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Abstract — We analyze the non-isentropic Euler-Maxwell system under small relaxation times for magnetized plasmas and
semiconductors. For near-equilibrium smooth periodic initial data, we establish uniform global existence of solutions
relative to the relaxation parameter. Crucially, under slow time scaling, these solutions converge globally to the full
energy-transport equations as the relaxation time vanishes. Our central innovation provides sharp error
estimates between solutions of the non-isentropic system and its energy-transport limit, achieved through novel stream
function techniques and enhanced energy methods. This work rigorously bridges these multiscale models while preserving

their essential thermo-electromagnetic coupling.
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1. Introduction
The three-dimensional non-isentropic Euler-Maxwell equations describe the motions of particles in plasmas, which

can be written as (see[1],[8])

( dy p+div(pu) =0,
i dy(pu)+div(pu @ u) + V(pb) = —p(—V¢ + u X B) _Z_”'
p
2
{atre+u-ve+39divu—3p—me=—M(L_i)_i(9_1), (1.1
3 3 3 \2ty T Tw
L 0yE—VXB=pu, divE=b(x)—p, E=-V¢,
9/B+V XE =0, divB=0,

Where x = (x1,%,,x3) € R® and t' > 0 is the usual time. Here p > Ou, the scaled density, the velocity field, the
electron temperature, E B the electric field, and the magnetic field are the functions(t’, x). The physical parameters T,

T,,are the momentum and energy relaxation times, respectively.

Obviously, (1.1) admits a steady-state
(pu,6,E,B) =U, £ (p,,0,1,E,B,),
provided(ps, E, ) satisfies
Vps = —psE.,V X B, =0,
divE, = b(x) —ps,VX E, =0,
div B, = 0.
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With
limp,(x) =1, UmE,=
Jx |0 x| o0

WhereB, € R3is an arbitrary constant vector?

Notice that

t=et', 1,=¢c€(01], TW=§, (1.2)

and

pELx) = p(t,x), ui(tx) =-u(t'x), 6°(tx)=0(tx),
E¢(t,x) = E(t',x), Bf(t,x)=B(t', x).
Then (1.1) turns into

0, p¢ + div(p®u®) =0,
| 9 (%) + div(p®u® @ u®) + 5 V(p?6°) = 5 (—p*(=V¢* + eu® x B#) — p*u),

g2
0,0 +us-v6* + 20%divut — 6% =L 2 - et — (65— D), (1.3
1
LsatBs +VXES=0, divES= b(x) — p?,
€0, Ef —V X B¢ =¢gpuf, divB*=0, (t,x) € (0,4)x T3,

With initial conditions

£
(0°,u", 6% E€,B) oy = Us = (p§, "2, 65, B¢, BS), (14)

which satisfy the compatibility conditions
divEE = b(x) — p§, divBE=0, x €T3,

Formally, as € — 0if denoting the limits of (p€,u¢,0¢,¢¢,B€) as(p, 4,8, ¢, B), in the formal limit, system (1.3)
reduces to

(atp +div(ga) = 0,
V(56) = pV P — pi,
. = 2. _ 2 = 2ju? ~
0,0 +u-V0+28divi— =246 =22 _ (- 1),
3 3p 3
Lv xE =0, divE=bh(x)-p,
VxB=0, divB=0, (tx)E€ (0,+o)x T

(1.5)

Apparently, it follows from the fifth Equation in (1.5) that B it is a constant vector. There is a potential function ¢
satisfying £ = —V¢. Then, (1.5) implies the energy-transport model

9,0 — A(p) + div(pV¢) = 0,

) (1.6)

and

E=-Vp, a=V(p—0)—0Vinp. (1.7
For the uniqueness of ¢satisfaction
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mg (6) & Jrs @ (¢, x)dx =0, Vvt >0. (1.8)

Asymptotic analysis with small parameters in fundamental physical models is a major research area. Relaxation times
are vital in fluid dynamics [7], and the zero-relaxation-time limit is central to asymptotic perturbation theory [9]. Wasiolek
[13] provides proof of global existence and uniform energy-based convergence. Global convergence rates were

subsequently derived by Li, Peng, and Zhao [11].

For the non-isentropic Euler-Maxwell system (1.3)-(1.4), assuming unit parameters, Feng, Wang, and Kawashima [5]
established global existence of smooth solutions and computed temporal decay rates through uniform-in-time energy
estimates, revealing that electron density and temperature decay to equilibrium at the same rate. While well-posedness for
Euler-Maxwell systems has been significantly advanced [2][3][6], the parameter dependence of solutions remained

unexamined.

Feng, Li, Mei, and Wang recently investigated the initial layer problem for the non-isentropic system [4]. In separate
work [15], they proved the global convergence and convergence rates of solutions for the non-isentropic Euler-Maxwell
equations as the relaxation time approaches zero. Furthermore, [15] derived error estimates between these solutions and
solutions of the energy-transport equations, utilizing stream function techniques and improved energy methods. Extending

the framework of [15] with modifications, we present our main results herein.

Theorem 1.1 (Global existence)Let k = 3be an integer. There exist constants &, > 0, @, > 0andC > 0, independent
of & any time, such that, for alle € (0, &,], if

o = ps llic + lleugllx + 1165 = Lk + 165 — @sllic + 1Bs = Bellx < @,
then the system (1.3)-(1.4) admits a unique global solution (p®,u?, 6%, E¢,B¥¢), satisfying
p€— ps,eué, 05 — 1,E€ — E,,B*— B, € C(R*,H*) n C*(R*,H*1).
Moreover, it holds,

o5 (@) — ps I + llew* Ok + 10°(8) — 1IIE + 116°(t) — bl + 1B(®) — B Ik
t
+ [ Ulpf @ = 1} + Il @I +116°(2) — 11I7) de (1.9)
< CUlps — psllk + lleusliz + 165 — L3, + IESIIZ + 11Bs — B.lIR), vt > 0.

Theorem 1.2 (Zero-relaxation limit)
Let (p%,u 6%,E% B?) be the global solution given by Theorem 1.1. Assume that there exist constants p, > 0 6, >

0, which are independent of, satisfying ase = 0,
pE > p,, weakly in HX,
and
6¢ - 6,, weakly in HE.
Then there exist functions p, 1,8, E, B, withp — p,,8 —1,E,B — B, € L*(R*,H*) andit € L>(R*,H*) such that,

ase — 0it holds
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(p¢—p,,0° —1,E¢—E,,B*—B,) > (p — p,,6 — 1,E — E,,B —B,), (1.100

weakly-* in (L2 (R*, HY))®,

and
u® = 1, weakly in L>(R*; H¥). (1.11)

Moreover, for any T > Oand anyk, € [0, k), it holds,ase = 0 ,
p¢— p, 0% - ,strongly in C([0,T]; H*), (1.12)

and (p, ¢, 0) isthe unique global smooth solution of the following energy -transport model

0ep — A(pB) + div(pV ) = 0,
00+ (V(p—0)— 0V ip) - VO +28 div(V(p — 6) — 6V i p) — :—pAé = 2";'2 —@-1, 113
Ad =p — b(x),

With the initial condition

(0,0 |¢=0 = (g, ). (1.14>

Note that d_)it is unique up to addition by a constant. Additionally, it holds

B=B, E=-V$ a=V(p—0) —avhip, (1.15)

e’
whereB,is a constant vector.

Theorem 1.3 (Convergence rates) Let k > 3be an integer; (p¢,uf, 0%, E%,B%) and (p,u, 8, E,B) respectively be the
unique smooth solutions to (1.3)-(1.4) and (1.6)-(1.7). DenoteE, = E(0,-). There exists a constantd > 0, which is

independent ofe, such that if
log = ps llie + N1ugllc + 1165 — Ll + 1 E5 Il + [1Bg — Bellx < 6, (1.16)

and for any given positive constants p, C;independent of esatisfying
105 = ollx—1 + llug — @olk—2 + 11 E5 — Eqlli—1 + 1Bs — Bellx—1 < C1€7, (1.17)
Then for p; = min{p, 1}any ¢ € (0,1], there exists a constant C, independent ofe, such that

tsuug(llpe(t) = POl + 2l (®) — (O lIF-2 + 110°(0) = OOIF-4
HIES(®) — EOllF-1 + IB*(®) = B.lI§-1)

+ 157Ut @) = Ay + uf (@) — a(@12-, (118
+165(2) — O(D[2 + IIES(x) — E@l3-y + IVBE@)|[2_,)d7
< Cpe?1,

2. Preliminaries
For later use, let us introduce some notations. For any integer k, we denote the usual spaces H*(T?),L?(T3)
andL®(T3), by H¥,L? andL®, respectively. Furthermore, we denote by || - ||, the usual norm ofH* and by || -|| and || -

|lothe norms of LZandL®, respectively. For a multi-indexa = (a,,a,, ;) € N, we denote
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Nz with |a| = a;+ a, + as.
3

At this point, we mention some relevant results: Moser-type calculus inequalities in Sobolev spaces and the local

existence of smooth solutions to symmetrizable hyperbolic systems.

Lemma 2.1 (Moser-type inequality [12][10]). Let k > 1 be an integer. Supposeu € H* Vu € L*,andv € H*"1n L.
Then for every a € N® with|a| < k, it holdsd® (uv) — ud*v € L%, and
0% (uv) — uo*vll < €, ()|Vu|loID*= 2wl + ID*ull v,

Where C, denotes a constant only depending onk, and
ID*ull = X4 0% ull.
In particular, whenk > 3the Sobolev inequality yields
10 (ww) — ud*vll < CillVulle—q 1V ]l-1-

Lemma 2.2[Commutator Estimates,[14]]Let I > 1 be an integer, and define the commutator
[V, g]lh =V'(gh) —gV'h.

If Po,D1, P2, 03,04 € [1, +00] satisfy

1 1 1 1

—=—4—=—+—

Po P1 P2 D3 Pa

then

[V, g1kl e < Vgl o IV 2R 22 + Vgl os (AL, s
In addition, forl = 0,

17t (gl po s llgll pa IVt R 2 + 17 gll o5 llRI] pa.
Lemma 2.3 (Local existence of smooth solutions; [9][12]).

Letk > 3 and (pf — 1,ué,0¢ — 1,E{, B — B,) € H* withpf > 1/2 6§ > 1/2. Then there exists T, > 0 such that
the problem (1.3)-(1.4) has a unique smooth solution (p%,u?, 6%,E¢, B?) satisfying

(p% — ps, €u,0° — 1,E¢,B¢ — B,) € C([0,T.); HY) n c*([0, T.); H*"1).

Throughout this paper, a basic assumption about the initial data is

(o — ps,u, 0 — 1B, BS — B) € HY,  with  p§ =7, 6f =, fore€ (0,1].

3. Global existence and convergence of solutions for the non-isentropic Euler-Maxwell system
3.1Global existence of solutions

In this subsection, we demonstrate that the non-isentropic Euler-Maxwell system (1.3)-(1.4) admits global solutions

uniformlye.

To make the proofclearer, we define £(t) it k = 3 as follows:
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E(O:=(p —ps,eu,0 =1,7(p = DI EO):=IV¥(p — ps, ew, 0 = D%,
&(): = II(p,u,G)II,ZWI;g-l. E®):= w7, EO:=Li & @)

For convenience, we introduce the hybrid spacesMy, T,, M, whose norms are denoted as
2, _ k—jaJ
If s = 2= V7707 £112,

NIz, := 27y 10 £ 112,
and
Nf o= AP+ Ve FI1 + IIfIIL]z(H + 117,

Lemma 3.1 for alle € (0, &;],
The main purpose of this section is to derive a key prior estimate of(p, u, 8, ¢), which is independent of timet . We

will always assume 6 < 1 in this section. For a given constante, > 0, assume the initial data satisfy.
E(0) < &.

Then there exist positive numbers p and p suchthat if (p,u,6,¢) is a smooth solution of problem (1.3)-(1.4)
satisfying.

£(b) < 26,

The following estimate is valid.
t
E() + J, € ()T < £Q0).

Proof. Similarly to Proposition 2.1 of [16], we can prove Lemma 3.1. We omit it for the sake of simplicity.

Lemma 3.2 LetG = B— B, ithold

i(llao‘EII2 +[10“G|I?) < 8110% (W, E — E)|I%.
Proof. Start with the fifth Equation in system (1.3):
0. (E — E.) =~ curl(G) = pu.
Apply 0% and take the inner product withd* (E — E, ):
L 107 (B — E)|1? — {curl (9% G), 0% (E — E,)) = 2(0% (mu), 0% (E — E, ).
Next, take the fourth Equation in (1.3):

0,G + - curl (E — E,) = 0.
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Applyd“and take the inner product withd* G:
L0617 + curl (8% (E — E,)),9°G) = 0.

By using the vectoridentitya - curl (b) + b - curl (a) = div(a X b) :

L (J0%EN? + 110°GII») = 260 (pw), 0% (€ — E,)) < 8]10° (wE — E,)|?
< 8110°(w E — E,)|.

Proof of Theorem 1.1. Theorem 1 follows by combining Lemma 3.1 and Lemma 3.2.

3.2Convergence of the solution ass — 0
This subsection focuses on analyzing the global temporal convergence from system (1.3)-(1.4) to system (1.13)-(1.14).

Proof of Theorem 1.2. Turning to the non-isentropic Euler-Maxwell system (1.3), this subsection focuses on

establishing higher-order derivative estimates. To facilitate this derivation, we first reformulate (1.3)as:

((?tp‘g = —p&divu® —uf - Vp?,

uf +uf - VUt + V(0 - 1)+ Sut + 5 Vp (o, — p)(p°p,) "

{+ 5 (05 = 1)(P) VP + 5 (p°) ' W(p® = p) = S V(B° — b)) — eux B, (3.1
'Le; +uf 70° +20%divut - (p°) 1 a6° = Z‘TZ (W) — (6° — 1),
A(P° — ¢ps) = p* —ps.

Formally, in the limite — 0, if we denote the limiting functions of (p€,u¢,0¢, ¢, B€) by(4,4,0,d,B), the
asymptotic equations derived from (3.1) reduce to

(atﬁ = —pdivi—u-Vp,
V@~ 1) +a+Vp (o — P)(pp) " + (8- 1)) 75

+(P) V(B —p) =V(D— D) (3.2)
Lét +u-Vo +§édiva— § (p)"146 = §a2 —@-1),
A(d-)_ (ps) = p — Ps-

And in particular, estimate (1.18) yields that

+ oo
Stuzé)(llpg(t) = psllE + 15 = 1UE + IECOIIF + 1BS©) = Bl + Jy [u* (Dllzdr < .

Consequently, the sequences (0 — ps)eso, (85 — 1)esg, (E€)espand (BE— B,).sqare bounded inL*(R,;H*), and
(u#),>, isbounded inL?(R, ; H¥).

Moreover D'(R, x K3), we have

e2(@,uf + W -Muf) + e xBE) >0, as -0,
e(8,E€ — pfuf) >0, as &-0,
€0,B* >0, as -0,
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and there exist functionsp —p,, 8 —1,E, B—B, in L®°(R,;H*) and@inL?*(R,;H*) such that convergence
(1.10)-(1.11) holds for a subsequence. Moreover, applying the first Equation in system (1.13), we establish that the
collection {8,p%},>, is uniformly bounded L?(0,T; H*™1) foreveryT > 0.

ConsiderT > 0. The family {p®},-is uniformly bounded inL?(0,T; H*). Standard compactness arguments imply that
foranyk, < k, this sequence is precompact inC([0, T]; H*1). Consequently, there exists a subsequence converging strongly

in this space as expressed in (1.12), which follows from the uniqueness of the limiting solution.
Consequently, the limit passage is valid for each nonlinear term in (1.3), leading to

Moreover D'(R, x K3), we have
0,p — A(pO) + div(pV¢) = 0,
0,0 +u-Vo+20dwu— =40 =
3 3p
A = j— b(x).

2\u

,lz _
L-@-D,

This immediately establishes the existence of a potential function ¢such thatE = —V¢. We thus recover the

energy-transport system (1.6).
Next, we examine the initial data for g 8. The uniform strong convergence in (1.12) overt € [0, T] implies:
p%(0,) - p(0,), 6%(0,)—> 8(0,) inH¥ as &-0.
Recognizing that p®|,-, = p5 , the initial condition (1.14) follows from (1.12) and the uniqueness of limits.

Finally, standard theory guarantees that the energy-transport system(1.13) admits a unique solution when initiated
with smooth data (1.15). This implies convergence of the full sequence(p®, u,0%, E¢,B#),, which concludes the proof
of Theorem 1.2.

4. Global convergence rate for system (1.3)-(1.4)

The analysis of error estimates relies on the established results concering uniform global existence and
global-in-time convergence for systems (1.3)-(1.4) towards (1.13)-(1.14). The rate of convergence for (1.3)-(1.4) is
formally presented in Theorem 1.3. To begin, we review the concept of a stream function, essential for analyzing

conservative equations.
J.u+divv =0,
We call ga stream function to this Equation ifit is satisfied.
o, =v, divep=-—u.

Next, we seek an appropriate stream function for the non-isentropic Euler-Maxwell system (1.3)-(1.4). A central

conservative equation is obtained by subtracting the first Equation in (1.5) from the first Equation in (1.3),
9, (p¢ — p) + div(pcu® — pu) = 0.

Then the stream function ¢ satisfies.
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{fw = pfuf —pu,
dive = —(p* - p).
The deviation @ = E¥ — E in the electric field naturally serves as the stream function because
div(E€ — E) = —(p* - p).

Nevertheless, the limiting system is only div(d,E) due to the loss of d,E information during the & — 0 limiting
process. Consequently, d,¢differs from p®u® — ptiand instead incorporates an additional divergence-free term K as

follows:
0, = pfuf—pu+K.
Thus, E€ — E the stream function of the modified conservative Equation below
9, (p¢ — p) + div(p*uf — pi + K) = 0.

We now initiate the analysis of error bounds. Consider(p?,uf, 0%, E¢,B¢) the unique classical solution to system
(1.3)-(1.4), and(p, 1, 0, E) the unique solution to the energy-transport equations (1.6)-(1.7). With these solutions defined,

we introduce.
(N¢,58,05,F¢,G8) = (n® —n,u® — @1, — 0,E€ — E,B— B,),
=
(Ng, Uy, B8,,E, By) = (0%n¢, 0%u®,0%0¢,0°E,0°B*¢),

(g, 1 4,04, Ey By) = (0%1,0%0,0%6,0E, 0% B),

and
(Ny.Ey, 04, Fy, G,) = (0% NE,0%5€,0%OF, 0% F€, 0% G*).

Lemma 4.1. Assume ||p, — 1||they |8, — 1||,, are sufficiently small, then the solution (p,%,8,E) to the system
(1.16)-(1.17) satisfies

_ t. _ _
16(6) — 11 + [y 16(D) — 121 dT < Cll (D, — 1,6, — DI, Ve >0,

@.2)

la(® -1 + 10, 2 () |l%-3 +f0t(llﬂ(f)||i + 10, 2(Dl%-2) dT < Cl(Bo — 1,6, — DIIE, ¥t >0, (4.3)
N6 — 1% + fot 16(7) = 1llidr < ClI(go — 1,0, — DIIF, vt >0, (4.4)

NEONE + 10 EONIF-1 + fot(IIE(T)IIiH + 10, E@IE) dr < Cl1(B — 1,6, — DI, vt >0. 4.5)

Proof. Leta € N* be amulti-index with|a| < k. According to (1.16), foranyt > 0, we have
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{at,s — div(V(pB)) + div(pV) = 0,

— (4.6)
Ag=p—b(x), my(®) =0,
From (3.2) and (4.6), we obtain
8,6 — div[pV (8 — 1)] — div[Vp, (o, — p)ps] — div[(8 — 1)V p] wn
~div[V (5 — p)] — diw[pV ($ — $)] = 0,
Applying 0%to (4.7) and taking the inner product with 9% (p — p,)
22105 — pIF =S4 1, (48)
Notice that
L==["[V@-D]-0VF—p), L, =-a"[@-Dpl-0°V (G - py),
Iy = =0 [Vp, (o, — p)os 1 - 0%V (5 — py), Iy==[0"[V( - p)]0°V (6 - p5),
Is = [ 3% [pV($ — ¢5)] -0°V (6 — py)-
Firstly, it follows from ¢}, inequality that
<1077 — P07 Al IV (O = Dle + 1189V (0 — DlIAN) .9)
<68)0%V(p — p)II> +8110%V (@ — 1),4(0 — D% '
Using integration by parts, we can obtain
I, < 110%V(6 = p )10 (@ — DINVAle + 116 — Ll [10%(V) D @.10)

<8)10°V (6 — p)II* +68110%(6 — 1),4(6 — DI
ByH\0lder ’s and Cauchy’s inequalities and Riesz’s theorem, one has

=—J o [Vps(ps — pIps 1 - 07V (5 — py)
= f [Vpsps 0%(ps — ) + [0, Vpsps M1 (o — @)1 - 0%V (5 — py)
= f§ psps 1710 (5 — p)1% + [10%, Vp, p 1 (ps — p) - 9V (5 — p5) 4.11)
— [V o0 110% (5 — po) 12 + 1097 (5 — p)III[A%, 7 ps ps 1 (os — A)I
< c(lla* (5 — pHIZ + 0%V (5 — p)HIZ + 15 — ps 1132)

Similarly, we easily see that

I,==J 0" V(5 — p)]0"V (5 — ps) == [ 10°V(p — p)I? (4.12)

By Riesz’s theorem and Gagliardo-Nirenberg’s inequality,

Is= 0" [pV( — ¢)]- 07V (p — p5)

=—J 0 div[p($ — b - 3° (5 — py)

=—J0% [V5 -V (P — o)+ pAP — b - 9°(h — py)
=—J0%[Vp-V(— )] 0% (p—ps) — | 8% [pA(P — }s)] -0 (5 — py).
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Let

Iy =—J0% [V V(p — ¢s)]-0%(p— ps), Iy, =—J 0% [pA( — )]~ 0% (p— ps)-

Notice that

Isy < 10% (6= pONNO“V (P — dIeIVAllz + 1107Vl V(@ — dollis)
< 81106 — p)II* + 8115 — psI?

and

I, = =1 p10%(6 —p)I* = J10%,514(& — &) - 9° (5 — ps)
=—Jp10%( — p)I? + Iy

Similarly, one has

Iy < (7Pl 1107710 = Il + 10 A1IA = psll=)N0% (B = po)I
< 810 = PN + 8110% 7B = plI> + 8116 = pslli

Then we can obtain

Is< =J510%(6 — p)I? + 8110°(6 — pII” + 8110° 7 (6 — p)II” + 8115 = pellfzz

Plugging (4.9)-(4.13) into (4.8), it follows

1d _ - _ -
=195 = I + S 510 (6 = p)I? + 10V (5 = po) II?
<80+ @ = DI + 815~ ps, 6 = D72

Then, the sum of the Equation foralla € N® |a| < k implies

1d, - _ - _ A
S p = psllE 15 = ol + PTG = p)IIE < C8UIA = pollfs + 118 = LlIZ40).

2dt

@.13)

4.14)

By noting that |||, and ||@ — 1]||, being small enough, integrating the above inequality over (4.2) follows.

Applying V*to (1.3); — (1.3); and multiplying it by p~*6V*(o — p,) pV¥@, and 2;59_17"(9_ —1) inlL?,

respectively, then

d 1A _ 3 _~_ = _ _ A =
—J(B710IV (6 = p)I? += 01 IVFOI) + [ (2p17%a|? +35671|V¥6]%) = EP_, K,,

Where

——1A - JE — _ - 3 ,_ ~_ CA_9 = =
Kii= [ 5710,V (6 = po)I* = 572p0IV* (6 = po) 1> + pe V¥ al® + (5.6~ = pO26,) V%02,

Ky:=2[pvkv(@ — ¢po)v*a, Ky:= =2 J pV*[(0ps )" Vs (s — P)IV4,
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—2[prevk@-vp)VE (5 — py), Ks:= =3[ p6-1v*(a - V) V¥,

&
I

2 p 67 VK(p1460 + |u|?)V*6,

&
I

K= —2[ p=1 6V  (pdivi) V5 (5 — py) + pV*[p~1V(5 — po) V¥ + pV*[p~17p(6 — 1)]V* 4,
Kg:= =2 p 8717*Qv* (Gdiv) + pv*vavFa.

We can obtain

K, <68110%(6 — 1,5 — py)II%, K, < 8110% (@, V(¢ — ¢II%

K; < 8)10% @, p — p)II, K, <8110 (@, p — p)II%

Ks < 8]18% (1,6 — 1, V0|12, Ky < —2[67110°V8|2 + 510 (6 — 1, )%,
K, < 8)10°@ 6 — 1,5 — p)lI%, Kg < 8110%(6 - L, D)|1*.

Plugging K;,i =1,2,3,4,5,6,7,8 into (4.15),
d =~ 1710k (5 2 3—-—1 k7|2 ~ k)2 ~a—117k7|2 A-117c 742
. (A770IV (0 — ps)I +Ep9 [V501%) + | (2p|V*al® + 3p0 7|V 0|° + 2077 [0“VO]|)

< §)10% (6 — p)II% (4.16)

Then, the sum of (4.16) for all @ € N* |a| < k implies
d _ = _ _ -
2@ —ps, 0 — DI+ Nal + 116 — ps, 0 = DIF41 <0 (4.17)

From (4.14) to (4.17)

16— po, 8 = DI+, 1llE + 1165 — £y, 6 = DliFas < ClIGo — p5.85 — DIE.
We easily get by (3.2)
7% (¢ — ¢l < Cllo* (Vh — po)ll-
Then we can prove (4.4) by (4.18) easily.
In order to get them easily, we transform (1.15) into the following form:
u=Vd—-V0—-0np=V(p—¢s)— (0 —VVinpg—V(np— Inpy).
Then

198l < Cllgo — psllgenr B <k—1. (4.19)
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_ t ) _
e lf-q + Jy la(DlEdr < Clido = p5, 00 = DIIE vE>0.
For a multi-indexy |y| < k — 3, applying 3,0" to the Equation @ in (1.7) implies
_ VD 4 A [} N _ ~ -
9,00 = —3" (7@9 — VPO + V0, + 79,0 - 3,7%).

In view ofd, p = —div(pit) (4.2) and (4.19), we have
16,07 ]l < Clllly vz + 10, Vb .
This, together with (4.20), yields (4.3). From (1.7)~(1.8), we have
divd, Vg = 8, p = —div(pDv),

which implies that there exists a function Hsuch that

In order to make H it uniquely determined, we add a restriction condition

mg(t) = [ A (£, x)dx =0, Vt=0.
The estimate H is as follows.
Lemma 4.2 The solution H to (4.21)-(4.22) satisfies
H e L”(R*;H*) and d,H€ L*(R*;HF ).

Proof. Applying the curl operator to the initial Equation in (4.21) yields

AH = -V x (pv), Vt=0,

(4200

(4.12>

(4.22)

(4.23)

According to Lemma 3.1, thisyieldsVH € L®(R*; H*~1). Moreover, application of (1.6) and (1.8) readily shows that.

8, (p%) = (8,p)V + po, v = —div(pv) v + 0,7,

Which implies thatd, (ov) € L?(R*; H*~2) Differentiating both sides of Equation (4.23) with respect to time results in

A0, H = =V X 8,(pD).

Consider a multi-index B € N®satisfying|8| < k — 2. We apply the partial derivative operator 9 to both sides of the

Equation above and then take the inner product of the resulting expression with

\VaPa, |12 < C|{aPa,H,V x 8,0 (5v))| < C|(V x 8P 8, H,8,0° (pv))]|

< - IVof 3, || + C119,0 (pD)|I1,
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We have utilized Young’s inequality and the solenoidality condition div(d.H) = 0. Consequently, we deduce
thatd, VH € L*>(R*; H*~?). The proofis then concluded by applying Poincaré’s inequality to both A andd, A.
Now we have the following uniform estimate «.

Lemma 4.3. 1t holds

t
L UEE@li—y + VG @NI;-z) dT < ClIU§ — Ullp, Ve =0,

Where G® = B® — B,.
Next, by taking the difference of (1.5); (1.3), we have
0, N¢ + div(nfu® — i) = 0.
It follows from (1.3), (1.6)~(1.7) and (4.21) that

divF® = —N¥, (4.24)
and

0.F = 0,E - 0,E = (p°uf — pu) +-V X G + 7 x . 4.25)

According to the concept of stream function at the beginning of this section, F®j; is a stream function of (4.1)
withK = eV X G¥ + V x H.

In the following, we prove the estimates for the error function (N¢,5¢,0%, F¢,G*®).

Lemma 4.4. 1t holds

sup (IN*O)IlF-2 + 10°OllF—2 + IFFONIF-1 + 1G°(OlIF-1)

teR*
+Jo AN @iy + 105 @ Moy + IFE @Iy + IVGE @ MIF-) dT < Ce?Pr+ 8 [ I1E11F -2
Which p; isdefined in Theorem 1.3.

Proof. We use some lemmas to complete the proof of Lemma 4.4. FirstlyT > 0, we take the difference of (1.7),
and (1.3) to get

£2(9, (p*u?) +div(psu® @ u®)) + v(pcee) — v(;56)
= —(p°E¢ — pE) — ep®(u® x B) — (p*uf — pin).

For a € N3with|a| < k — 1, by applying d* to the above Equation, multiplying the resulting Equation withF,,
integrating it with respect to x , andt, we have
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0 = [ e2(E, 378, (p=u®))dt + [, (E,, 8% (p*u® — pin)) dt
+J, (Fa,a“ (V(pEGE)— \7(;59‘))) dt + J, (E, 0% (p*F®)) dt
+ Iy (R0 (P2E)) dt + [y (Fy, e20%(div(pfuf @ u®)) + e0% (p*us x BE)) dt

a 6
= j:le;

(4.26)

with the correspondingR® jindex byj = 1, ...,6. Here, p;and & referenced in Lemmas 4.7--4.8 originate from Theorem 1.3,

while @ > 0 represents a sufficiently small positive parameter.

Now, we begin to study the error estimates. Consider the unique smooth solution (p%,u®,6%, E¢,B?) to system(1.4),
alongside the unique solution(p, @, 8, £) to the energy-transport model described by (1.6)-(1.7).

We prove the following result first.

Lemma 4.5 (Estimate ofR, see Lemma 2.5 in [11])For all|a| < k — 1, itholds
T
IRy | < Ce?1 42 |IE (DI + i fy 1762 (DI _sd.
Lemma 4.6 (Estimate ofR ,)For all|a| < k — 1, it holds

T
Ry = T |IE (DI? + 7 16 (T2 = Ce2P1 = C8 sup 1G5 (©)lIF—y — Cuufy IVG=(O) I}, dt. @.27)

0<t<T
Due to (4.25)
(pfuf—pa) = 8, F ==V x G-V x H.

We can obtain

T1d 1 _
Ry = Jo S B (OIP=< VX F,(£),5G, + Hy > dt
T1d 1
=Jo S IE O +< 80,6y, 5 Gy > dt

+Jy & < 6G,, 090 > —< 6G,,0,0A > dt,

notice that
VXE =-60,G,.

In a similar way to that in Lemma 4.5 of [15], we can prove (4.27). We omit it for the sake of simplicity.

It is for the sake of simplicity.

Lemma 4.7 (Estimate ofR,) For all|a| < k — 1, there exists a constant ¢; > 0, such that.

Ry 2 [y (cilINe@I? = 2110, @I17) dr — €8 J; AN @3- + 10° (D 3-1) dr,
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t ~
Ry + 68y 217, + Ce?P

4.29)
2 [|0,(D* + ¢, foT(IINO,(T)II2 + 110, (D)) dt — €8 fOT(II NE@lli-1 + 102 (@)ll5-1)dz.

Proof. By recalling and using (4.21), we have

R; = fOT <F,0° (V(pSGE)— V(ﬁé)) > dt
= —f, < divE,0*(p*6° — ;0) > dt
= [ <N, 0°(00 + 6N) > dt.

notice that
< N,,0%(p0 + 6N) >= [ pN,0, + [0%,p]ON, dx+ | N, 6N, + [0%,0]NNdx
From (1.16)-(1.18), (4.2) and (4.4), it directly follows that inf {5¢,8¢} > 0 for § sufficiently small, withe € (0,1]
&5
s € [0,1]. The continuity and monotonic properties of p ,and . therefore ensure 3 c¢; > 0 that.
J Ng 6N, 2 4c] [IN|I*.

Observe that the Cauchy-Schwarz and Young inequalities guarantee the existence of (€; > 0) a satisfying

<
(NewOy) = —C1lINII” = 2110, 1%

! ~

. ~ A c C - ..

Denotingc; = é;max8, then= = Zmax p, additionally, we notec; < c¢; < c;that we have
0sss1 4 4 0sss<1

(N,,6N,) = 4c,|IN,|I?, (430)
(Noy pOg) = —c;[INglI* = 2116, 11%, (43D

I[0%, p101l < IVpll= 0701 + 110%plle 101l < CS11Oly—1,
and
I[0%, INI| < IVO]l = 10* NI + [10% Bl s [INll 5 < CSIINl—s-
then which, along with Young’s inequality and the Cauchy-Schwarz inequality, implies
J16%, 61 NN dx > —c,||N,||> — CS|IN€|12,, (432)
fl0%, pl ON dx = —c,|IN,||*> — C5|I0¢]12_,. (433)
Thus, the combination of equations (4.30)-(4.33) establishes (4.28).

Furthermore, subtracting Equation (2) in system (1.6) from Equation (3) in system (1.2) syields.
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0,0° +u - VO — @ VO +-0°divut—20diwvu —> (p°)146° +
2|u2

1o,
3

2 5V1p6 = e —
2(5) 7146 = == Juf|
Applying 0% the above equation yields

0,00 +9% (u® -V9°) — 8% (@ - V0) + 2 0 (6 divu®) — 2 % (diva)
2-¢?
3

—29%[(p)7140°] + 2 97 [(5)"140] = == 0% (jutP) — 29% (1) — 0% 6,

Notice that

0% (ué - v98) — 0% (@ - V) = 9*(ué-ve) + 0*(z - Vo),
and

~0"[(p*) 7 40°] +0[(§) 1 48] = ~3“[p ™" 46] — 3°[46°(-;~ p ],
and
207 (6%divu®) — 2 0% (diva) =2 0% (0divu®) + 20 (Adiva),
Then we have

9,00 + 0 (u* - 70) +9(Z - V) +2 9% (Bdivu®) + 29* (AdivE)

_g?

~29°[57140] -2 0° [Aef(p—ls - p D] = == 0% (uf ) - 2o (jaf?) - 96,

3

Taking the inner product with 8% @in L2yields

(0,04, 0,) + (0,,0,) = X8_, S, (434)
Notice that

S, =—<0* Wt -ve%),6, >, S, =-<0“(z-Vh),0, >,

S, = —< 29 (0divu®), 0, >, S, = —< 20%(4divE), 0, >,
3 3

S5 =< 20“[57140],0, > +< gaa[aeE(p—Z— 51,6, >,

_ .2
S, =<2 =0 (ju®|), 0, > —<§aa(|a|2), 0, >.

With the help of Lemma 2.2, one has

51 < 18 AGINTOl o + [ufll o 110 VOID < 1101|1116 Il (435)
Similarly,
Sz < N0 ICNE 1481120 + IIE N = 10971 < 8110111101l (4.36)

By virtue of Hdlder’s Cauchy’s inequalities,
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Sy = —ifdivu@é + [0%, divu]00,
< —gfdivu@(i + 10, Il divul| = |09~ 20]| + ||0% divu||6]|=) (4.37)
2 ,
< —>Jdivud; + 81101111l

similar toS5,
S4 < 6101[—1 11O (4.38)

By virtue of Hdlder’s Young’s inequalities,

S5 = =21 0% (767 Cz = 57110, + 9°[V6 5 — 5176,
—gfa“ (p~1VO)V0O, + 0% (V5 ~1V0)e,
< -5 V0,2 +[9%,57IVO - VO, — [ 0* (V5'V6)8,
~2f 5 [I79|7(p—1£ - 5106, +0° [Ve(pis - p Ve,

Then we can obtain

2 -
Ss < —;fp 7O + SO0 llj-1- (4.39)
By the Cauchy-Schwarz inequality, Young’s inequality, we obtain

2
Se =< 20%([u°|? — []?), 0, > =< =0 (juf|?), 0, >
2
=—< gaa—lquﬂz —12|?), 70, > —< =9 ([uf|?), 6, >
S VO (N = allee 1Zq—q [l + 1E]l o [10% @® + D) + 2[|0%u®|[[|[|O I,

Then we can obtain

Se < Ce?[|0%u®||* + §|IVO, 201 |I- (4.40)
Substituting (4.35)-(4.40) into (4.34), it follows

1d 2 . 2 __
S 10al? + 1a11* +5 S divudf += [ 57 VO, |?

< sllegll, el _, + I1El,_,) + Ce?||a* uf||-.

Integrating the above inequality over [0,t] and summing up all|a| < k — 1, it yields, by (1.9), (1.16), and (1.17), we

can obtain

t to to
I011F-1 + [y 1817 < 8 Sy IEII7—2 + CNOO)Ili—y + Ce* < 8 Jy IE]I;—, + Ce?P2. (4.41)
Multiplying the above inequality (4.41) by 5%1, then integrating over ([0,T]), and adding it to (4.29) yields

18T + ¢ Jy NI + 10 (D 1) dt = €8 Jy (N @)I1F—y + 185 (D)I3-) d

t ~
SR+ Ce?r+68 [ |IE12-,,

Which proves (4.29).
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Lemma 4.8 (Estimates ofR,, Rs andR, see Lemma 2.8 in [11])For all|a| < k — 1, there exists a constantc, > 0, such
that
Ryt Rs+ R = ¢, Jy |IE, (D)]|2dT — C8 J, [IN®(T)|[2_1dT — Ce?. (4.42)
Proof. SinceR, +R;+ R, + Rs+ Ry = —R combining Lemmas 4.7--4.8, (4.24) and (4.2), and summing up
allla| < k — 2, we have

INSDIZ_, + 105 (TIZ_y + IFE(DIEZ_, + IGETIE_,
T
+ o AINE@IZ_, + 106D + IFE(D11_) dt
T to
< Ce®Pr+ CSsup [[GE@)Ey + Culy IVGE(DNE_dr+ 8 [, 112,

0<t<T

Provided that § it is small enough. By taking the superior limit with respect to T, we obtain

Suq(IINE(t)IIi-z +10°OllF-1 + IFEONF-1 + 1GEONF-)
teR

+ oo
+Jy UINC@IZ, + 105112 + IIFE @)D dT
+ oo [ee}
<ce?itcpl, VGO dr+8 ), IIZNIZ_,.

The proof of (4.42) ends after borrowing Lemma 2.9 in [11] as follows.

Lemma 4.9 It hold
LTNvGEE (D3 pdr < cePr,

Proof. We omit it for the sake of simplicity.
The proof of Theorem 1.3 follows from the estimate below.

Lemma 4.10 1t hold

~ +oo ~
sup e |25 O lli-2 + Jy 17O llk—, de < Ce™.
teR

Proof. In a similar way to that in Lemma 4.10 of [15], we can prove Lemma 4.10. We omit it for the sake of

simplicity.
Proof of Theorem 1.3. Theorem 1.3 follows by combining Lemma 4.4 and Lemma 4.10.

5. Conclusion
This study addresses the non-isentropic Euler-Maxwell system under small relaxation times in magnetized plasmas

and semiconductors. The core contributions, highlighting the role of temperature evolution, are:

1. Uniform-in-Relaxation Global Existence: Global smooth periodic solutions exist near equilibrium, uniformly
controlled as the relaxation parameter shrinks.

2. Global Convergence to Energy-Transport: Solutions converge globally (in slow time) to those of the full
energy-transport model as the relaxation time tends to zero.

3. Innovative Error Estimates: New techniques involving stream functions and sharp energy methods yield precise error

bounds between the non-isentropic Euler-Maxwell and energy-transport solutions.
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