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Abstract - Let R be a 2-torsion-free prime ring and J be a non-zero Jordan ideal of R. Suppose that F: R → R is a generalized 

derivation associated with a non-zero derivation d. If F (xy) − d(x)d(y) ∈ Z(R), for all x, y ∈ J, then R is commutative. 
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1. Introduction  
Throughout this paper, R denotes an associative ring with center Z(R). A ring R is said to be a  prime ring if 

aRb = {0} implies either a = 0 or b = 0. A ring R is said to be 2-torsion-free if 2x = 0 implies x = 0. We denote 

operation o as a Jordan product, which is defined on R as xoy = xy + yx, for all x, y ∈ R and [x, y] denotes the Lie 

product of x, y, which is defined as [x, y] = xy − yx, for all x, y ∈ R. An additive subgroup J of R is called a Jordan 

ideal of R if uor ∈ J, for all u ∈ J and r ∈ R. An additive mapping d from R to R is said to be a  derivation if 

d(xy) = d(x)y + xd(y), for all x, y ∈ R. An additive mapping       F: R → R is said to be a generalized derivation 

if there exists a  derivation d: R → R such that F (xy) = F (x)y + xd(y), for all x, y ∈ R. 

 

       Firstly, E.C. Posner [11] proved very striking results on derivation in prime rings and established a  relation 

between additive mappings and t h e  structure of a ring. Many authors have implemented Posner’s theorems; further 

information can be found in [5],[9],[10]. In this line, Ram Awtar [1] proved some results on Jordan ideals and Lie ideals in a prime ring 

and also proved that, if J is a Jordan ideal of R, then 4j2r, 4rj2, 4jrj ∈ J, where j ∈ J, r ∈ R. Further, Zaidi [12] et al. proved a result which 

states that if R is a ring and J is a non-zero Jordan ideal of R, then 2J[R, R] ⊆ J and 2[R, R]J ⊆ J. In 1991, M. Bresar [3] introduced the 

concept of generalized derivation in rings, which is the generalization of derivation because every derivation is a generalized derivation, 

but not conversely. In this sequence, Ashraf [2] et al. proved that if R is a prime ring which is 2 torsion free and F is a generalized 

derivation associated with derivation d on R. If F satisfies any one of the following conditions: (i) F (xy) − xy ∈ Z(R); (ii) F (xy) − yx ∈ 

Z(R); (iii) F (x)F (y) − xy ∈ Z(R); (iv) F (x)F (y) − yx ∈ Z(R), for all x, y ∈ I, where I is an ideal of R, then R is commutative. 

 

Recently, Oukhtite L. [7] et al. proved that, if R is a  2-torsion-free prime ring, J is a  non-zero ideal of R, and F 

satisfies any one of the following conditions: 

(i) F (xy) − xy ∈ Z(R); (ii) F (xy) − yx ∈ Z(R); (iii) F (x)F (y) − xy ∈ Z(R); 

(iv) F (x)F (y) − yx ∈ Z(R) for all x, y ∈ J, then R is commutative. 

 

Motivated by the results of Oukhtite L. [7], we continue this line of investigation. In this paper, I have studied 

generalized derivation acting on a Jordan ideal in a 2-torsion-free prime ring: 
 

2. Preliminary Results 
The following Lemma will be used in the proof of the main results;  
 

Lemma 2.1. [[8], Lemma 2.6] If J is a  non-zero Jordan ideal such that aJb = 0, 

then either a = 0 or b = 0. 
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Lemma 2.2. [[7], Fact 3] If R is a noncommutative ring such that a[r, xy]b = 0  

for all x, y ∈ J, r ∈ R, then either a = 0 or b = 0. 

 

Lemma 2.3. [[7], Fact 6 ] Let i be a positive integer and set J0 = J, then Ji = {x ∈ Ji−1 | d(x) ∈ Ji} is a non-zero Jordan 

ideal; moreover, if J ∩ Z(R) /= 0, then Ji ∩ Z(R) /= 0. 

 

Lemma 2.4. [[10], Lemma 2.2 ] If d is a derivation of R such that d(x2) = 0 

for all x ∈ J, then d = 0. 

 

We leave the proofs of the following easy Lemma to the readers. 

 

Lemma 2.5. Let J be a non-zero Jordan ideal of R. Suppose that d is a derivation on R such that d(x) = x for all x ∈ J, 

then d = 0. 

 

3. Main Results 
Theorem 3.1. Let R be a 2-torsion free prime ring and J be a non-zero Jordan ideal of R. Suppose that F: R → R is a 

generalized derivation, associated with non-zero derivations d, such that F (xy) − d(x)d(y) ∈ Z(R), for all x, y ∈ J, then R 

is commutative. 

 

Proof. First of all, we show that J ∩ Z(R) /= 0. On the contrary, if J ∩ Z(R) = 0. We have, F (xy) − d(x)d(y) ∈ Z(R)

 (1) 

 for all x, y ∈ J. Replacing y by 4[r, uv]y in (1), where u, v ∈ J, r ∈ R, we get 

 

4(F (x[r, uv]) − d(x)d([r, uv])y + 4x[r, uv]d(y) − 4d(x)[r, uv]d(y) ∈ Z(R) (2) 

 

for all u, v, x, y ∈ J. As 4x[r, uv]d(y) = 2x[r, uv]od(y) + 2[x[r, uv], d(y)] ∈ J and 

also 4d(x)[r, uv]d(y) ∈ J for all x, y, u, v ∈ J1.  

 

So 4(F (x[r, uv])−d(x)d([r, uv])y+4x[r, uv]d(y) − 4d(x)[r, uv]d(y) ∈ J.  

But J ∩ Z(R) = 0, hence we get, 

 

(F (x[r, uv]) − d(x)d([r, uv])y + x[r, uv]d(y) − d(x)[r, uv]d(y) = 0 (3)  

 

for all x, y, u, v ∈ J1, r ∈ R. Replacing y by 4yz2 in (3), where z ∈ J1. we get 

(x − d(x))[r, uv]yd(z2)=0 (4) 

 

for all x, y, u, v ∈ J1, r ∈ R.  

 

Using lemma 2.2 we obtain either x − d(x) = 0 or yd(z2) = 0. If yd(z2) = 0, this implies d(z2) = 0 ∀ z ∈ J1. Then by Lemma 

2.4, d = 0, a contradiction. If x-d (x) = 0 ∀ x ∈ J1, then in application of Lemma 2.5, again we get d = 0, a contradiction. 

Therefore J ∩ Z(R) /= 0. 

 

Replacing y by 4yu2 in (1), where u ∈ J, we get 

4(F (xy) − d(x)d(y))u2 + 4xyd(u2) − 4d(x)yd(u2) ∈ Z(R) (5)  

 

for all x, y, u ∈ J. Since F (xy) − d(x)d(y) ∈ Z(R), we get 

[xyd(u2), u2] − [d(x)yd(u2), u2] = 0 (6) f 

 

or all x, y, u ∈ J. Replacing x by 4xu2 in (6), we get 

[xu2yd(u2), u2] − [d(x)u2yd(u2), u2] − [xd(u2)yd(u2), u2] = 0 (7) 

 

for all x, y, u ∈ J. Replacing y by 4u2y in (6) and subtracting from (7), we obtain 

 

[xd(u2)yd(u2), u2] = 0 (8) 
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for all x, y, u ∈ J.  

As 4d(u2)yd(u2)x = 4(d(u)ou)yd(u2)x = 2(d(u)ou)o(yd(u2)x) 

 

+2[(d(u)ou), yd(u2)x] ∈ J  

for all x, y, u, ∈ J1, then replacing x by 4d(u2)yd(u2)x in (8) we obtain 

[d(u2)yd(u2), u2]xd(u2)yd(u2) = 0 (9) 

 

for all x, y, u ∈ J1. Replacing x by 4xu2 in (9), we get 

[d(u2)yd(u2), u2]xu2d(u2)yd(u2) = 0(10) 

 

Multiplying (9) by u2 from the right side, and subtracting from (10), we obtain  

[d(u2)yd(u2), u2]J[d(u2)yd(u2), u2] = 0 (11) 

 

for all x, y, u ∈ J1. In light of Lemma 2.1, we get [d(u2)yd(u2), u2] = 0, for all x, y, u ∈ J1. Therefore d(u2)yd(u2)u2 − 

u2d(u2)yd(u2) = 0. As 4yd(u2)z = 2yd(u2)oz + 2[yd(u2), z] ∈ J then replacing y by 2yd(u2)z we get, 

d(u2)y[d(u2), u2]zd(u2) = 0 (12) 

 

for all x, y, z, u ∈ J1. Again, by application of Lemma 2.1, we get either d(u2) = 0 or [d(u2), u2] = 0. If d(u2) = 0 for all u ∈ 

J1 , by Lemma 2.4, d = 0 a contradiction, therefore we get 

[d(u2), u2] = 0 (13) 

 

for all u ∈ J1. Let 0 /= t ∈ J1 ∩ Z(R) and replacing u by 2rt, where r ∈ R, we obtain 

[d(r2), r2] = 0 (14) 

 

for all r ∈ R. Therefore, in application of Theorem 3 of [4], we find that [R, R]d(R) = 0, hence R is commutative. This 

completes the proof. 
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