equations, which is a modern approach shown to address cosmological 

tensions. The physical and geometrical properties of the newly constructed model are also discussed here.  

2. Field Equations and Solution  
Let us consider the cosmological model Bianchi type VI0 in higher dimensions as: 

 

𝑑𝑠2 = −𝑑𝑡2 + [𝐴(𝑡)]2𝑑𝑥2 + [𝐵(𝑡)]2𝑒𝛼𝑥𝑑𝑦2 + [𝐶(𝑡)]2𝑒𝑥𝑑𝑧2 + [𝐷(𝑡) ]2𝑒𝑥𝑑𝑚2    (1) 

 

Where A, B, C and D are all assumed to be metric functions of cosmic time. The fifth coordinate ‘m’ is taken to be 

space-like in this context. 

 

The energy-momentum tensor is given as  

𝑇𝑖𝑗 = 𝜑,𝑖 𝜑,𝑗− (
1

2
𝜑,𝑖 𝜑𝑗

, + 𝑉(𝜑)) 𝑔𝑖𝑗 , 

 

Choose 𝑣𝑖𝑣
𝑗 =  −1, 𝑉(𝜑) = 𝛽(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and 𝜑𝑖

𝑗
= −

𝑑𝑉

𝑑𝜑
 

 

Assuming a scalar field region with potential 𝑉(𝜑), the action of the field of gravitation coupled minimally is given by  

 

𝑆 = ∫ (𝑅 −
1

2
𝜑,𝑖 𝜑,𝑗 𝑔𝑖𝑗 − 𝑉(𝜑)) √−𝑔𝑑𝑥5 

 

This is a variation on S with respect to the dynamical field provided by Einstein’s field equations as follows: 
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𝑅𝑖
𝑗
−

1

2
𝑅𝑔𝑖

𝑗
= −8𝜋𝑇𝑖

𝑗
, 

 

gives  

ḂĊ

BC
+

ȦḂ

AB
+

ḂḊ

BD
+

ĊȦ

CA
+

ĊḊ

CD
+

ȦḊ

AD
−

α2+β2+𝛾2+𝛼𝛽+𝛽𝛾+𝛼𝛾

4𝐴2
= 8𝜋 (−

1

2
�̇�2 + 𝛽)                  (2) 

B̈

B
+

C̈

C
+

ḂĊ

BC
+

D̈

D
+

ḂḊ

BD
+

ĊḊ

CD
−

𝛼𝛽+𝛽𝛾+𝛼𝛾

4𝐴2
= 8𝜋 (

1

2
�̇�

2
+ 𝛽)                                    (3) 

   
Ä

A
+

C̈

C
+

ĊȦ

CA
+

D̈

D
+

ȦḊ

AD
+

ĊḊ

CD
−

𝛽2+𝛾2+𝛽𝛾

4𝐴2
= 8𝜋(

1

2
�̇�

2
+ 𝛽)                                        (4) 

Ä

A
+

B̈

B
+

ȦḂ

AB
+

D̈

D
+

ḂḊ

BD
+

ȦḊ

AD
−

𝛼2+𝛾2+𝛼𝛾

4𝐴2
= 8𝜋 (

1

2
�̇�

2
+ 𝛽)                                     (5) 

Ä

A
+

B̈

B
+

ȦḂ

AB
+

C̈

C
+

ḂĊ

BC
+

ȦĊ

AC
−

𝛼2+𝛽2+𝛼𝛽

4𝐴2
= 8𝜋(

1

2
�̇�

2
+ 𝛽)                                     (6) 

(𝛼 + 𝛽 + 𝛾)
𝐴

𝐴

̇
= (𝛼

𝐵

𝐵

̇
+ 𝛽

𝐶

𝐶

̇
+ 𝛾

𝐷

𝐷

̇
)                                                                   (7) 

 

The law of conservation of energy-momentum tensor,  

             
1

√−𝑔
𝜕𝑖 [√−𝑔𝜕𝑖𝜙] = −

𝑑𝑉

𝑑𝜙
                                                                                            (8) 

 

where  

        𝜕𝑙𝜙 = 𝑔𝑙𝑣𝜕𝑣𝜙 = 𝑔𝑙𝑣 𝜕𝜙

𝜕𝑥𝑣                        (9) 

which gives  

         �̈� + (
𝐴

𝐴

̇
+

𝐵

𝐵

̇
+

𝐶

𝐶

̇
+

𝐷

𝐷

̇ ) �̇� = −
𝑑𝑉

𝑑𝜙
                   (10) 

 The average scale factor is given as:  

                             𝑎 = [𝐴𝐵𝐶𝐷𝑒
(𝛼+𝛽+𝛾)𝑥

2 ]

1
4

        (11) 

From equation (7), it is found that  

                     𝐴 = 𝑙(𝐵𝛼𝐶𝛽𝐷𝛾)
1

𝛼+𝛽+𝛾         (12) 

 

Additionally, by taking the components of the shear tensor  as proportional to the expansion scala r), the following 

relations can be established. 

                        𝐶 = 𝐵𝜂  and 𝐷 = 𝐵 𝜁        (13) 

 

Putting these values, equation (12) gives  

 

                  𝐴 = 𝑙𝐵 𝐿         (14) 

 

Where 𝐿 = (
𝛼+𝜂𝛽+𝛾𝜍

𝛼+𝛽+𝛾
)  And 𝑙 is the constant of proportionality. Again, from equations (4) and (5), it is obtained.  

                          
𝐶

𝐶

̈
−

𝐵

𝐵

̈
+

�̇��̇�

𝐶𝐴
+

�̇��̇�

𝐶𝐷
−

�̇��̇�

𝐴𝐵
−

�̇��̇�

𝐵𝐷
+

(𝛼−𝛽)(𝛼+𝛽+𝛾)

4𝐴2 = 0     (15) 

 

The result obtained by solving is: 

𝐴 = 𝑙[𝐿(𝐾𝑡 + 𝑐1
)]           (16) 

𝐵 = [𝐿(𝐾𝑡 + 𝑐1
)]

1

𝐿         (17) 

𝐶 = [𝐿(𝐾𝑡 + 𝑐1
)]

𝜂

𝐿          (18) 

𝐷 = [𝐿(𝐾𝑡 + 𝑐1
)]

𝜁

𝐿          (19) 
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where 𝑐1 is the constant of integration and 𝐾 = [
(𝛼−𝛽)(𝛼+𝛽+𝛾)

4𝑙2 (𝜂−1)(1+𝜂+𝜁)
]

1
2
 ,  

Using the above results, the metric (1) reduces to  

𝑑𝑠2 = −𝑑𝑡2 + 𝑙2𝑇2𝑑𝑥2 + 𝑇
2

𝐿𝑒𝛼𝑥𝑑𝑦2 + 𝑇
2𝜂

𝐿 𝑒𝛽𝑥𝑑𝑧2 + 𝑇
2𝜁

𝐿 𝑒𝛾𝑥𝑑𝑚2      (20) 

where  𝑇 = [𝐿(𝐾𝑡 + 𝑐1
)]. 

3. Physical and Geometrical Properties  
In this section, a few geometrical and physical features of the model obtained in Lyra’s geometry  have been discussed.  

The Average scale factor, Hubble parameter and the Deceleration parameter are derived as:  

𝑎 = [𝑙 𝑇
1+𝜂+𝜁+𝐿

𝐿    𝑒
(𝛼+𝛽+𝛾)𝑥

2 ]

1
4

       (21) 

𝐻 =
�̇�

𝑎
=

1+𝜂+𝜁+𝐿

4𝐿𝑇
        (22) 

𝑞 = −
𝑎�̈�

�̇�2 = − [1 −
4𝐿

1+𝜂+𝜁+𝐿
]       (23)  

The other cosmological parameters, such as Expansion(𝜃), Shera tensor (𝜎) are obtained as: 

𝜃 = 4𝐻 =
1+𝜂+𝜁+𝐿

𝐿𝑇
        (24) 

𝜎2 =
1

2
(∑ 𝐻𝑖

2 − 4𝐻24
𝑖=1

) =
1

2𝐿2𝑇2
[(1 + 𝜂2 + 𝜁2 + 𝐿2) −

(1+𝜂+𝜁+𝐿)2

4
]   (25) 

Using equation (10), the following result is derived 

 

𝜙 = −
𝑐2

𝐾(1+𝜂+𝜁)
𝑇

−
1+𝜂+𝜁

𝐿         (26) 

 

Since 
𝜎

𝜃
 = constant, which shows that this general model does not approach isotropy for a  large value of T. The model stops 

expanding as T→ Moreover, starts expanding at T > 0.  

4. Results and Discussion  
Here are a few cases for the different choices of 𝛼, 𝛽 𝑎𝑛𝑑  𝛾  are discussed as follows:  

 

4.1. Case 1:  When (𝛼 = 𝛽 = 𝛾 = 0) 

With the above assumption, metric (1) reduces to the Bianchi Type-I cosmological model defined as per the above 

equation:  

𝑑𝑠2 = −𝑑𝑡2 + [𝐴(𝑡)2𝑑𝑥2] + [𝐵(𝑡) 2𝑑𝑦2] + [𝐶(𝑡) 2𝑑𝑧2] + [𝐷(𝑡)2𝑑𝑚2]  (27) 

And the field equations are: 
�̇� �̇�

𝐵𝐶
+

𝐴̇�̇�

𝐴𝐵
+

�̇��̇�

𝐵𝐷
+

�̇�𝐴̇

𝐶𝐴
+

�̇��̇�

𝐶𝐷
+

𝐴̇�̇�

𝐴𝐷
= 8𝜋 (−

1

2
�̇�2 + 𝛽)      (28) 

�̈�

𝐵
+

�̈�

𝐶
+

�̇� �̇�

𝐵𝐶
+

�̈�

𝐷
+

�̇��̇�

𝐵𝐷
+

�̇��̇�

𝐶𝐷
= 8𝜋 (

1

2
�̇�2 + 𝛽)       (29) 

𝐴̈

𝐴
+

�̈�

𝐶
+

𝐴̇�̇�

𝐴𝐶
+

�̈�

𝐷
+

𝐴̇�̇�

𝐴𝐷
+

�̇��̇�

𝐶𝐷
= 8𝜋 (

1

2
�̇�2 + 𝛽)      (30) 

𝐴̈

𝐴
+

�̈�

𝐵
+

𝐴̇�̇�

𝐴𝐵
+

�̈�

𝐷
+

�̇��̇�

𝐵𝐷
+

𝐴̇�̇�

𝐴𝐷
= 8𝜋 (

1

2
�̇�2 + 𝛽)         (31) 

𝐴̈

𝐴
+

�̈�

𝐵
+

𝐴̇�̇�

𝐴𝐵
+

�̈�

𝐷
+

�̇��̇�

𝐵𝐶
+

𝐴̇�̇�

𝐴𝐶
= 8𝜋 (

1

2
�̇�2 + 𝛽)         (32) 

By assuming Expansion scalar 𝜃 proportional to shear tensor𝜎, and also by assuming B=C D, it follows that 𝐴 =
𝐵3Using this in equations (30) and (31) provides the following results:  

 

𝐴 = [
2

7
(𝑐1𝑡 + 𝑐2

)]
6 7⁄

, 
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𝐵 = 𝐶 = 𝐷 = [
2

7
(𝑐1𝑡 + 𝑐2

)]
2 7⁄

, 

Where 𝑐1 and 𝑐2 are the constants of integration.  

 

The other physical parameters are obtained as: 

𝑎 = [
2

7
(𝑐1𝑡 + 𝑐2

)]
3 7⁄

       (33) 

𝐻 =
𝜃

4
=

3

7
(

𝑐1

𝑐1𝑡+𝑐2

)       (34) 

𝑞 = −
4

3
< −1       (35) 

𝜎2 =
6

49
(

𝑐1

𝑐1𝑡+𝑐2

)
2

       (36) 

𝜙 = −
2𝑐1𝑐3

5
[
2

7
(𝑐1𝑡 + 𝑐2

)]
−5 7⁄

      (37) 

 

The obtained value of the deceleration parameter, −
4

3
, suggests a very rapid acceleration of the universe’s Expansion, 

much stronger than the rate observed in currently available cosmological data . Specifically, this value could suggest a scenario 

where dark energy is far more domina nt than in our current models. As 𝜙 depends on time and decreases in magnitude as t 

increases (assuming c > 0), it asymptotically approaches zero from the negative side.  

 

The form of 𝜙 could correspond to a dynamic dark energy field with significant early influence, driving a rapid expansion 

(with a very negative q) that could slow over time. If this field has a phantom-like behaviour (𝜔 < − − −1), it could even lead 

to a Big Rip. This scalar field could play a role in early-universe inflation or another epoch of rapid Expansion. As t approaches 

zero (near the Big Bang), 𝜑 might have a large, negative value, which could impact the early dynamics strongly . The results 

obtained in the particular case are consistent with those reported by KP Singh et al. (2021) [24] 

4.2. Case 2: (One out of 𝛼, 𝛽, 𝛾 𝑖𝑠 non-zero, the other two are zero) 

Based on the above assumptions, the metric is converted into a Bianchi-type III curved spacetime. If 𝛽 ≠ 0 is chosen while 

𝛼, 𝛾  are zero, then all the physical properties contain imaginary values as the value of 𝐾 =
√−𝛽2

4
 is imaginary. Another two 

possibilities are discussed in the table shown below: 

Table 1. Physical parameters for the Bianchi type-III metric space for specific values 𝒍 = 𝟏, 𝒄𝟏 = 𝟏, 𝜼 = 𝟐,𝜻 = 𝟏, 𝒄𝟐 = 𝟏.  

Case (𝜶 ≠ 𝟎, 𝜷 = 𝜸 = 𝟎) (𝜸 ≠ 𝟎, 𝜶 = 𝜷 = 𝟎) 

a 𝑒
𝛼𝑥
8 (1 +

𝛼

4
𝑡)

5 4⁄

 𝑒
𝛾𝑥
8  

H 
5

4
(1 +

𝑎𝑡

4
)
−1

 
5

4
 

q −
1

5
 −

1

5
 

𝜎2 
3

8
(1 +

𝑎𝑡

4
)
−2

 
3

8
 

𝜑 −
1

𝛼
(1 +

𝛼𝑡

4
)
−4

 
Complex infinity 

   

Here, it is observed that the scale factor is dependent on x and t, both of which show that different regions of space are 

expanding or contracting at different rates. This could represent a universe with inhomogeneities or anisotropies, which may 

be a novel contribution, as no published article has presented a true inhomogeneous Bianchi type III model with scale factor 

depending on both x and t. The ‘average’ Hubble parameter is adjusted over time, without accounting for spatial variations. 

Lastly, the condition 𝑞 = −
1

5
   shows the evolution of the universe at a  constant rate, and its age is equal to the Hubble time. 



Rajni Gupta & Riddhi Jain / IJMTT, 71(7), 49-58, 2025 

 

54 

4.3. Case 3: (one out of 𝛼, 𝛽, 𝛾  is zero, the other two are equal and non-zero) 

Based on the above assumption, the metric is converted into a Bianchi type V curved spacetime. Out of three possible 

cases (𝛼 = 𝛽, 𝛾 = 0) and (𝛼 = 𝛾, 𝛽 = 0) are discussed in the above table, but for (𝛽 = 𝛾, 𝛼 = 0), the physical quantities 

contain imaginary values.  

Table 2. Physical parameters for Bianchi type V metric space for specific values 𝒍 = 𝟏,𝒄𝟏 = 𝟏,𝜼 = 𝟏, 𝜻 = 𝟏,𝒄𝟐 = 𝟏. 

Case (𝜶 = 𝜷, 𝜸 = 𝟎) (𝜶 = 𝜸, 𝜷 = 𝟎) 

a (
3

2
)

11
12

𝑒
𝑎𝑥
4

 
 

𝑒
𝑎𝑥
4 (1 +

𝑎𝑡

2√2
)
5 4⁄

 

H 
11

18
 

5

4
[1 +

𝛼𝑡

2√2
]
−1

 

q 
1

11
 −

1

5
 

𝜎2 
11

162
 

3

8
[1 +

𝛼𝑡

2√2
]
−2

 

𝜑 
Infinity 

−
1

√2𝛼
[1 +

𝛼𝑡

2√2
]
−4

 

 

In the first case, H, q and 𝜎 are constant, the scale factor a(x) would suggest that the metric components allow for a 

homogeneous expansion (as far as H and q are concerned), while still incorporating spatial variations through a(x). This could 

lead to a type of cosmological model where spatial inhomogeneities exist, but the overall expansion dynamics remain uniform. 

A small positive value of q suggests the influence of another component, like dark energy, is already present but not yet 

dominant. In the other case, the results are similar to case 2. 

 

4.4. Case 4  

Conversion of the metric into Bianchi type 𝑉𝐼ℎ Curved space given by: 

𝑑𝑠2 = −𝑑𝑡2 + [𝐴(𝑡)]2𝑑𝑥2 + [𝐵(𝑡) ]2𝑒𝑎𝑥𝑑𝑦2 + 𝑒𝛼ℎ𝑥([𝐶(𝑡) ]2𝑑𝑧2 + [𝐷(𝑡) ]2𝑑𝑚2)   (38) 

by assuming 𝛽 → 𝛼ℎ, 𝛾 → 𝛼ℎ. The obtained physical quantities are: 

𝑎 = 𝑒
𝑎𝑥(1+2ℎ)

8 (
1+3ℎ

1+2ℎ
∗ (1 +

𝑎𝑡√(1−ℎ)(1+2ℎ)

4
))

(5+11ℎ)
4(1+3ℎ)

     (39) 

𝐻 =
(1+2ℎ)(5+11ℎ)

4(1+3ℎ)[1+
𝛼𝑡√(1−ℎ)(1+2ℎ)

4
]
       (40) 

𝑞 = −1 +
4(1+3ℎ)

(5+11ℎ)
        (41) 

𝜎2 =
(1+2ℎ)2(11ℎ2+10ℎ+3)

8(1+3ℎ)4[1+
𝛼𝑡√(1−ℎ)(1+2ℎ)

4
]

2        (42) 

𝜙 = −

[
 
 
 
 
((

1+3ℎ

1+2ℎ
)(1+

𝛼𝑡√(1−ℎ)(1+2ℎ)
4

))

−4(1+2ℎ)
1+3ℎ

𝛼√(1−ℎ)(1+2ℎ)

]
 
 
 
 

                      (43) 

4.5. Case 5 

In this case, the fractional cosmological model by converting the Einstein field equations into equations with 

fractional derivatives has been discussed, and for this purpose, B has been assumed as:  

B=𝐵0 𝑡𝑘          (44) 

Now, using the concept of Fractional derivatives [18], it is obtained that  

        �̇� = [𝔻𝑡
𝑠𝐵0𝑡

𝑘] = 𝐵0
Γ(𝑘+1)

Γ(𝑘+1−𝑠)
𝑡𝑘−𝑠           (45) 
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�̈� = 𝔻𝑡
𝑠 [𝔻𝑡

𝑠𝐵0𝑡
𝑘 ] = 𝐵0

Γ(𝑘+1)

Γ(𝑘+1−2𝑠)
𝑡𝑘−2𝑠      (46) 

After using the above B and its derivatives in equations (13) to (15), the values of A, B, C and D are obtained as  

𝐴 = ℓ [
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
]

1
2
𝑡𝑠                    (47) 

       𝐵 = [
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
]

1
2𝐿

𝑡
𝑠

𝐿                   (48) 

       𝐶 = [
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
]

𝜂

2𝐿
𝑡

𝑠𝑛

𝐿                     (49) 

                         𝐷 = [
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
]

𝜁

2𝐿
𝑡

𝑠𝜁

𝐿           (50) 

where  

𝑅 = {
(𝜂−1)Γ(k+1)

Γ(k+1−2s)
+ [(𝜂 − 1)(𝜂 + 𝜁 + 2)] ∗

Γ (k+1))2

Γ(k+1−s)2
}                                      (51) 

 

k be any constant and s be a fractional parameter having values between 0 and 1. Using the above results, the metric (1) reduces 

to  

𝑑𝑠2 = −𝑑𝑡2 + ℓ2 [
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
] 𝑡2𝑠𝑑𝑥2 + [

(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
]

1
𝐿
𝑡

2𝑠

𝐿 𝑒𝛼𝑥 𝑑𝑦2 + [
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
]

𝜂
𝐿
𝑡

2𝑠𝜂

𝐿 𝑒𝛽𝑥  𝑑𝑧2 +

[
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4ℓ2𝑅
]

𝜁
𝐿
𝑡

2𝑠𝜁

𝐿 𝑒𝛾𝑥 𝑑𝑚2              

                                (52) 

The obtained results for the new model as a function of fractional parameter s are as follows:  

𝑎 = ℓ
1

4 [(
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4𝐿2𝑅
)

1+𝐿+𝜂+𝜁
8𝐿

] ∗ 𝑡
(1+𝐿+𝜂+𝜁)𝑠

4𝐿 ∗ 𝑒
(𝛼+𝛽+𝛾)𝑥

2      (53) 

𝐻 =
𝑠(1+𝐿+𝜂+𝜁)

4𝐿𝑡
          (54) 

𝑞 = − [
(1+𝜂+𝜁−3𝐿)

𝑠2 (1+𝐿+𝜂+𝜁)
]           (55) 

𝜎2 =
5𝑠2 (1+𝐿2+𝜂2+𝜁2 )+𝑠2 (𝐿+𝜂+𝜁)+2𝑠2 (𝐿𝜂+𝜂𝜁+𝐿𝜁)

8𝐿2𝑡2
     (56) 

𝜙 =
𝐾𝐿

−𝑠(1+𝐿+𝜂+𝜁)+𝐿
(
(𝛽−𝛼)(𝛼+𝛽+𝛾)

4𝐿2𝑅
)

−(1+𝐿+𝜂+𝜁)

∗ 𝑡
−(1+𝐿+𝜂+𝜁)𝑠+𝐿

𝐿      (57) 

 

 
Fig. 1 Graph between Scale factor (a) with respect to cosmic time assuming 𝐬 =  𝟎.𝟓, 𝐤 = 𝟎.𝟓, 𝜶 = 𝟏.𝟐,𝜸 = −𝟏,𝜷 = −𝟏. 𝟐,𝜼 = 𝟐, 𝜻 = 𝟏,𝑹 =

𝟏,𝒄𝟏 =𝟏, 𝒄𝟐 = 𝟏,𝒍 = 𝟏,𝒙 =𝟏 , with the different values of fractional parameter 𝒔 between 0 and 1. 
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This paper presents some key findings from research on the Bianchi type VI0 cosmological model and demonstrates that, 

for the different choices of 𝛼, 𝛽 and 𝛾, the constructed model can be converted into a Bianchi type model of I, III and V kind, 

with a model of fractional derivatives. Also, it was found that all of the general theories of gravitation are satisfied, which can 

be seen in the graphs shown below. 

 
Fig. 2 Graph between Hubble parameter (H) and cosmic time (t)  

 

 
Fig. 3 Graph between Shear tensor (𝝈) and cosmic time (t) 

 

 
Fig. 4 Graph between Scalar field (𝝋) and cosmic time (t) 
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5. Conclusion  
In the present study, it was found that the universe started in an anisotropic, possibly extra -dimensional phase and is 

evolving toward a more isotropic and lower-dimensional FRW-like state. The scalar field played a role in the early evolution 

but is becoming negligible, possibly stabilizing or freezing out. Indicates a specific phase in scalar field evolution, and the 

negative value of the scalar field is acceptable in the field theories if the potential remains positive. The Hubble parameter and 

shear decreasing indicate a transition toward a universe dominated by matter or radiation, rather than a continued inflationary 

phase. The negative value of the deceleration parameter in each case shows an accelerating expansion of the universe, which 

also agrees well with the results obtained earlier for a four-dimensional model. (PM Lambat et al, 2022; Shri Ram et al, 2022) 

[10, 16]. This model suggests that early higher-dimensional effects were significant, but these effects faded with time, leading 

to a universe that behaves more like standard 4D cosmology in the late times. In this study, constructed models are truly 

inhomogeneous.   
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