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Abstract - The degree of approximation of functions belonging to certain classes by using wavelet techniques is quite 

interesting in the present scenario. People working in this direction have used the Haar wavelet method in their 

investigations. But no work seems to have been done so far to find an approximation of functions 𝑓𝜖𝐿𝑖𝑝𝛼
𝑝,𝜓

 to find the degree 

of approximation using the Haar wavelet method. Therefore, in this paper, two new theorems on wavelet approximation of 

the functions, 𝑝𝛼
𝑝,𝜓

 , 0 < 𝛼 ≤ 1, 1 ≤ 𝑝 < ∞,  have been established. 
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1. Introduction 
In 1909, the Hungarian mathematician Alfréd Haar presented the Haar wavelet, the first and most basic example of a 

wavelet function. Initially, it was suggested as an orthonormal system for the space of square -integrable functions  𝐿2[0,1]. 
A fundamental concept in the development of the modern wavelet theory, particularly in signal and image processing, is the 

Haar wavelet. The Haar wavelet may be expressed mathematically as a piecewise constant function defined on the interval 

 𝐿2[0,1]. The Haar wavelet is a  simple but powerful tool that can effectively represent functions with discontinuities because 

it is orthogonal and has compact support. Multiresolution Analysis (MRA) is essential because it allows the examination of 

signals or functions at different levels of detail. The Haar wavelet’s computational efficiency makes it popular for real-world 

applications, including edge detection, picture processing, data compression, and numerical differential equation solutions. 

For the last few decades, a  number of researchers have been working on wavelet methods to investigate the character of 

functions belonging to different classes. The combination of multiresolution analysis and wavelet methods make s the 

investigation very appropriate and much closer to the result. However, many researchers have estimated the degree of 

approximation of certain functions by using Summability methods in the past years. 
 

Nowadays, people estimate the degree of approximation of functions belonging to different classes by using wavelet 

analysis. The researchers like Morlet et al [7], Natanson [6], Win [9], Meyar [10], Iqbal et al. [12], and Khanna [13] have 

studied the wavelet approximation. Later on, Lal and  Kumar [8] determined the degree of approximation of functions 

belonging to the generalized Lipschitz class using the Haar scaling function. The present investigation is a  generalization of 

their work in a more different manner. The results of Lal & Kumar [8] may be derived from the present investigations. 

2. Definitions and Notations 

2.1. Function of Lipschitz Class 

A function 𝑓𝜖𝐿𝑖𝑝𝛼
𝑝,𝜓

 if 

    |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)| = 𝑂(|𝑡|𝛼𝜓(𝑡))|, for 0 < 𝛼 ≤ 1.  

A function 𝑓𝜖𝐿𝑖𝑝𝛼
𝑝,𝜓

 if 

(∫ 𝑓(𝑥 + 𝑡) − 𝑓(𝑥)||𝑝

1

0

𝑑𝑥)

1
2

= 𝑂(|𝑡|𝛼𝜓(𝑡)) 

where 𝜓 is a  positive monotonic increasing function of 𝑡 such that |𝑡|𝛼𝜓(|𝑡|) → 0 𝑎𝑠 𝑡 → 0+ . 

http://www.internationaljournalssrg.org/
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2.2. Multiresolution Analysis (MRA)  
A multiresolution analysis of 𝐿2(ℝ) consists of a  nested sequence of a subspace 𝑉𝑗 ⊂ 𝑉𝑗+1 for approximating 𝐿2(ℝ) 

functions. The multiresolution analysis satisfies the following conditions:  

1.⋃ 𝑉𝑗
∞
−∞  is dense in 𝐿2(ℝ). 

2. ⋂ =∞
𝑗=−∞ {0} 

3. 𝑓(𝑥) ∈ 𝑉𝑗  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦  𝑖𝑓 𝑓(2𝑥) ∈ 𝑉𝑗+1, ∀𝑗 ∈ ℤ 

4. ∃ 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑓(𝑥) 𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡 {𝜙(𝑥 − 𝑘): 𝑘𝜖ℤ} forms an unconditional basis for 𝑉0 . 

5. 𝑓(𝑥) ∈ 𝑉0 ⟺ 𝑓(𝑥 + 1) ∈ 𝑉0 . 

2.3. Haar Wavelet and Scaling Function 

The Haar wavelet [11] is denoted by 𝜓𝐻(𝑡), family for 𝑡 ∈ [0,1] and it is defined by- 

𝜓𝐻(𝑡) =

{
 
 

 
 1, 0 ≤ 𝑡 <

1

2

−1,
1

2
≤ 𝑡 < 1 

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Lal and Kumar [8] define the following 

Let  𝐿2(ℝ) and 𝜓𝑗,𝑘 = 2
𝑗

2𝜓(2𝑗 − 𝑘) and 𝑋𝑗 = 𝑐𝑙𝑎𝑠𝑠 < 𝜓𝑗,𝑘 : 𝑘 ∈ ℤ >. 

     The above family of subspaces of 𝐿2(ℝ) gives a direct sum decomposition of 𝐿2(ℝ)which is the same as every 𝑓𝜖𝐿2(ℝ) 
has a unique decomposition. 

𝑓(𝑥) = ⋯ℎ−3(𝑥) + ℎ−2(𝑥) + ℎ−1(𝑥) + ℎ0 (𝑥) + ℎ1(𝑥) + ℎ2 (𝑥) + ℎ3 (𝑥) + ⋯ 

where ℎ𝑗 ∈ 𝑋𝑗  ∀𝑗 ∈ 𝑍  and it can be written as  

𝐿2(𝑅) = ⨁𝑗=−∞
∞ 𝑋𝑗  

Thus 

𝑉𝑗 = ⨁𝑘=−∞
𝑗−1

𝑋𝑘  

{𝜓𝑗,𝑘 ∈ ℤ 𝑤ℎ𝑒𝑟𝑒  𝜓𝑗,𝑘 = 2
𝑗

2𝜓(2𝑗𝑥 − 𝑘)} is a  Riesz basis of 𝑋𝑗 . 

Now, we define 𝜙 ∈ 𝑉0 , 𝑉0 ⊂ 𝑉1 , a  sequence {𝑔𝑘 } ∈ 𝐿
2(𝑍) such that 

𝜙(𝑥) = 2 ∑ 𝑔𝑘𝜙(2𝑥 − 𝑘)

∞

𝑗=−∞

                                                                                        (1) 

This equation is known as the refinement equation, the dilation equation or the two-scale difference equation. 

Integrating equation (1)and dividing by the integral of 𝜙, we get 

∑ 𝑔𝑘 = 1                                                                                                                (2)

∞

𝑘=−∞

 

If 𝑉𝑗  is a  subspace, then a function 𝜙 ∈ 𝐿2(𝑅) is called the scaling function, defined as 

𝑉𝑗 = 𝑐𝑙𝑜𝑠𝐿2 (𝑅){𝜙𝑗,𝑘: 𝑘 ∈ ℤ}, 𝑗 ∈ ℤ 
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which satisfies the properties 1 to 5 given above. 

Haar scaling function 𝜙 is defined as 

𝜙(𝑡) = {1,        0 ≤ 𝑡 < 1         
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 

The system of Haar scaling function is defined as 

{𝜙𝑗,𝑘 = 2
𝑗
2𝜙(2𝑗 − 𝑘)    𝑤ℎ𝑒𝑟𝑒  𝑗, 𝑘 ∈ ℤ} 

Or 

𝜙𝑗,𝑘 = 2
𝑗
2𝜙(2𝑗 − 𝑘) = 𝐷2𝑗𝑇𝑘𝜙(𝑡) , 

where the dilation operator 𝐷𝑎𝑓(𝑥) = 𝑎
1

2𝑓(𝑎𝑥) and translation operator𝑇𝑘𝑓(𝑥) = 𝑓(𝑥 − 𝑘). If 𝜙 ∈ 𝐿1(𝑅), then it is uniquely 

defined by its dilation equation and the normalization 

∫ 𝜙(𝑥)𝑑𝑥 = 1                                                                                                            (3)

∞

−∞

 

The orthogonal projection 𝑃𝑛(𝑓) of  𝐿2(𝑅) onto 𝑉𝑛  is defined by 

𝑃𝑛 (𝑓) = ∑ 𝑎𝑛 ,𝑘𝜙𝑛 ,𝑘      𝑛 = 1,2,3, … .

∞

𝑘=−∞

 

where,  

𝑎𝑛,𝑘 = 〈𝑓, 𝜙𝑛,𝑘 〉 

Therefore, 

𝑃𝑛(𝑓) = ∑ 〈𝑓, 𝜙𝑛,𝑘  〉𝜙𝑛,𝑘 

∞

𝑘=−∞

 

2.4 Wavelet Approximation under Supremum Norm 

It is defined by, 

𝐸𝑛(𝑓) = ‖𝑓 − 𝑃𝑛 ‖∞ 

                                    =
𝑠𝑢𝑝
𝑥
|(𝑓(𝑥) − 𝑃𝑛 𝑓(𝑥))| 

Therefore, the degree of wavelet approximation of 𝑓 by 𝑃𝑛 𝑓 under norm ‖. ‖𝑝  is given by 

𝐸𝑛(𝑓) =
𝑚𝑖𝑛
𝑃𝑛𝑓

|(𝑓(𝑥) − 𝑃𝑛𝑓(𝑥))| 

If lim
𝑛→∞

𝐸𝑛(𝑓) → 0, then 𝐸𝑛(𝑓)  is known as the best approximation of 𝑓 of order 𝑛. 

3. Previous Results  
Theorems and results of Lal and Kumar: 

Theorem 1. If a  function 𝑓 ∈ 𝐿𝑖𝑝𝛼 [0,1], 0 < 𝛼 ≤ 1   𝑛 = 1,2,3, …. then the best wavelet approximation 𝐸𝑛(𝑓) of 𝑓 is given 

by 



Jitendra Kumar Kushwaha & Ajay / IJMTT, 71(8), 1-8, 2025 

 

4 

𝐸𝑛(𝑓) = ‖𝑓 − 𝑃𝑛 (𝑓)‖∞ = 𝑂 (
1

2𝑛𝛼
) ,   0 < 𝛼 ≤ 1, 𝑛 = 1,2,3, … 

Theorem 2. Let 𝜉 be a monotonic increasing function of 𝑡 such that 

{
1

2𝜋
∫ |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|𝑝𝑑𝑥

2𝜋

0

}

1
2

= 𝑂(𝜉(𝑡)) , 1 ≤ 𝑝 < ∞ 

and 𝜉(𝑡) → 0 𝑎𝑠 𝑡 → 0+. Then the best wavelet approximation 𝐸𝑛(𝑓)  of a function 𝑓 ∈ 𝐿𝑖𝑝(𝜉,𝑝)[0,1], satisfies: 

𝐸𝑛 (𝑓) =
𝑚𝑖𝑛
𝑃𝑛 𝑓

‖𝑓 − 𝑃𝑛𝑓‖𝑝 = 𝑂(𝜉 (
1

2𝑛
)). 

Theorem 3. If a  function 𝑓 ∈ 𝐿𝑖𝑝𝛼 [0,1]  0 < 𝛼 ≤ 1 𝑖. 𝑒. 

|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)| = 𝑂(𝑡𝛼) ⟺ 𝐸𝑛(𝑓) = 𝑂 ((
1

2𝑛
)
𝛼

). 

Theorem 4. If a  function 𝑓 ∈ 𝐿𝑖𝑝(𝜉 ,𝑝)[0,1] 1 < 𝑝 ≤ ∞ 

⟺ 𝐸𝑛 (𝑓) = 𝑂 (𝜉 (
1

2𝑛
)) , 𝑛 = 1,2,3 … 

4. Main Theorems 
In this paper, we establish the following two theorems: 

Theorem 4.1- If a  function 𝑓𝜖𝐿𝑖𝑝𝛼
𝑝,𝜓
, 𝑓(𝑥 + 𝑡) − 𝑓(𝑥) = 𝑂(|𝑡|𝛼𝜓(𝑡))       0 < 𝛼 ≤ 1, then the best wavelet approximation 

𝐸𝑛(𝑓) of 𝑓 is given by 

𝐸𝑛(𝑓) = ‖𝑓 − 𝑃𝑛(𝑓)‖∞ = 𝑂((
1

2𝑛𝛼
) 𝜓 (

1

2𝑛
)) ,   0 < 𝛼 ≤ 1, 𝑛 = 1,2,3, … 

where 𝜓 is a  positive monotonic increasing function of 𝑡 such that (|𝑡|𝛼𝜓(𝑡)) → 0   𝑎𝑠     𝑡 → 0+. 

Theorem 4.2- If 𝜓 is a  positive monotonic increasing function of 𝑡 such that 

{
1

2𝜋
∫|𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|𝑝𝑑𝑥

1

0

}

1
2

= 𝑂(|𝑡|𝛼𝜓(𝑡)) , 1 ≤ 𝑝 < ∞ 

and 𝜓(𝑡) → 0  𝑎𝑠  𝑡 → 0+ . Then the best approximation 𝐸𝑛(𝑓)  of a function 𝑓𝜖𝐿𝑖𝑝𝛼
𝑝,𝜓

 is given by 

𝐸𝑛(𝑓) =
𝑚𝑖𝑛
𝑃𝑛𝑓

‖𝑓 − 𝑃𝑛 𝑓‖𝑝 = 𝑂 (
𝜓 (

1
2𝑛
)

2𝑛𝛼
) 

4.1. Proof of Theorem 4.1 

The operator of the projection 𝑃𝑛 𝑓: 𝐿
2(𝑅) → 𝑉𝑛  is defined by 

𝑃𝑛𝑓 =∑𝑎𝑛 ,𝑘
𝑘∈𝑍

𝜙𝑛 ,𝑘,     𝑛 = 1,2,3, …  

where  

𝑎𝑛 ,𝑘 = 〈𝑓, 𝜙𝑛,𝑘〉 
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                              = ∫ 𝑓(𝑦)

∞

−∞

𝜙𝑛 ,𝑘(𝑦)̅̅ ̅̅ ̅̅ ̅̅̅ ̅𝑑𝑦 

Therefore 

(𝑃𝑛 )(𝑓) =∑ { ∫ 𝑓(𝑦)

∞

−∞

𝜙𝑛,𝑘(𝑦)𝑑𝑦} 𝜙𝑛,𝑘(𝑥)
𝑘∈𝑍

 

= ∫ 𝑓(𝑦)

∞

−∞

(∑𝜙𝑛 ,𝑘(𝑥)

∞

−∞

𝜙𝑛,𝑘(𝑦)̅̅ ̅̅ ̅̅ ̅̅̅ ̅) 𝑑𝑦 

= ∫ 𝑓(𝑦)

∞

−∞

(∑2
𝑛
2𝜙(2𝑛𝑥 − 𝑘)2

𝑛
2𝜙(2𝑛𝑦 − 𝑘)̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅̅ ̅

∞

−∞

)𝑑𝑦 

= 2𝑛 ∫ 𝑓(𝑦) (∑𝜙(2𝑛𝑥 − 𝑘)𝜙(2𝑛𝑦 − 𝑘)̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅̅ ̅

∞

−∞

)𝑑𝑦

∞

−∞

 

= 2𝑛 ∫ 𝑓(𝑦)

∞

−∞

𝐾(2𝑛𝑥, 2𝑛𝑦)𝑑𝑦 

Since  

𝐾(𝑥, 𝑦) =∑𝜙(𝑥 − 𝑘)𝜙(𝑦 − 𝑘)̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅

∞

−∞

 

And 

∫ 𝐾(𝑥, 𝑦)𝑑𝑦

∞

−∞

= 1,      𝑥 ∈ ℝ. 

Therefore replacing 𝑦 → 2𝑛𝑦 and 𝑥 → 2𝑛𝑥,  then 

2𝑛 ∫ 𝐾(2𝑛𝑥, 2𝑛𝑦)𝑑𝑦 = 1

∞

−∞

 

Next, 

𝑓(𝑥) = 𝑓(𝑥) ∫ 𝐾(2𝑛𝑥, 2𝑛𝑦)𝑑𝑦       (∵ 2𝑛 ∫ 𝐾(2𝑛𝑥, 2𝑛𝑦)

∞

−∞

𝑑𝑦 = 1)

∞

−∞

 

= 2𝑛 ∫ 𝐾(2𝑛𝑥, 2𝑛𝑦)𝑓(𝑥)

∞

−∞

𝑑𝑦 

Therefore,  

(𝑃𝑛𝑓)(𝑥) − 𝑓(𝑥) = 2𝑛 ∫ 𝑓(𝑦)

∞

−∞

𝐾(2𝑛𝑥, 2𝑛𝑦)𝑑𝑦 − 2𝑛 ∫ 𝐾(2𝑛𝑥, 2𝑛𝑦)𝑓(𝑦)

∞

−∞

𝑑𝑦 
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= 2𝑛 ∫ 𝐾(2𝑛𝑥, 2𝑛𝑦)

∞

−∞

𝑑𝑦[𝑓(𝑦) − 𝑓(𝑥)]𝑑𝑦 

= ∫ 𝐾(2𝑛 𝑥, 2𝑛𝑦)

∞

−∞

[𝑓(2−𝑛𝑦) − 𝑓(𝑥)]𝑑𝑦,    𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔     𝑦 𝑏𝑦   2−𝑛𝑦, 

= ∫ 𝐾(2𝑛𝑥, 2𝑛 − 𝑤)[𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)]𝑑𝑤,     2−𝑛𝑦 = 𝑥 − 2−𝑛𝑤,

∞

−∞

 

= ∫ 𝐾(2𝑛 𝑥, 2𝑛𝑥 − 𝑦)

∞

−∞

[𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥) ]𝑑𝑦,     𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔     𝑤     𝑏𝑦    𝑦. 

|(𝑃𝑛 𝑓)(𝑥) − 𝑓(𝑥) | ≤ ∫ |𝐾(2𝑛𝑥, 2𝑛𝑥 − 𝑦)||𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)|𝑑𝑦

∞

−∞

 

≤ ∫ |𝐾(2𝑛 𝑥, 2𝑛𝑥 − 𝑦)|𝑑𝑦 
𝑠𝑢𝑝
𝑦
|𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)|

∞

−∞

 

By H𝑜̈lder’s inequality 

= 2𝑛 ∫ |𝐾(2𝑛𝑥, 2𝑛𝑤)|𝑑𝑦 
𝑠𝑢𝑝
𝑦
|𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)|,

∞

−∞

 

Taking 2𝑛𝑥 − 𝑦 = 2𝑛 ,  first factor only,  

|(𝑃𝑛 𝑓)(𝑥) − 𝑓(𝑥) | ≤ 2
𝑛 ∫ |𝐾(2𝑛𝑥, 2𝑛𝑦)|𝑑𝑦 

𝑠𝑢𝑝
𝑦
|𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)|,

∞

−∞

 

Replacing 𝑤 by 𝑦 in the first factor only, 

|(𝑃𝑛𝑓)(𝑥) − 𝑓(𝑥)| ≤
𝑠𝑢𝑝
𝑦
|𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)| ,    {2𝑛 ∫ |𝐾(2𝑛 𝑥, 2𝑛𝑦)|𝑑𝑦 = 𝑂(1)

∞

−∞

} 

=
𝑠𝑢𝑝

𝑦 ∈ [0,1]
(𝑂|2−𝑛𝑦|𝛼),     |𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)| = 𝑂 (|2−𝑛𝑦 𝜓 (|

𝑦

2𝑛
|)|) , 𝑓 ∈ 𝐿𝑖𝑝𝛼

𝑝,𝜓
[0,1]  

= 𝑂(∫(2−𝑦)𝛼

1

0

𝜓 (
𝑦

2𝑛
)) 

= 𝑂 ((
1

2𝑛
)
𝛼

𝜓 (
1

2𝑛
) ∫ 𝑦𝛼𝑑𝑦

1

0

) 

= 𝑂 (𝜓 (
1

2𝑛
) (

1

2𝑛𝛼
) (

1

1 +𝛼
)) 

= 𝑂((
1

2𝑛𝛼
) 𝜓 (

1

2𝑛
)) 
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Thus 

𝑠𝑢𝑝
𝑥
‖(𝑃𝑛 𝑓)(𝑥) − 𝑓(𝑥)‖∞ = ‖𝑃𝑛 𝑓 − 𝑓‖∞ 

= 𝑂((
1

2𝑛𝛼
) 𝜓 (

1

2𝑛
)) 

Hence, 

𝐸𝑛(𝑓) = 𝑂 ((
1

2𝑛𝛼
) 𝜓 (

1

2𝑛
)) 

4.2. Proof of Theorem 4.2 

If (∫ |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|𝑝𝑑𝑥
1

0
)

1

𝑝
= 𝑂(|𝑡|𝛼𝜓(|𝑡|)),  when 𝜓 is a  function of 𝑡 such that |𝑡|𝛼𝜓(|𝑡|) → 0  𝑎𝑠  𝑡 → 0+ . 

Then, the following proof of theorem (1),  

|(𝑃𝑛𝑓)(𝑥) − 𝑓(𝑥)| = ∫ |𝐾(2𝑛 , 2−𝑛𝑦) − 𝑓(𝑥) ||𝑓(𝑥 − 2−𝑛𝑦 − 𝑓(𝑥))|𝑑𝑦

∞

−∞

 

≤ 𝑂(1)∫|𝑓(𝑥 − 2−𝑛𝑦 − 𝑓(𝑥))|𝑑𝑦

1

0

 

Applying generalized Minkowski’s inequality in the above expression, we have 

‖𝑃𝑛𝑓 − 𝑓‖𝑝 = 𝑂(1) ∫‖𝑓(𝑥 − 2−𝑛𝑦) − 𝑓(𝑥)‖𝑝𝑑𝑦

1

0

 

= 𝑂(1)∫(2−𝑛|𝑦|)𝛼𝜓 (
𝑦

2𝑛
) 𝑑𝑦

1

0

 

= 𝑂 (
1

(2𝑛)𝛼
𝜓 (

1

2𝑛
))∫ 𝑑𝑦

1

0

 

= 𝑂 (
𝜓 (

1
2𝑛
)

2𝑛𝛼
) 

Hence 

𝐸𝑛(𝑓) =
𝑚𝑖𝑛
𝑃𝑛𝑓

‖𝑓 − 𝑃𝑛 𝑓‖𝑝 = 𝑂 (
𝜓 (

1
2𝑛
)

2𝑛𝛼
) 

5. Results and Discussion 
1. If 𝜓(𝑡) = 1 in Theorem 4.1, then the degree of approximation is given by  

𝐸𝑛(𝑓) = ‖𝑓 − 𝑃𝑛𝑓‖∞ = 𝑂 (
1

2𝑛𝛼
) ;     0 < 𝛼 ≤ 1.  

2. If 𝜓(𝑡) = 1 in Theorem 4.2, then the degree of approximation 𝑓𝜖𝐿𝑖𝑝𝛼
𝑝

 is given by  

𝐸𝑛 (𝑓) = ‖𝑓 − 𝑃𝑛 𝑓‖𝑝 = 𝑂(
1

2𝑛𝛼
) ;     0 < 𝛼 ≤ 1 



Jitendra Kumar Kushwaha & Ajay / IJMTT, 71(8), 1-8, 2025 

 

8 

6. Conclusion 
The error estimation or degree of approximation of functions of generalized Lipschitz class ha s been determined in this 

paper. The results give a proper comparison with the existing results of Lal & Kumar [8]. Their results can be derived from 

the present determinations. Therefore, this gives the best approximation compared to previously existing results. 
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