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Abstract - This study introduces a numerical method to address the phenomenon of fluid flow and heat transfer within a 

rectangular area under wall slip boundary conditions. The established marker and cell (MAC) technique [1] has been effectively 

used for discretizing the governing equations relevant to the study. The MAC method ’s solution algorithm has been employed to 

calculate the flow variables for high Reynolds numbers and a range of Prandtl numbers. The numerical  computations were 

performed in accordance with the stability criteria established through the von Neumann analysis. An examination of the 

influence of high Reynolds numbers and Prandtl numbers on flow variables has been outlined.  
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1. Introduction  
The proposed fluid flow issue has been a prominent field of theoretical, numerical, and experimental research in recent years. 

Fluid flow and heat transfer a re important phenomena in nature, living organisms, and a variety of practical situations. The 2-D 

unsteady viscous flow equations are used for modeling various physical phenomena , which include pipe flow, weather and blood 

flow, flow around airfoils. Most of the flows we experienced in everyday life are turbulent , and many of these exhibit high  

Reynolds numbers. Heat transfer is an important phenomenon in various processes in a number of residential, industrial and 

commercial facilities. Unsteady heat transfer occurs in food process engineering, heating or cooling of solid bodies made from 

good thermal conductors, thermal and hydraulic power plants, heating and air-conditioning of buildings, air-heaters, design of 

electrical machinery and electronic circuits, weather prediction and environmental pollution, oil exploration, etc.  

 

The MAC method, associated with free surface flows, is a  finite difference numerical technique that addresses the velocity 

and pressure profiles necessary to calculate the behavior of incompressible fluid flow. Harlow and Welch [1] employed the 

Marker-And-Cell (MAC) technique for numerical computations of time-dependent viscous incompressible flow in a free surface. 

Various advancements concerning MAC methods can be observed in the literature [2-4]. Ghia et al. [6] utilized a multigrid  

method to achieve high-resolution results for the 2-D incompressible Navier-Stokes equations. Erturk et al. [13] presented 

numerical solutions for the 2-D incompressible steady flow at elevated Reynolds numbers. R.A. Nicolaides [8] suggested the 

analysis and convergence of the MAC scheme for linear problems, while R.A. Nicolaides and X. Wu [9] explored the analysis 

and convergence of the MAC scheme focused on the Navier-Stokes problem. The convergence of the Marker-and-Cell Scheme 

for the Incompressible flow utilizing Non-Uniform Grids was discussed by Gallouet Thierry et al. [19]. Research on the Navier-

Stokes Equations for slip boundary situations has been examined in the literature [11 -12] and [15]. The vast range of applications 

for unsteady compressible flow involving heat and mass transfer, as previously mentioned, serves as the impetus for this 

investigation. A review of the literature indicates that due to the complexities associated with the rectangular domain, there has 

been no numerical study on the flow variables for 2-D unsteady flow with heat transfer in a rectangular environment, including 

conditions for slip walls and temperature boundaries. Furthermore, to explore the significance of the previously listed 

applications, it is essential to derive numerical solutions for the unknown flow variables. To address this need, a numerical 

method for solving the aforementioned problem has been explored. The primary contribution of this study is the effective 

application of the MAC method to solve the problem of unsteady 2 -D incompressible flow with heat transfer, including initial 

and boundary conditions in a rectangular domain. The MAC differencing technique has been utilized to discretize the governing 
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equations. The Marker – and – Cell scheme has been used effectively for the computation of the numerical values of the unknown 

variables u, v, p, and T. The time-dependent variations of these flow variables, under specific parameters, within the rectangular 

domain, have been analyzed. 

 

The proposed study is outlined as follows: Section 2 deals with the governing equations of the problem. Section 3 provides 

a comprehensive analysis of the MAC method, including the solution algorithm and the calculations of the results. The 

conclusions of the proposed numerical study are found in Section 4. 

 

2. Mathematical Formulation  
The governing equations in a rectangular domain using the Boussinesq approximation in the dimensionless form are as follows:                          

                                𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                         (1) 

 

𝑋 − 𝑀𝑜𝑚𝑒𝑚𝑡𝑢𝑚
𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕𝑢𝑣

𝜕𝑦
+

𝜕𝑃

𝜕𝑥
− (

1

𝑅𝑒
) (

𝜕2 𝑢

𝜕𝑥2
+

𝜕2 𝑢

𝜕𝑦2
) = 0(2) 

 

𝑌 − 𝑀𝑜𝑚𝑒𝑚𝑡𝑢𝑚
𝜕𝑣

𝜕𝑡
+

𝜕𝑢𝑣

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
+

𝜕𝑃

𝜕𝑦
− (

1

𝑅𝑒
) (

𝜕2 𝑣

𝜕𝑥2
+

𝜕2 𝑣

𝜕𝑦2
) = 0(3) 

 

                  𝐸𝑛𝑒𝑟𝑔𝑦𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
−

1

𝑃𝑟
(

𝜕2 𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2
) = 0(4)     

        

                        
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 
 

Fig. 1 The Computational Rectangular Domain 

 

3. Numerical Methodology and Computation 
       Solve the above equations (1) – (4) suitably using the MAC method along with the initial and boundary conditions. Consider 

a MAC staggered grid for u, v, P and T nodes as shown in Figure 2. Using the method, the various derivatives appearing in 

equation (2) are calculated as follows:  

 

 
 
 
 

 
  

 

 
 
 
 

 
 

Fig. 2 MAC Staggered Grid System 
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The time-splitting method, also known as the fractional time-step method [7], which is fully explicit in nature, has been 

implemented. Applying it to the equation. (2) & (3) on the staggered grid from t to �̂�: 

 
�̂�𝑖+1/2,𝑗 − 𝑢𝑖+1/2,𝑗

𝑛

𝛥𝑡
=

(𝑢𝑖,𝑗
𝑛 )2 − (𝑢𝑖+1,𝑗

𝑛 )2

𝛥𝑥
+

(𝑢𝑣)𝑖+1/2,𝑗−1/2
𝑛 − (𝑢𝑣)𝑖+1/2,𝑗+1/2

𝑛

𝛥𝑦
 

                          +
𝑢𝑖+3/2,𝑗

𝑛 −2𝑢𝑖+1/2,𝑗
𝑛 +𝑢𝑖−1/2,𝑗

𝑛

ReΔ 𝑥2 +
𝑢𝑖+1/2,𝑗+1

𝑛 −2𝑢𝑖+1/2,𝑗
𝑛 +𝑢𝑖+1/2,𝑗−1

𝑛

ReΔ 𝑦2                                                         (5)          

    

𝑣𝑖 ,𝑗+1/2 − 𝑣𝑖,𝑗+1/2
𝑛

𝛥𝑡
=

(𝑢𝑣)𝑖−1/2,𝑗+1/2
𝑛 − (𝑢𝑣)𝑖+1/2,𝑗+1/2

𝑛

𝛥𝑥
+

(𝑣𝑖 ,𝑗
𝑛 )2 − (𝑣𝑖 ,𝑗+1

𝑛 )2

𝛥𝑦
 

                            +
𝑣𝑖+1,𝑗+3/2

𝑛 −2𝑣𝑖,𝑗+1/2
𝑛 +𝑣𝑖−1,𝑗+1/2

𝑛

ReΔ 𝑥2 +
𝑣𝑖,𝑗+3/2

𝑛 −2𝑣𝑖,𝑗+1/2
𝑛 +𝑣𝑖,𝑗−1/2

𝑛

ReΔ 𝑦2                                                              (6)       

                                

Now advancing from 𝑡𝑛  to �̂�, and then �̂� to 𝑡𝑛+1, the elliptical pressure equation is obtained                                                                    

                 𝛻2 𝑃𝑛 +1 =
𝛻.�̄�

𝛥𝑡
                                                                                       (7)                                                                               

with boundary condition  
𝜕𝑃𝑛+1

𝜕𝑛
= 0.                                                                                                                                                                                                                         

 

Applying the central difference numerical scheme: 

     
𝑃𝑖+1,𝑗

𝑛+1 −2𝑃𝑖,𝑗
𝑛+1+𝑃𝑖−1,𝑗

𝑛+1

𝛥𝑥2 +
𝑃𝑖,𝑗+1

𝑛+1 −2𝑃𝑖,𝑗
𝑛+1+𝑃𝑖,𝑗−1

𝑛+1

𝛥𝑦2 =
1

𝛥𝑡
[

𝑢𝑖+1/2,𝑗−𝑢𝑖−1/2,𝑗

𝛥𝑥
+

�̂�𝑖,𝑗+1/2−�̂�𝑖,𝑗−1/2

𝛥𝑦
]

                                         (8)                                                          

 

Now, the velocity field is being calculated at time level 𝑡𝑛+1:                               

              

          𝑢𝑖+1/2,𝑗
𝑛 +1 = �̂� 𝑖+1/2,𝑗 −

𝛥𝑡

𝛥𝑥
(𝑃𝑖 +1,𝑗

𝑛+1 − 𝑃𝑖 ,𝑗
𝑛 +1), 𝑣𝑖,𝑗+1/2

𝑛+1 = 𝑣𝑖,𝑗+1/2 −
𝛥𝑡

𝛥𝑦
(𝑃𝑖 ,𝑗+1

𝑛 +1 − 𝑃𝑖 ,𝑗
𝑛 +1).

                           (9)

          

 

Similarly, equation (4) has been discretized suitably:   

 
𝑇𝑖,𝑗

𝑛+1−𝑇𝑖,𝑗
𝑛

𝛥𝑡
= 𝑢𝑖 ,𝑗

𝑛 (
𝑇𝑖,𝑗

𝑛 −𝑇𝑖+1,𝑗
𝑛

𝛥𝑥
) + 𝑣𝑖 ,𝑗

𝑛 (
𝑇𝑖,𝑗

𝑛 −𝑇𝑖,𝑗+1
𝑛

𝛥𝑦
) + (

1

𝑃𝑟
) (

𝑇𝑖+1,𝑗
𝑛 −2𝑇𝑖,𝑗

𝑛 +𝑇𝑖−1,𝑗
𝑛

𝛥𝑥2 +
𝑇𝑖,𝑗+1

𝑛 −2𝑇𝑖,𝑗
𝑛 +𝑇𝑖,𝑗−1

𝑛

𝛥𝑦2
)                          (10)    

 

  Here                       𝑢𝑖,𝑗
𝑛 =

1

2
(𝑢𝑖+1/2,𝑗

𝑛 + 𝑢𝑖−1/2,𝑗
𝑛 ), 𝑣𝑖,𝑗

𝑛 =
1

2
(𝑣𝑖 ,𝑗+1/2

𝑛 + 𝑣𝑖 ,𝑗−1/2
𝑛 )                                                                                                   

 

The von Neumann convergence analysis has been used suitably to find the practical stability conditions:                            

              𝑚𝑎𝑥
𝑖,𝑗

[(
|𝑢𝑖,𝑗|

𝛥𝑥
+

|𝑣𝑖,𝑗|

𝛥𝑦
) 𝛥𝑡] <

1

2
, 𝑚𝑎𝑥 [

𝛥𝑡

Re
(

1

(𝛥𝑥)2 +
1

(𝛥𝑦)2
)] <

1

10
 

𝛥𝑡𝑚𝑎𝑥
𝑖,𝑗

[(
𝑢𝑖 ,𝑗

𝛥𝑥
+

𝑣𝑖 ,𝑗

𝛥𝑦
)

1

𝑅𝑒
+

2

𝑃𝑟
(

1

(𝛥𝑥)2 +
1

(𝛥𝑦)2
)] ≤ 1                                                           (11) 

 

3.1. Solution Algorithm 

3.1.1. Prediction Step 

• Using (5) and (6), the results for �̂� &𝑣 have been obtained at respective grid points. 

• The initial and boundary conditions are applied. 

• The time advancement is explicit, and hence the equations are solved algebraically. 

• The stability condition (11) must be satisfied. 

• Divergence calculation of the velocity profiles at every time advancement step: 

•  

                    𝛻. 𝑢 =
𝑢𝑖+1/2,𝑗

𝑛+1 −𝑢𝑖−1/2,𝑗
𝑛+1

𝛥𝑥
+

𝑣𝑖,𝑗+1/2
𝑛+1 −𝑣𝑖,𝑗−1/2

𝑛+1

𝛥𝑦
 

 

At all grid points, the sum of the divergence magnitude must have a machine-zero value; otherwise, the calculation must be 

performed with a smaller time step. 
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3.1.2. Pressure Calculation 

• Pressure-Poisson equation given by eqn. (8) to be numerically solved for pressure calculation using the homogeneous 

Neumann boundary conditions.  

 

3.1.3. Velocity Correction   

• The numerical computation for the velocity profiles is calculated 𝑡𝑛+1using the equation. (9). 

 

3.1.4. Temperature Calculation 

• Calculate the temperature from the equation. (10). 

 

The solutions for the flow variables have been derived using a computational rectangular staggered grid. At the initial time 

t = 0, the velocity field is set to zero, and the temperature within the rectangular domain is 0.50, with a temperature gradien t of 

0.50 at both the left and right walls. Numerical computations have been performed for Reynolds numbers Re = 2500, 5000, 7500, 

10000 and Prandtl numbers Pr = 1.0, 3.0, 5.0, 7.0 with a time step of ∆t = 0.001 sec. The numerical solutions for the u-velocity 

have been calculated, and the results are displayed in Figure 3. Likewise, the numerical solutions for the v-velocity have been 

computed, with the results illustrated in Figure 4. The numerical computations have been performed for Reynolds values of 2500, 

5000, 7500, and 10000. 

 

     
                                                Fig. 3 u-velocity profiles                                                                    Fig. 4 v-velocity profiles 

    
Fig. 5 Temperature variation for Re =2500                                         Fig. 6 Temperature variation for Re = 5000 

 

The temperature flow behavior for various Reynolds numbers (Re = 2500, 5000, 7500, 10000) is depicted in Figures 5 

through 8. These numerical findings were determined for Prandtl numbers (Pr = 1.0, 3.0, 5.0, 7.0, 9.0, 11.0). The numerical 

computations for temperature at the midpoint of the rectangular area have been performed, and the computational results for 

various Prandtl numbers are presented in Figure 9. 
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Fig. 7 Temperature variation for Re = 7500.                         Fig. 8 Temperature variation for Re = 10000. 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

 
 

Fig. 9 Temperature variation at the midpoint 
 

The pressure profiles for various grid points (0.0526,0.5), (1.0,0.0263), (1.0,0.5), (1.0,0.9737) have been depicted in Figure 

10 for Reynolds numbers of 2500, 5000, 7500, and 10000. 
 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 
 

Fig. 10 Pressure variation at specific grids for different Reynolds numbers 

4. Conclusion 
 In the present study, a numerical analysis of the incompressible flow of viscous fluids in a 2 -D unsteady scenario, along with 

heat transfer through a coupled energy equation, has been presented. The wall slip boundary conditions within a rectangular 

domain have been applied. Numerical computations have been performed to compute unknown flow variables such as velocity 

profiles, pressure profiles, and tempera ture profiles for specific Reynolds numbers and Prandtl numbers. Using numerical 

computations, the behavior of the x-component of the velocity profile, referred to as u-velocity profiles, along a vertical line that 

passes through the geometric center of the rectangular domain  has been observed. The boundary conditions at the left and right 

walls are set at u = 0, while the bottom and top wall boundaries are assigned u = - 1 and u = 1, respectively. The results reflected 

that the absolute values of the u-velocity profiles diminish as the Reynolds number increases in the ranges of Re = 2500, 5000, 
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7500, and 10000. Similarly, the behavior of the y-component of the velocity profile, also known as v-velocity profiles, along a 

vertical line through the center of the rectangular domain  has been examined. The boundary conditions at the bottom and top 

walls are maintained at v = 0, whereas the left and right walls are set at v = 1 and u = -1, respectively. The investigation reveals 

that the absolute values of the v-velocity profiles decline with an increase in the Reynolds number across the specified range of 

Re = 2500, 5000, 7500, and 10000. The numerical analysis demonstrated that the pressure profiles increase with the rising 

Reynolds number within the examined range of Re = 2500, 5000, 7500, and 10000, as observed at particular grid points. A 

numerical computation of temperature values has been performed with boundary conditions at the left and right walls set to T = 

0, while the bottom and top wall boundaries have specified temperatures. The temperature variations revealed that, for a fixed 

value of Re, the temperature profiles decrease as Prandtl numbers increase, as summarized at the midpoint of the rectangular 

domain. 
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