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Abstract -This paper presents the Fractional Explicit iterative Method (FEIM), a new numerical technique for solving fractional
differential equations of order 0 <t < 1. In order to increase accuracy and stability, the method incorporates an explicit
iterative correction, augmenting the classical Euler Method (FEM) and the Modified Euler Method (MFEM) fractional type.
Numerical experiments show that, particularly forlarger x, IFEM yields solutions that are closer to the exact values than FEM
and MFEM. The effectiveness of the proposed strategy in reducing truncation errors is confirmed by theoretical error analysis,
which validates these results.
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1. Introduction

Fractionalcalculus provides a strong mathematicalfoundation forsimulating memory and hereditary characteristics present
in physicaland engineering systems by extending the traditionalconcepts of integration and differentiation to arbitrary (real or
complex) orders. Because of this, fractional differential equations (FDEs) have been widely used in a variety of domains,
including control theory, biomedical sciences, viscoelastic material modelling, and anomalous diffusion processes.

Because FDEs are nonlocaland complex, analyticalsolutions are frequently impossible, despite their increasing significance.
As a result, numerous numerical techniques have been put forth to efficiently approximate solutions. Among the most popular
methods are the Homotopy Perturbation Method (HPM)[12], VariationalIteration Method (VIM)[15], Adomian Decomposition
Method (ADM) [10], and Homotopy Analysis Method (HAM) [11]. Although these approacheshave shown promise in specific
problem classes, they are occasionally constrained by problems with convergence, high computational costs, or challenges with
nonlinear fractional-order systems. Extending classical schemes into the fractional domain has been the focus of more recent
developments.

The discretization of Caputo derivatives for FDEs was first accomplished by the Fractional Euler Method (FEM) [7], which
offered a straightforward but efficient method. By expanding on FEM, Batiha et al. [1] developed the Modified Euler Method
Fractional type (MFEM) and used it to model the progression of breast cancer in healthcare systems, showing increased
computational efficiency and accuracy. Khader [2] further validated the applicability of MFEM in epidemiological studies by
using it to solve a fractional smoking model. In order to demonstrate how iterative corrections can improve solution accuracy,
Qureshi etal. [3] created and contrasted an explicit iterative algorithm with nonstandard finite difference schemes. This concept
was furthered by Meghwar et al. [4], who developed an explicit iterative numerical scheme over the Modified Euler's Method
and demonstrated its efficacy using a number of test problems. Although the numerical treatment of FDEs has greatly improved
as a result of these contributions, there are still issues, especially when it comes to finding a balance between computational
efficiency and accuracy for fractionalinitial value problems (FIVPs) of order 0 < 7 < 1 . When applied to stiff or highly
nonlinear systems, existing techniques, such as MFEM and explicit iterative schemes, may still experience reduced stability or
accumulated truncation errors.

The Fractional Explicit Iterative Method (FEIM), a novel numerical technique created to get around these restrictions, is
presented in this paper. FEIM improves local accuracy without compromising computational simplicity by using a generalized
Taylorseries expansion and anexplicit iterative correction strategy. In contrast to FEM and MFEM, FEIM improves convergence
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characteristics by methodically lowering local truncation errors. An error analysis supports the theoretical underpinnings of

FEIM, and comparative numerical experiments validate its performance.

The rest of this paperis structured as follows: The basic definitions and foundationalideas of fractionalcalculus are described
in Section 2. Section 3 provides a theoretical error bound and describes the FEIM formulation in detail. Numerical experiments
contrasting FEIM with other approaches, suchas MFEM and FEM, under various test conditions are presented in Section 4. A

summary of the results and possible avenues for further research are provided at the end of Section 5.

2. Preliminaries
Basic definitions and characteristics that will be used in the following sections are presented in this section.

Consider the fractional differential equations in Caputo sense [9]:

D7z(x) = h(x,z(x)),
subject to initial condition

2(x,) = z,,
where o<1

Definition 2.1. For a fractional Integral of order 7(0 < 7 < 1), the Riemann-Liouville integral is defined as:
X

I"h(x) = %!(x — )7 (@) dt,

where a well-defined integral is supplied T is a complex number where R(z)>0 and x>0 and A(x) are a locally integrable
function on [0, c].

Similarly, The Reimann-Liouville fractional derivative of order 7 is defined as:

1 dr |

- _ n-t-1
I"(n—r)dx”f(x 2 h(®)dt,
0

DIh(x) =

which is called the Reimann-Liouville fractional derivative of order t wheren — 1 <7 <n (n € N) and x > 0.

Definition 2.2. The derivative of A(x) of fractional order in the Caputo sense is defined as:
X
1 K ()
dt,
rm—r)J) (x—gr-n*
0

forn—1<t<n( €eN)andx > 0, throughout this paper, consider D” as a Caputo fractional derivative.

DT h(x) =

Lemma 1. Assuming that h € c?lo,cl,x > 0and p—1<t<p (p € N), it follows

D'I"h(x) = h(x),

and
[ ¢))
h¥ ()
17D h(x) = h(x) —Z — "
k=1 ’

)
)

Lemma 2. Suppose thatp,s € R (t > 0,s > 0) and {a,, }¥,_, be a sequence such that a; > ? and a1 < (1 + S)a, +

p,vm € 0,1,2, ..., k. Then

P)_Z;.

(m+Ds Z
A1 <€ (ao + S

Definition 2.3.  Mittag —Leffler function is defined by the power series as:

xJ
Bap () = Z I'(ak + )’

i=o
where R(a) > 0,R(8) > 0 and x € C.
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Theorem 1. (Generalized Taylor’s Expansion formula [7]). Suppose that D¥*h(x) € €(0,c] fork = 0,1,2,...,n + 1 where 0 <
7 < 1and D¥* denotes the Caputo fractional derivative. Then it can expand the function h(x) about the point x is given:

n

B (X _ xo)mr (x _ xo)(n+1)‘r (ne D
M) = ) =t TR (e ey LR O] O

m=0

with 0 < & <x,Vx € (0,c].

Now for k = 2, it has been found
(e — xo)" (x —x)*

W0 = hxo) 4 Ty P L

D?*h(&). (5)

3. Fractional Explicit Iterative Method (FEIM)

The objective of this section is to establish a novel numerical scheme to solve the fractional differential equation.

Consider the IVP
D(z(x)) = h(x,z()), z(xy) = z,. 6)

Qureshi et.al.[3] developed an algorithm to solve IVP of the form Equation (6) as:

) 6
Zgry = Zx + 6h [xk +o7t Z(h(xk,zk) + h(x, + 8,2, + Sh(xk,zk)))], (7)

Where xg,x,,%X,,..., X, are distinct points on closed interval[a, c],a =x, < x; < x, < - <x,=¢C
and x,—x,_;,=6(E>0) Vk=0,123...

The Fractional Euler's Method (FEIM), a numerical scheme to solve the fractionalinitial value problem defined by equation

(6), is proposed in this section based on this perspective and Formula equation (7). Consider a uniform partition of the interval

[a,c] suchthat 0 =x,<x;=x,+6 <x,=x,+26 <--<x, =x,+nd = cwherethe mesh pointdenoted by x,,,and

the step size represented by § such that § = (c—a)/n, form = 1,2,...,n. The following expression is obtained by

expandingthe function z(x) aboutthe point x = x,, employing the initial three terms from the generalized Taylor expansion as
stated in Theorem 1.

D" z(x;)

D%z (&)
z(x) = z(x,,) + ] e —x,)" + oD (x — x,)%". )]
Let substitute x = x,,,, in Equation (8)
T 2t
L) = 20y) + ?(Tz—i";)) s — ) + % Comer =2, ©
let X471 —%X, =96,then
2ty = 20) + =D 2l,) + =D (), (10)

The following outcome is achieved by combining equations (7) and (10).

ACTY)
= z(x,)
67.' T ( )
T T B
6'[ T 6T
+ m(h(xm,z(xm)) +h (xm + m,z(xm) + m h(xm,z(xm))>> ]
2T
trar 2 (1)
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The exact solution of equation (6)at mesh point x,, is represented by the value z(x,,,), whereas the numerical approximation
of the same problem at x,,, is represented by n,, as:

= o _r (x,)
Tms1 = M+ p ) Mt e
0" T T
+ 4_1"(.[ + 1) (h(xm’n(xm)) + h(xm + F(T + 1),n(xm) + mh(xm,n(xm)))] (12)

Our new numerical scheme, called FEIM, is shown in Equation (12).

The FEIM Error Bound
The goalis to determine the suggested scheme's error bound, which is shown in equation (12). The following theorem is
derived using Lemma 2 in order to prove this result.

Theorem 2. Suppose function h is a continuous real valued function defined on domain D=[a,c] XR, satisfying
Lipchitz condition with constant L (L > 0), i.e.,

[h(x, e;) — h(x,e,)| < Lle; — e,l.
Suppose there exist a constat M with
[ID?*z(x)| < M vx € [a,c].

The expression that results is as follows:

lz(x,,) — n, | < E(e"m - 1), vm =012, ..,n,
o
where
5TM
b=
rer+1

and
3

ST
d _1221 Tz + 1)

Proof: Equation (11) is deducted from equation (10), which produces the following result to illustrate this point:
ZO 1) = N yr = 2(x,) — 1y
6° 5°

eary L By oy LG

6" T 57
TG D A2 Cep)) + (xm T D ,2(x ) + = e h(xm,z(x )))
6° S°

- hl|x, ——,
rc+D | oarc+ ™

T 2T

57 L )
e+ ™ Tt ™) ) |t 1D

h(xpnm) + h(xm+ ——D%z(8).

+—
ar(t +1)

The Lipschitz condition is used to get:
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12 (1) = T 44|

< |Z(xm —nm)|
0°L
T e+ D 2(t)
0" ST 57
PG| MG+ h("m+m.z<xm> : mh(xm.zum»)

T T T

M(S‘Z‘L'

"t G+ D e+ ™ T+ D h(x""nm)> Tt

h(x,,,np) + h <xm +

which results in the inequality that follows:

|Z(xm+1) - nm+1|
L&* 6°L 6"

< Iz(xm)—nm|+r(—+ rc+10D4r+1

D lz(x,p) — myp | + ) |h (%, 2(x) = R (xp, ) |

LST 61’ T 61’
h _—, ——h ,
Aremwy prresny | Ll KR ey IS ey L CAVELCEN)
0" o M2
- h '] h ) —'
(xm+ i ™t ra st nm)) T+ D
Therefore, the following result is obtained:
|Z(xm+1) - nm+1|
L6° 0°L L&*
< — N — - -
< lz(x,) —n,| + TG D lz(x,,) — n,, | + TG DT GTD lz(x,,) — n,p |
L&" L&°® (e ) | L& L6&" L&® LG | Mé&?®
T DGy 2 T Y e N G s DG r D o T Y e
Thus, it follows as
L6T LZ(SZT L363‘r M52T
_ <1 _ -
12 () = ol < ( e+ TG0 Tarc + 1)3> l2Gen) =l + 252

That is to say, the following expression is obtained:

ngTj M62‘L'

— <|1 Z— - '
12Cmss) = sl < | 14 ) o7 | 2Gem) = ol + o ——5

j=1
Currently, by letting

_ys /&t o= M%7
B = &i=15 1 Gri 2 T re+

and  a, =lz(x,,) —n,l,

it follows that

111



Mahendar Pichkiva & Ekta Mittal / IJMTT, 71(7), 107-113, 2025

ane1 <A +wa, + o0,

form = 1,2,3, ..., k. Hence, applying Lemma 2 yields the following result:

o
PICT N s e <a0 + ;) -

’

a
U
which implies that:

g ag
2oy, ) = 1y ] < elmH D (lzo — gl + ;) -

however, since |z, — ny| = 0, it follows that

(m+1) g
12O 1) = My p | < e ™FVH ; —;,

which provides:
O (m+D
12O 1) — sl < m (e k1),

This completes the proof for m =1,2,3, ..., k.

4. Results and Discussion
Consider the FIVP as follows [7]
D% (x) = —z(x), z(0) =1,

Where D® denotes the Caputo fractional derivative,0 < @ < 1and x > 0.Note thatz(x) = E, ;(—x%) isthe exact solution
to the a forementioned problem. To solve this issue, however, formula (12)is used. With § = 0.1landa = 0.78, Figure 1 shows
a numerical comparison of the solutions found for the given problem using FEIM, MFEM, and FEM.

X Exact FEIM FEM MFEM
0.0 0.50000 0.50000 0.50000 0.50000
0.1 0.41957 0.41804 041041 0.41844
0.2 0.37172 0.34951 0.33688 0.35018
03 0.33480 0.29221 0.27651 0.29306
04 0.30468 0.24431 0.22697 0.24525
0.5 0.27936 0.20426 0.18630 0.20525
0.6 0.25767 0.17078 0.15292 0.17176
0.7 0.23884 0.14278 0.12552 0.14375
0.8 0.22232 0.11938 0.10303 0.12030
0.9 0.20770 0.09981 0.08457 0.10067

1 0.19468 0.08345 0.06942 0.08425
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Fractional Method Solution (o = 0.78)

04 -
035 : 1

031 .

7(X)

025 1

02F = -~

al

0.15
== == Exact Solution
—— FEIM
0.1  |—8—FEM
—&— MFEM 8
1 1 1 1
0'050 0.2 0.4 0.6 0.8 1

5. Conclusion

The numerical results for « = 0.78 indicate that all methods approximate the exact solution well at initial steps, but
differences grow as x increases. The Euler Method Fractional type (FEM) underestimates the solution, while the Modified
Fractional Euler Method (MFEM) provides improved accuracy. The Iterative Fractional Explicit Method (IFEM) demonstrates
the best performance, closely matchingthe exact solution across the interval. At x = 1, IFEM achieves a smaller error compared
to MFEM and FEM, validating its superior convergence and stability as predicted by the theoretical error bounds.
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