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1. Introduction 
Cayley graphs are useful in routing problems of parallel computing. Circulant graphs are Cayley graphs. Tamizh Chelvam 

and Rani[2,3,4] obtained the domination number, independent domination number, total and connected domination numbers for 

circulant graphs with respect to a class of generating sets of 𝑍𝑛.  

 

1.1. Foundational Surveys and Classical Bounds 

The research on domination in graphs has its roots in early work on combinatorial optimization and network theory. 

Plummer's survey (2006)[6] specifies upper bounds on the domination number of cubic graphs and deals with related invariants 

such as toughness and matchings. Reed (1996)[7] showed that 𝛾(𝐺) ≤
3𝑛

8
for each connected cubic graph G of order n, and 

conjectured 𝛾(𝐺) ≤ 𝑐𝑒𝑖𝑙 (
𝑛

3
). This was later disproved by Kostochka & Stodolsky[8], who produced infinite families of cubic 

graphs with 𝛾(𝐺)~ (
1

3
+

1

69
)𝑛. 

 

1.2. Bounds and Conjectures under Girth and Bipartiteness Constraints 

In order to make a breakthrough towards the 
𝑛

3
  barrier, further structural assumptions have been made. Löwenstein & 

Rautenbach (2008)[9] showed that cubic graphs of at least girth 83 satisfy  𝛾(𝐺) ≤
𝑛

3
. The two best-known "one-third conjectures" 

ensued: Verstraete's conjecture claims the same bound for girth ≥6, and Kostochka's conjecture asserts 𝛾(𝐺) ≤
𝑛

3
 for every cubic 

bipartite graph. Recent developments by Dorbec & Henning (2024)[10] confirm Verstraete's conjecture in the absence of 7 - and 

8-cycles and sets Kostochka's bound for bipartite cubic graphs without 4 - or 8-cycles. 

 
1.3. Connections with Total Domination and Irredundance 

Variants of domination have been considered in parallel. Henning & Yeo (2017)[11], showed th at 
𝛾𝑡 (𝐺)

𝛾(𝐺)
≤ 2  for every cubic 

graph and also stated the conditions for equality.  

 
1.4. Advanced Variants and Recent Structural Results 

Sheng & Lu (2020)[12] settled the Goddard–Henning conjecture by finding paired-domination number for all cubic graphs. 

 

For large-girth graphs, Joos et al.[13] achieved the bound of  𝛾(𝐺) ≤ 0.29987𝑛 + 𝑂(
𝑛

𝑔
). 

Most recently, new decomposition theorems (2025)[14]capture the internal structure of minimum dominating sets in any 

cubic graph, opening the door to further structural insight. 
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1.5. Open Problems and Future Directions 

Even with these advances, key questions remain open: 

1. General one-third conjecture: Is  𝛾(𝐺) ≤
𝑛

3
  true for every cubic graph? 

2. Extremal characterizations: Which structures have equality in bounds for total and paired domination?  

3. General classes: Can the new structural theorems be generalized to irregular or directed cubic networks?  

 

Future work will likely combine combinatorial constructions, probabilistic methods, and computation experiments to bridge 

these gaps and improve domination bounds in cubic graphs. 

 

For the concept of domination and Cayley graph one may refer[1,5]. Throughout this paper, the generating set A of 𝑍𝑛 taken 

as A ={𝑎,  
𝑛

2
, 𝑛 − 𝑎}  where 1 ≤ 𝑎 ≤ 𝑛 − 1 .  Since the elements of A are arbitrary, A need not be a generating set of 𝑍𝑛.  It is 

sometimes referred to as the Cayley subset of  𝑍𝑛. In view of this, the circulant graph under consideration need not be connected. 

Addition is performed modulo n. 

 

Theorem 1.1. [1]For any graph G with n vertices, 𝑐𝑒𝑖𝑙 (
𝑛

1+∆(𝐺)
) ≤ 𝛾(𝐺) ≤ 𝑛 −∆(𝐺)  where ∆(𝐺) is the maximum degree of G. 

 

2. Main Results 
In this section, the domination number and upper bound of the domination number of a class of circulant graphs Cir(n, A) is 

obtained. 

 

Theorem 2.1. Let n, k and a be positive integers such that  𝑛 ≠ 8𝑘 , n is 

even and with 1 ≤ 𝑎 ≤ 𝑓𝑙𝑜𝑜𝑟 (
𝑛−1

2
) be the generating set with gcd(𝑎,

𝑛

2
, 𝑛 − 𝑎) = 1 and G=Cir(n, A). Then 𝛾(𝐺) = 𝑐𝑒𝑖𝑙 (

𝑛

4
). 

Proof. Let 𝐴 = {𝑎,
𝑛

2
, 𝑛 − 𝑎} and D={0, 𝑠, 2𝑠, ⋯ (ℓ − 1)𝑠}                                   where 

ℓ = 𝑐𝑒𝑖𝑙 (
𝑛

4
)  and 𝑠 =

𝑛

2
+ 2𝑎                      . Note that some of the elements of  D exceed n 

and hence addition modulo n is operated. 

 

Claim D is a dominating set. To prove that 𝑉 = 𝑁[𝐷].   As it is always true that 𝑁[𝐷]𝑁[𝐷] ⊆ 𝑉 , it is enough to prove that 𝑉 ⊆

𝑁[𝐷]. Let 𝑣 ∈ 𝑉 . Any element 𝑣 ∈ 𝑉  could be written as 𝑣 = (
𝑛

2
+ 2𝑎) 𝑖 + 𝑗 where 0 ≤ 𝑖 ≤ (ℓ − 1) and j=0,a,

𝑛

2
,n-a. When 𝑣 =

(
𝑛

2
+ 2𝑎) 𝑖 + 𝑗 where 0 ≤ 𝑖 ≤ (ℓ − 1) and j=a,

𝑛

2
,n-a then 𝑣 ∈ 𝑁(𝐷) and when j=0, 𝑣 ∈ 𝐷 .  

Hence 𝑉 = 𝑁[𝐷] and so D is a dominating set.  Also |𝐷| = ℓ = 𝑐𝑒𝑖𝑙 (
𝑛

4
) . Hence 𝛾(𝐺) ≤ 𝑐𝑒𝑖𝑙 (

𝑛

4
). 

By Theorem 1.1 [1], we have 𝛾(𝐺) ≥ 𝑐𝑒𝑖𝑙 (
𝑛

4
) . Therefore  𝛾(𝐺) = 𝑐𝑒𝑖𝑙 (

𝑛

4
). 

Example 2.2. Suppose n = 42 and A = {5, 21, 37}, then ℓ = 𝑐𝑒𝑖𝑙 (
42

4
)=11 

𝑠 =
𝑛

2
+ 2𝑎 = 31  and γ−set, D = {0, 31, 20, 9, 40, 29, 18, 7, 38, 27, 16}. 

Theorem 2.3. Let n, k, a  be positive integers such that n = 8k and A ={𝑎,
𝑛

2
, 𝑛 − 𝑎}  

 with  1 ≤ 𝑎 ≤ 𝑓𝑙𝑜𝑜𝑟 (
𝑛−1

2
)be the generating set with  g.c.d(𝑎 ,

𝑛

2
, 𝑛 − 𝑎) = 1. 

 

Proof. Let A = {𝑎,
𝑛

2
, 𝑛 − 𝑎}  and D = {0, 𝑠, 2𝑠 ⋯ ℓ𝑠}  where   ℓ = 𝑐𝑒𝑖𝑙 (

𝑛

4
) and 𝑠 =

𝑛

2
+ 2𝑎 

 

Claim D is a dominating set 

Consider 𝐷1 = {0,𝑠, 2𝑠 ⋯ (ℓ − 1)𝑠} . Then the element (
𝑛

2
− 1) 𝑎  is not dominated by 𝐷1 .  Let D =𝐷1 ∪ {ℓ𝑠}  .  Since    ℓ𝑠 =

2𝑘(4𝑘 + 2𝑎) = 𝑘(8𝑘 + 4𝑎) = 𝑛 + 4𝑎𝑘 = 4𝑎𝑘 =
𝑛

2
𝑎, we have (

𝑛

2
− 1) 𝑎 is dominated by ℓ𝑠 . Therefore D is a dominating set. 

Also |𝐷| = ℓ + 1 = 𝑐𝑒𝑖𝑙 (
𝑛

4
) + 1 Hence  𝛾(𝐺) ≤ 𝑐𝑒𝑖𝑙 (

𝑛

4
) + 1. 

 

Example 2.4. Suppose n = 56 and A = {9, 28, 47},then  ℓ = 𝑐𝑒𝑖𝑙 (
56

4
) = 14 

and γ−set, D = {0, 46, 36, 26, 16, 6, 52, 42, 32, 22, 12, 2, 48, 38, 28}. 
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Theorem 2.5. Let n, k and a be positive integers such that 𝑛 ≠ 8𝑘 , n 

is even with 
𝑛

2
 is not a prime number and A = {𝑎,

𝑛

2
, 𝑛 − 𝑎} with 1 ≤ 𝑎 ≤ 𝑓𝑙𝑜𝑜𝑟 (

𝑛−1

2
) 

 and  g.c.d (𝑎,
𝑛

2
, 𝑛 − 𝑎) = 𝑔 ≠ 1.   Suppose G=Cir(n,A) then 𝛾(𝐺) ≤ 𝑔 (𝑐𝑒𝑖𝑙 (

𝑛

4𝑔
)). 

 

Proof. Suppose A = {𝑎,
𝑛

2
, 𝑛 − 𝑎}with 1 ≤ 𝑎 ≤ 𝑓𝑙𝑜𝑜𝑟 (

𝑛−1

2
) and g.c.d.(a,

𝑛

2
 , n − 

a) = g ≠ 1. Then G is a disconnected graph with g components. Let  the components are 𝐺0 ,  𝐺1 ,⋯ , 𝐺𝑔−1. The component 𝐺0  has 

vertex set 𝑉0 = 𝑁[𝐴 ∪ {0}]  and is connected. Similar to the proof of Theorem 2.1, one can prove that  𝐷0 = {0, 𝑠, 2𝑠, ⋯(ℓ − 1)𝑠} 

where ℓ = 𝑐𝑒𝑖𝑙 (
𝑛

4𝑔
) and  𝑠 =

𝑛

2
+ 2𝑎 is a  dominating set with |𝐷| = ℓ. Hence 𝛾(𝐺0 ) ≤ ℓ . Also 𝐺𝑖 ,  1 ≤ 𝑖 ≤ 𝑔 − 1 is a  connected 

component of G with vertex set V𝑉𝑖 = 𝑁[𝑉0 + 𝑖] = 𝑁[(𝐴 + 𝑖) ∪ {𝑖}] and 𝐷𝑖 = 𝐷0 + 𝑖 = {𝑖, 𝑠 + 𝑖, 2𝑠 + 𝑖, ⋯ , (ℓ − 1)𝑠 + 𝑖} as a 

dominating set with |𝐷𝑖
| = ℓ and hence 𝛾(𝐺𝑖 ) ≤ ℓ . Therefore 𝛾(𝐺) = 𝛾(𝐺0 ) + 𝛾(𝐺1) + ⋯+ 𝛾(𝐺𝑔−1) ≤ 𝑔ℓ = 𝑔 (𝑐𝑒𝑖𝑙 (

𝑛

4𝑔
)). 

  

Example 2.6. Suppose n = 20 and A = {6, 10, 14}, then g.c.d.(6, 10, 14) = 

g = 2 and ℓ = 𝑐𝑒𝑖𝑙 (
20

8
) = 3.  Hence there are two components with one component having 𝑉0  = {0, 2, 4, 6, 8, 10, 12, 14, 16, 

18} with 𝑠 =
𝑛

2
+ 12 = 2 and 𝛾 −  set, 𝐷0= {0, 2, 4} and the other component having  𝑉1 ={1, 3, 5, 7, 9, 11, 13, 15, 17, 19} with  

𝛾 −  set, 𝐷1 = {1, 3, 5}.  Therefore the 

𝛾 −  set of G is 𝐷 = 𝐷0 ∪  𝐷1 = {0,1,2,3,4,5} with 𝛾(𝐺) = 𝑔ℓ = 𝑔 (𝑐𝑒𝑖𝑙 (
𝑛

4𝑔
)) = 6 . 

Similarly one can prove the following theorem. 

 

Theorem 2.7. Let n, k and a be positive integers such that n = 8k and 

A = {𝑎,
𝑛

2
, 𝑛 − 𝑎}with 1 ≤ 𝑎 ≤ 𝑓𝑙𝑜𝑜𝑟 (

𝑛−1

2
)and g.c.d.(a,

𝑛

2
, n − a) = g ≠1. 

Remark 2.8. In Theorem 2.7, one can find that for a fixed value of n, depending on the set A, the value of 𝛾(𝐺) = 𝑔 (𝑐𝑒𝑖𝑙 (
𝑛

4𝑔
))  or 

𝑔 (𝑐𝑒𝑖𝑙 (
𝑛

4𝑔
) + 1)  , which is clear from the following example. 

 

Example 2.9. Suppose n = 24 and A = {3, 12, 21}, then g.c.d.(3, 12, 21) = 

g = 3 and ℓ = 𝑐𝑒𝑖𝑙 (
24

12
) = 2. Hence there are three components with the first component having 𝑉0  = {0, 3, 6, 9, 12, 15, 18, 21} 

with 𝑠 =
𝑛

2
+ 6 = 18 and 𝛾 −  set, 𝐷0= {0, 18, 12}; the second component having 𝑉1  ={1, 4, 7, 10, 13, 16, 19, 22} with 𝛾 −  set , 

𝐷1 = {1, 19, 13}; the third component having 𝑉2= {2, 5, 8, 11, 14, 17, 20, 23} with 𝛾 −  set, 𝐷2= {2, 20, 14}. There- 

fore the 𝛾 −  set of G is𝐷 = 𝐷0 ∪ 𝐷1 ∪ 𝐷2 = {0,1,2,12,13,14,18,19,20}   with 𝛾(𝐺) = 𝑔(ℓ + 1) = 𝑔 (𝑐𝑒𝑖𝑙 (
𝑛

4𝑔
) + 1) = 9. 

Suppose n = 24 and A = {4, 12, 20}, then g.c.d.(4, 12, 20) = 4 and ℓ = 𝑐𝑒𝑖𝑙 (
24

16
) = 2. 

 

Hence there are four components with the first component having 𝑉0= {0, 4, 8, 12, 16, 20} with 𝑠 =
𝑛

2
+ 8 = 20 and 𝛾 −  set, 

𝐷0= {0, 20}; 

the second component having 𝑉1= {1, 5, 9, 13, 17, 21} with 𝛾 −  set, 𝐷1 = 

{1, 21}; the third component having 𝑉2 = {2, 6, 10, 14, 18, 22} with 𝛾 −  set, 

𝐷2 = {2, 22} and the fourth component having  𝑉3= {3, 7, 11, 15, 19, 23} with 𝛾 −  set, 𝐷3 = {3, 23}. Therefore the 𝛾 −   set of 

G is 𝐷 = 𝐷0 ∪ 𝐷1 ∪ 𝐷2 ∪ 𝐷3 = {0,1,2,3,20,21,22,23} with 𝛾(𝐺) = 𝑔ℓ = 𝑔(𝑐𝑒𝑖𝑙 (
𝑛

4𝑔
)) = 8. 

Remark 2.10. Suppose n = 4k, for some positive integer k and A ={
𝑛

4
,
𝑛

2
,
3𝑛

4
}, 

 then g.c.d.(
𝑛

4
,
𝑛

2
,
3𝑛

4
) =

𝑛

4
. The graph has 

𝑛

4
 components and 

𝛾 −  set for each component will be {0}, {1}, . . . , {
𝑛

4
  − 1} respectively. Hence 

𝛾 −  set of G = {0} ∪ {1} ∪ . . . {
𝑛

4
 − 1}. Hence 𝛾(𝐺) =

𝑛

4
. 



I. Rani / IJMTT, 71(7), 98-101, 2025 

 

101 

 

Remark 2.11. Whenever D is a 𝛾 −  set of G, D + m, where 1 ≤ 𝑚 ≤ 𝑛 − 1  
is also a 𝛾 −  set of G. 

 

Remark 2.12. Let n, k be positive integers, n≠  8k and 
𝑛

2
  is a  prime 

number, A = {1,
𝑛

2
 , n − 1} be the generating set for G = Cir(n, A) and D 

be a 𝛾 −  set of G. Then for any positive integer a which is relatively prime to n, aA is the generating set for Gₐ = Cir(n, aA) and 

aD is a 𝛾 −  set of Ga. 

 

Remark 2.13. Let n be a positive integer, A = {1, n , n − 1} be the generating set for G = Cir(n, A) and D be a 𝛾 −  set of G. 

Then for any positive integer a, such that g.c.d.(a, n , n − a) = 1, aA is the generating set for 𝐺𝑎  = Cir(n, aA) and aD is a 𝛾 −  set 

of  𝐺𝑎 . 

 

3. Conclusion 
In this paper the domination number for the cubic circulant graphs is found. Work has been initiated  to find the domination 

number of circulant graphs for higher odd order generating sets. 
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