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Abstract -This paper presents the Fractional Explicit iterative Method (FEIM), a new numerical technique for solving fractional 

differential equations of order 0 < 𝜏 < 1.  In order to increase accuracy and stability, the method incorporates an explicit 

iterative correction, augmenting the classical Euler Method (FEM) and the Modified Euler Method (MFEM) fractional type. 

Numerical experiments show that, particularly for larger 𝑥 , IFEM yields solutions that are closer to the exact values than FEM 

and MFEM. The effectiveness of the proposed strategy in reducing truncation errors is confirmed by theoretical error analysis, 

which validates these results. 

 

Keywords - Fractional differential equations (FDEs), Fractional Explicit iteration method, Fractional derivative operator,         

Caputo fractional derivative. 

1. Introduction 
Fractional calculus provides a strong mathematical foundation for simulating memory and hereditary characteristics present 

in physical and engineering systems by extending the traditional concepts of  integration  and  differentiation to arbitrary (real or 

complex) orders. Because of this, fractional differential equations (FDEs) have been widely used in a variety of domains, 

including control theory, biomedical sciences, viscoelastic material modelling, and anomalous diffusion processes. 

 

Because FDEs are nonlocal and complex, analytical solutions are frequently impossible, despite their increasing significance.  

As a result, numerous numerical techniques have been put forth to efficiently approximate solutions. Among the most popular 

methods are the Homotopy Perturbation Method (HPM) [12], Variational Iteration Method (VIM) [15], Adomian Decomposition 

Method (ADM) [10], and Homotopy Analysis Method (HAM) [11]. Although these approaches have shown promise in specific 

problem classes, they are occasionally constrained by problems with convergence, high computational costs, or challenges with 

nonlinear fractional-order systems. Extending classical schemes into the fractional domain has been the focus of more recent 

developments.  

 

The discretization of Caputo derivatives for FDEs was first accomplished by the Fractional Euler Method (FEM) [7], which 

offered a straightforward but efficient method. By expanding on FEM, Batiha et al. [1] developed the Modified Euler Method 

Fractional type (MFEM) and used it to model the progression of breast cancer in healthcare systems, showing increased 

computational efficiency and accuracy. Khader [2] further validated the applicability of MFEM in epidemiological studies by 

using it to solve a fractional smoking model. In order to demonstrate how iterative corrections can improve solution accuracy, 

Qureshi et al. [3] created and contrasted an explicit iterative algorithm with nonstandard finite difference schemes. This co ncept 

was furthered by Meghwar et al. [4], who developed an explicit iterative numerical scheme over the Modified Euler's Method 

and demonstrated its efficacy using a number of test problems. Although the numerical treatment of FDEs has greatly improved 

as a result of these contributions, there are still issues, especially when it comes to finding a balance between computational 

efficiency and accuracy for fractional initial value problems (FIVPs) of order  0 < 𝜏 < 1 . When applied to stiff or highly 

nonlinear systems, existing techniques, such as MFEM and explicit iterative schemes, may still experience reduced stability o r 

accumulated truncation errors. 

 

The Fractional Explicit Iterative Method (FEIM), a novel numerical technique created to get around these restrictions, is 

presented in this paper. FEIM improves local accuracy without compromising computational simplicity by using a generalized  

Taylor series expansion and an explicit iterative correction strategy. In contrast to FEM and MFEM, FEIM improves convergence 
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characteristics by methodically lowering local truncation errors. An error analysis supports the theoretical underpinnings of  

FEIM, and comparative numerical experiments validate its performance.  

The rest of this paper is structured as follows: The basic definitions and foundational ideas of fractional calculus are desc ribed 

in Section 2. Section 3 provides a theoretical error bound and describes the FEIM formulation in detail. Numerical experiments 

contrasting FEIM with other approaches, such as MFEM and FEM, under various test conditions are presented in Section 4. A 

summary of the results and possible avenues for further research are provided at the end of Section 5.  

 

2.  Preliminaries  
Basic definitions and characteristics that will be used in the following sections are presented in this section. 

 

Consider the fractional differential equations in Caputo sense [9]: 

  

                                                              𝐷 
𝜏𝑧(𝑥) = ℎ(𝑥, 𝑧(𝑥) ),                                                                                                      (1) 

subject to initial condition     

                                                                𝑧(𝑥0
) = 𝑧0,                                                                                                                        (2) 

where       0<𝜏<1 

 

Definition 2.1.    For a  fractional Integral of order  𝜏(0 < 𝜏 < 1), the Riemann-Liouville integral is defined as: 

𝐼𝜏 ℎ(𝑥) =
1

𝛤(𝜏)
∫(𝑥 − 𝑡)𝜏  ℎ(𝑡) 𝑑𝑡,                                     

𝑥

0

 

where a well-defined integral is supplied 𝜏 is a  complex number where R(𝜏)>0 and x>0 and h(x) are a locally integrable 

function on [0, c]. 

 

Similarly, The Reimann-Liouville fractional derivative of order 𝜏 is defined as: 

𝐷𝑥
𝜏 ℎ(𝑥) =

1

𝛤(𝑛 − 𝜏)

𝑑 𝑛

𝑑 𝑥𝑛
∫(𝑥 − 𝑡)𝑛−𝜏−1ℎ(𝑡)𝑑𝑡,                        

𝑥

0

 

 

which is called the Reimann-Liouville fractional derivative of order 𝜏 where 𝑛 − 1 < 𝜏 < 𝑛 (𝑛 ∈ ℕ)  and 𝑥 > 0.  
 

Definition 2.2.  The derivative of h(x) of fractional order in the Caputo sense is defined as: 

𝐷𝜏  ℎ(𝑥) =
1

𝛤(𝑛 − 𝜏)
 ∫

ℎ
(𝑛) (𝑡)

(𝑥 − 𝑡)𝜏−𝑛+1

𝑥

0

𝑑𝑡,                  

for  𝑛 − 1 < 𝜏 < 𝑛 (𝑛 ∈ ℕ) and 𝑥 > 0,  throughout this paper, consider 𝐷𝜏 as a Caputo fractional derivative. 

 

Lemma 1. Assuming that   ℎ ∈ ℂ𝑝 [0, 𝑐], 𝑥 > 0 and 𝑝 − 1 < 𝜏 < 𝑝 (𝑝 ∈ ℕ),  it follows 

 

𝐷𝜏 𝐼𝜏 ℎ(𝑥) = ℎ(𝑥),  
and 

𝐼𝜏 𝐷𝜏  ℎ(𝑥) = ℎ(𝑥) − ∑
ℎ

(𝑘) (0+ )

𝑘!

𝑝−1

𝑘=1

𝑥𝑘. 

Lemma 2.    Suppose that 𝑝, 𝑠 ∈ ℝ (𝑡 > 0, 𝑠 > 0) and {𝑎𝑚
}

𝑚=0
𝑘  be a sequence such that 𝑎0 ≥

𝑝

𝑠
   and 𝑎𝑚 +1 ≤ (1 + 𝑠)𝑎𝑚 +

𝑝, ∀𝑚 ∈ 0,1,2, … , 𝑘. Then 

                                            𝑎𝑚+1 ≤ 𝑒
(𝑚+1)𝑠 (𝑎0 +

𝑝

𝑠
) −

𝑝

𝑠
 .                                                                                                              (3) 

 

                                                

Definition 2.3.      Mittag –Leffler function is defined by the power series as: 

𝐸𝛼 ,𝛽
(𝑥) = ∑

𝑥𝑗

𝛤(𝛼𝑘 + 𝛽)
,

∞

𝑗=0

 

where ℝ(𝛼) > 0, ℝ(𝛽) > 0  and 𝑥 ∈ ℂ. 
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Theorem 1. (Generalized Taylor’s Expansion formula  [7]). Suppose that 𝐷𝑘𝜏 ℎ(𝑥) ∈ ℂ(0, 𝑐]  for 𝑘 = 0,1,2, … , 𝑛 + 1 where 0 <
𝜏 ≤ 1 and 𝐷𝑘𝜏   denotes the Caputo fractional derivative. Then it can expand the function ℎ(𝑥) about the point 𝑥0 is given: 

                                         

           ℎ(𝑥) = ∑
(𝑥 − 𝑥0

)𝑚𝜏

𝛤(𝑚𝜏 + 1)
𝜏ℎ(𝑥0

) +
(𝑥 − 𝑥0

)(𝑛+1)𝜏

𝛤((𝑛 + 1)𝜏 + 1)
𝐷

(𝑛+1)𝜏 ℎ(𝜉),                                  

𝑛

𝑚=0

(4) 

with  0 < 𝜉 < 𝑥, ∀𝑥 ∈ (0, 𝑐]. 
 

Now for  𝑘 = 2 , it has been found 

                                                   ℎ(𝑥) = ℎ(𝑥0
) +

(𝑥 − 𝑥0
)𝜏

𝛤(𝜏 + 1)
𝐷𝜏 ℎ(𝑥0

) +
(𝑥 − 𝑥0

)2𝜏

𝛤(2𝜏 + 1)
𝐷2𝜏 ℎ(𝜉).                                             (5) 

 

3.  Fractional Explicit Iterative Method (FEIM)   
The objective of this section is to establish a novel numerical scheme to solve the fractional differential equation. 

Consider the IVP  

                                             𝐷(𝑧(𝑥)) = ℎ(𝑥, 𝑧(𝑥) ),                         𝑧(𝑥0
) = 𝑧0.                                                                          (6) 

 

Qureshi et.al.[3] developed an a lgorithm to solve IVP of the form Equation (6) as: 

 

                      𝑧𝑘+1 = 𝑧𝑘 + 𝛿ℎ [𝑥𝑘 +
𝛿

2
, 𝑧𝑖 +

𝛿

4
(ℎ(𝑥𝑘, 𝑧𝑘

) + ℎ(𝑥𝑘 + 𝛿,𝑧𝑘 + 𝛿ℎ(𝑥𝑘, 𝑧𝑘
)))],                                                  (7) 

 

Where   𝑥0 ,𝑥1,𝑥2,… , 𝑥𝑛  are distinct points on closed interval [a, c] , 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑐 

and    𝑥𝑘 − 𝑥𝑘−1 = 𝛿 (𝛿 > 0)   ∀𝑘 = 0,1,2,3 …  .   
 

The Fractional Euler's Method (FEIM), a numerical scheme to solve the fractional initial value problem defined by equation 

(6), is proposed in this section based on this perspective and Formula equation (7). Consider a uniform partition of the interval 

[𝑎, 𝑐]    such that  0 = 𝑥0 < 𝑥1 = 𝑥0 + 𝛿 < 𝑥2 = 𝑥0 + 2𝛿 < ⋯ < 𝑥𝑛 = 𝑥0 + 𝑛𝛿 = 𝑐 where the mesh point denoted by  𝑥𝑚 , and 

the step size represented by 𝛿  such that  𝛿 = ( 𝑐 − 𝑎)/ 𝑛 , for 𝑚 =  1,2, . . . , 𝑛. The following expression is obtained by 

expanding the function 𝑧(𝑥) about the point 𝑥 = 𝑥𝑚 employing the initial three terms from the generalized Taylor expansion as 

stated in Theorem 1. 

               𝑧(𝑥) =    𝑧(𝑥𝑚
) +

𝐷𝜏 𝑧(𝑥𝑖
)

𝛤 (𝜏+1)
(𝑥 − 𝑥𝑚

)𝜏 +
𝐷2𝜏𝑧 (𝜉)

𝛤(2𝜏+1)
 (𝑥 − 𝑥𝑚

)2𝜏 .                                                                         (8) 

 

Let substitute  𝑥 = 𝑥𝑚+1  in Equation (8) 

 

             𝑧(𝑥𝑚+1
) =    𝑧(𝑥𝑚

) +
𝐷𝜏 𝑧(𝑥𝑚

)

𝛤(𝜏 + 1)
(𝑥𝑚+1 − 𝑥𝑚

)𝜏 +
𝐷2𝜏 𝑧(𝜉)

𝛤(2𝜏 + 1)
 (𝑥𝑚+1 − 𝑥𝑚

)2𝜏 ,                                                             (9) 

 

let     𝑥𝑚+1 − 𝑥𝑚 = 𝛿  , then 

                                𝑧(𝑥𝑚+1
) =    𝑧(𝑥𝑚

) +
𝛿𝜏

𝛤(𝜏+1)
𝐷𝜏 𝑧(𝑥𝑚

) +
𝛿2𝜏

𝛤(2𝜏+1)
𝐷2𝜏 𝑧(𝜉),                                                                              (10)  

 

The following outcome is achieved by combining equations (7) and (10). 

                 𝑧(𝑥𝑚+1
)

=    𝑧(𝑥𝑚
) 

+
𝛿𝜏

𝛤(𝜏 + 1)
 ℎ  [𝑥𝑚 +

𝛿𝜏

2𝛤(𝜏 + 1)
, 𝑧(𝑥𝑚

)   

+
𝛿𝜏

4𝛤(𝜏 + 1)
(ℎ(𝑥𝑚,𝑧(𝑥𝑚

)) + ℎ (𝑥𝑚 +
𝛿𝜏

𝛤(𝜏 + 1)
, 𝑧(𝑥𝑚

) +   
𝛿𝜏

𝛤(𝜏 + 1)
ℎ(𝑥𝑚, 𝑧(𝑥𝑚

)))) ]  

+
𝛿2𝜏

𝛤(2𝜏 + 1)
𝐷2𝜏 𝑧(𝜉).                                                                                                                                                     (11) 
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The exact solution of equation (6) at mesh point 𝑥𝑚  is represented by the value 𝑧(𝑥𝑚
), whereas the numerical approximation 

of the same problem at 𝑥𝑚  is represented by 𝑛𝑚  as: 
 

          𝑛𝑚+1 = 𝑛𝑚 +  
𝛿𝜏

Γ(𝜏 + 1)
 ℎ [𝑥𝑚 +

𝛿𝜏

2𝛤(𝜏 + 1)
, 𝑛(𝑥𝑚

)

+
𝛿𝜏

4𝛤(𝜏 + 1)
(ℎ(𝑥𝑚,𝑛(𝑥𝑚)) + ℎ(𝑥𝑚 +

𝛿𝜏

𝛤(𝜏 + 1)
, 𝑛(𝑥𝑚

) +
𝛿𝜏

𝛤(𝜏 + 1)
ℎ(𝑥𝑚,𝑛(𝑥𝑚)))] .                              (12) 

  

Our new numerical scheme, called FEIM, is shown in Equation (12). 

 

The FEIM Error Bound 

The goal is to determine the suggested scheme's error bound, which is shown in equation (12). The following theorem is 

derived using Lemma 2 in order to prove this result. 

 

Theorem 2.   Suppose function ℎ is a  continuous real valued function defined on domain D = [𝑎, 𝑐] ×ℝ , satisfying  
 Lipchitz condition with constant 𝐿 (𝐿 > 0), i.e., 

 
|ℎ(𝑥, 𝑒1

) − ℎ(𝑥, 𝑒2
)| ≤ 𝐿|𝑒1 − 𝑒2

|.  
 

Suppose there exist a  constat 𝑀  with  

 
|𝐷2𝜏 𝑧(𝑥)| ≤ 𝑀   ∀𝑥 ∈ [𝑎, 𝑐] . 

 

The expression that results is as follows: 

 

 

|𝑧(𝑥𝑚
) − 𝑛𝑚

| ≤
𝜇

𝜎
(𝑒𝜎𝑚 − 1),                       ∀𝑚 = 0,1,2, … , 𝑛, 

where 

𝜇 =
𝛿2𝜏 𝑀

𝛤(2𝜏 + 1)
, 

and   

𝜎 = ∑
𝛿𝜏𝑗𝐿𝑗

2𝑗−1𝛤(𝜏 + 1)𝑗
.

3

𝑗=1

 

 

Proof: Equation (11) is deducted from equation (10), which produces the following result to illustrate this point:  

𝑧(𝑥𝑚+1
) − 𝑛𝑚 +1 = 𝑧(𝑥𝑚

) − 𝑛𝑚

+
𝛿𝜏

𝛤(𝜏 + 1)
ℎ [𝑥𝑚 +

𝛿𝜏

2𝛤(𝜏 + 1)
, 𝑧(𝑥𝑚

)

+
𝛿𝜏

4𝛤(𝜏 + 1)
(ℎ(𝑥𝑚, 𝑧(𝑥𝑚

)) + ℎ (𝑥𝑚 +
𝛿𝜏

𝛤(𝜏 + 1)
, 𝑧(𝑥𝑚

) +
𝛿𝜏

𝛤(𝜏 + 1)
ℎ(𝑥𝑚,𝑧(𝑥𝑚

)))) ]        

−  
𝛿𝜏

Γ(𝜏 + 1)
 ℎ [𝑥𝑚 +

𝛿𝜏

2𝛤(𝜏 + 1)
, 𝑛m

+
𝛿𝜏

4𝛤(𝜏 + 1)
(ℎ(𝑥𝑚,𝑛m

) + ℎ (𝑥𝑚 +
𝛿𝜏

Γ(𝜏 + 1)
, 𝑛𝑚 +

𝛿𝜏

Γ(𝜏 + 1)
ℎ(𝑥𝑚, 𝑛𝑚

)))] + 
𝛿2𝜏

𝛤(2𝜏 + 1)
𝐷2𝜏 𝑧(𝜉). 

 The Lipschitz condition is used to get: 
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  |𝑧(𝑥𝑚+1
) − 𝑛𝑚 +1

|

≤  |𝑧(𝑥𝑚 − 𝑛𝑚
)|  

+    
𝛿𝜏 𝐿

Γ(𝜏 + 1)
|(𝑧(𝑥𝑚

)

+
𝛿𝜏

4𝛤(𝜏 + 1)
(ℎ(𝑥𝑚, 𝑧(𝑥𝑚

)) + ℎ (𝑥𝑚 +
𝛿𝜏

𝛤(𝜏 + 1)
, 𝑧(𝑥𝑚

) + 
𝛿𝜏

𝛤(𝜏 + 1)
ℎ(𝑥𝑚,𝑧(𝑥𝑚

)))))

− (𝑛m +
𝛿𝜏

4𝛤(𝜏 + 1)
(ℎ(𝑥𝑚,𝑛m

) + ℎ (𝑥𝑚 +
𝛿𝜏

Γ(𝜏 + 1)
, 𝑛𝑚 +

𝛿𝜏

Γ(𝜏 + 1)
ℎ(𝑥𝑚,𝑛𝑚

)))) | +
𝑀𝛿2𝜏

𝛤(2𝜏 + 1)
, 

                          

 

which results in the inequality that follows: 

   
|𝑧(𝑥𝑚+1

) − 𝑛𝑚 +1
|  

≤  |𝑧(𝑥𝑚
) − 𝑛𝑚

| +
𝐿𝛿𝜏

𝛤(𝜏 + 1)
|𝑧(𝑥𝑚

) − 𝑛𝑚
| +

𝛿𝜏 𝐿

𝛤(𝜏 + 1)

𝛿𝜏

4𝛤(𝜏 + 1)
|ℎ(𝑥𝑚,𝑧(𝑥𝑚

)) − ℎ(𝑥𝑚, 𝑛𝑚
)|

+
𝐿𝛿𝜏

𝛤(𝜏 + 1)

𝛿𝜏

4𝛤(𝜏 + 1)
|ℎ (𝑥𝑚 +

𝛿𝜏

𝛤(𝜏 + 1)
, 𝑧(𝑥𝑚

) +
𝛿𝜏

𝛤(𝜏 + 1)
ℎ(𝑥𝑚, 𝑧(𝑥𝑚

)))

− ℎ (𝑥𝑚 +
𝛿𝜏

𝛤(𝜏 + 1)
,𝑛𝑚 +

𝛿𝜏

𝛤(𝜏 + 1)
ℎ(𝑥𝑚,𝑛𝑚

))| +
𝑀𝛿2𝜏

𝛤(2𝜏 + 1)
. 

 

Therefore, the following result is obtained: 

|𝑧(𝑥𝑚+1
) − 𝑛𝑚+1

|

≤  |𝑧(𝑥𝑚
) − 𝑛𝑚

| +
𝐿𝛿𝜏

𝛤(𝜏 + 1)
|𝑧(𝑥𝑚

) − 𝑛𝑚
| +

𝛿𝜏 𝐿

𝛤(𝜏 + 1)

𝐿𝛿𝜏

4𝛤(𝜏 + 1)
|𝑧(𝑥𝑚

) − 𝑛𝑚
|

+
𝐿𝛿𝜏

𝛤(𝜏 + 1)

𝐿𝛿𝜏

4𝛤(𝜏 + 1)
|𝑧(𝑥𝑚

) − 𝑛𝑚
| +

𝐿𝛿𝜏

𝛤(𝜏 + 1)

𝐿𝛿𝜏

4𝛤(𝜏 + 1)

𝐿𝛿𝜏

𝛤(𝜏 + 1)
|𝑧(𝑥𝑚

) − 𝑛𝑚
| +

𝑀𝛿2𝜏

𝛤(2𝜏 + 1)
. 

 

Thus, it follows as 

 

|𝑧(𝑥𝑚+1
) − 𝑛𝑚+1

| ≤ (1 +
𝐿𝛿𝜏

𝛤(𝜏 + 1)
+

𝐿2𝛿2𝜏

2𝛤(𝜏 + 1)2
+

𝐿3𝛿3𝜏

4𝛤(𝜏 + 1)3
) |𝑧(𝑥𝑚

) − 𝑛𝑚
| +

𝑀𝛿2𝜏

𝛤(2𝜏 + 1)
. 

 

 

That is to say, the following expression is obtained: 

 

|𝑧(𝑥𝑚+1
) − 𝑛𝑚 +1

| ≤ (1 + ∑
𝐿𝑗𝛿𝜏𝑗

2𝑗−1𝛤(𝜏 + 1)𝑗

3

𝑗=1

) |𝑧(𝑥𝑚
) − 𝑛𝑚

| +
𝑀𝛿2𝜏

𝛤(2𝜏 + 1)
. 

 

Currently, by letting 

 

                𝜇 = ∑ 𝐿𝑗 𝛿𝜏𝑗

2𝑗−1𝛤(𝜏+1)𝑗
3
𝑗 =1  ,        𝜎 =

𝑀 𝛿2𝜏

𝛤 (2𝜏+1)
      and         𝑎𝑚 = |𝑧(𝑥𝑚

) − 𝑛𝑚
|, 

 

it follows that 
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𝑎𝑚+1 ≤ (1 + 𝜇)𝑎𝑚 + 𝜎, 
 

 

for 𝑚 = 1,2,3, … , 𝑘. Hence, applying Lemma 2 yields the following result:  

 

|𝑧(𝑥𝑚+1
) − 𝑛𝑚+1

| ≤ 𝑒
(𝑚+1)𝜇 (𝑎0 +

𝜎

𝜇
 ) −

𝜎

𝜇
, 

 

which implies that: 

 

|𝑧(𝑥𝑚+1
) − 𝑛𝑚 +1

| ≤ 𝑒
(𝑚+1)𝜇 (|𝑧0 − 𝑛0

| +
𝜎

𝜇
 ) −

𝜎

𝜇
 , 

 

however, since  |𝑧0 − 𝑛0| = 0 , it follows that 

 

|𝑧(𝑥𝑚+1
) − 𝑛𝑚 +1

| ≤ 𝑒
(𝑚+1)𝜇  

𝜎

𝜇
 −

𝜎

𝜇
 , 

which provides: 

|𝑧(𝑥𝑚+1
) − 𝑛𝑚+1

|  ≤ 
𝜎

𝜇
(𝑒

(𝑚+1)𝜇 − 1) . 

This completes the proof for  𝑚 = 1,2,3, … , 𝑘.  

 

4. Results and Discussion 
Consider the FIVP as follows [7] 

D αz(x) = −z(x),                      z(0) = 1, 
 

Where 𝐷𝛼  denotes the Caputo fractional derivative, 0 < 𝛼 ≤ 1 and 𝑥 > 0. Note that 𝑧(𝑥) = 𝐸𝛼 ,1
(−𝑥𝛼) is the exact solution 

to the a forementioned problem. To solve this issue, however, formula (12) is used. With 𝛿 =  0.1 and 𝛼 =  0.78, Figure 1 shows 

a numerical comparison of the solutions found for the given problem using FEIM, MFEM, and FEM. 

 

x Exact FEIM FEM MFEM 

0.0 0.50000 0.50000 0.50000 0.50000 

0.1 0.41957 0.41804 0.41041 0.41844 

0.2 0.37172 0.34951 0.33688 0.35018 

0.3 0.33480 0.29221 0.27651 0.29306 

0.4 0.30468 0.24431 0.22697 0.24525 

0.5 0.27936 0.20426 0.18630 0.20525 

0.6 0.25767 0.17078 0.15292 0.17176 

0.7 0.23884 0.14278 0.12552 0.14375 

0.8 0.22232 0.11938 0.10303 0.12030 

0.9 0.20770 0.09981 0.08457 0.10067 

1 0.19468 0.08345 0.06942 0.08425 
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5. Conclusion  

The numerical results for 𝛼 = 0.78 indicate that all methods approximate the exact solution well at initial st eps, but 

differences grow as 𝑥  increases. The Euler Method Fractional type (FEM) underestimates the solution, while the Modified 

Fractional Euler Method (MFEM) provides improved accuracy. The Iterative Fractional Explicit Method (IFEM) demonstrates 

the best performance, closely matching the exact solution across the interval. At 𝑥 = 1, IFEM achieves a smaller error compared 

to MFEM and FEM, validating its superior convergence and stability as predicted by the theoretical error bounds.  
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