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Abstract - This paper investigates 𝛤-stable Cartan subgroups in connected Lie groups and their associated Lie algebras. We 

extend the results of Borel and Mostow on the existence of automorphism-invariant Cartan subalgebras to the group setting. For 

a real semisimple Lie algebra 𝔤 , we prove that there exists a nonidentity automorphism that fixes representatives of all 

conjugacy classes of Cartan subalgebras. Explicit constructions for classical Lie algebras (𝐴𝑛 , 𝐵𝑛, 𝐶𝑛, 𝐷𝑛) are provided. 

Applications include characterizing stable Cartan subgroups in quotients and normal subgroups.  
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1. Introduction 
 The study of automorphism-invariant subgroups lies at the intersection of Lie theory, group representations, and differential 

geometry. For a connected Lie group 𝐺 with Lie algebra 𝔤, Cartan subgroups play a fundamental role analogous to maximal tori 

in compact groups. A Cartan subgroup 𝐻 ⊂ 𝐺 is defined as:  

 

Definition 1.1 A closed subgroup 𝐻 ⊂ 𝐺 is Cartan if it satisfies:   

1. 𝐻 is maximal nilpotent  

2. For every normal subgroup 𝑁(𝐻  of finite index, [𝑁𝐺(𝑁): 𝑁 ] < ∞  

  

These subgroups determine the fine structure of 𝐺 through their conjugacy classes and invariant measures. When 𝐺 is 

algebraic, Cartan subgroups coincide with maximal tori. 

 

Motivation 

The primary motivation for studying Γ-stable Cartan subgroups arises from:   

 

 Geometric structures: Invariant Cartan subgroups determine symmetric spaces and homogeneous geometries [6]. Dynamics 

& Ergodic theory: Stable subgroups induce measure-preserving actions on homogeneous spaces [?] Surjectiv ity problems: 

Solutions to equations 𝑥𝑘 = 𝑔 in 𝐺  depend on Cartan subgroups [4] Disconnected groups: Understanding automorphism 

actions on non-connected algebraic groups [5]  

 

Borel and Mostow’s seminal work [1] showed that for a supersolvable group Γ of semisimple automorphisms of 𝔤, there 

exists a Γ-stable Cartan subalgebra. This raises the natural question: Can these results be lifted to the group level? What 

additional structure emerges when considering quotients and normal subgroups?  

 

Key Concepts and Theorems 

We recall foundational results used throughout this work:  

 

Theorem 1.2 (Borel-Mostow )  Let 𝛤 ⊂ 𝐴𝑢𝑡(𝔤) be supersolvable with semisimple automorphisms. Then 𝔤 admits a 𝛤-stable 

Cartan subalgebra 𝔥.  

Definition 1.3 An automorphism 𝜓 ∈ 𝐴𝑢𝑡 (𝐺) is semisimple if its differential 𝑑𝜓: 𝔤 → 𝔤 is semisimple (diagonalizable over ℂ).  
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Definition 1.4 A subgroup 𝛤 ⊂ 𝐴𝑢𝑡(𝐺) is supersolvable if it admits a chain 𝛤 = 𝛤0 ⊃ 𝛤1 ⊃ ⋯ ⊃ 𝛤𝑟 = {𝑖𝑑} with 𝛤𝑖(𝛤 and 

𝛤𝑖/𝛤𝑖+1 cyclic.  
 

For real semisimple 𝔤, Sugiura’s classification [2] provides the framework connecting Cartan subalgebras to root systems:  
 

Theorem 1.5 (Sugiura) There is a bijection between:   

    1.  𝐾-conjugacy classes of Cartan subalgebras  

    2.  𝑊(R)-conjugacy classes of admissible root systems 𝐹 ⊂ R(𝔪)  

 

Where 𝔪 ⊂ 𝔭 is maximal abelian in the Cartan decomposition.  
 

Research Objectives 

This work aims to:   

    1.  Extend Borel-Mostow to Lie groups: Prove the existence of Γ-stable Cartan subgroups (Theorem?) Characterize stability in  

quotients: Show Γ-stable Cartans lift through 𝐺 → 𝐺/𝑀 (Theorem 5.2). So lve the converse problem: Construct nonidentity 

automorphisms fixing all Cartan subalgebra representatives (Question?) Provide explicit realizations: Compute stabilizing 

elements for classical Lie algebras (Propositions 4.2–?) Extend to normal subgroups: Construct Γ-stable Cartans containing 𝐻 ∩
𝑀 (Theorem 5.3)  

 

Methodology 

Our approach combines algebraic, geometric, and computational techniques:   

 

Lie algebra/group correspondence: Lift Borel-Mostow via Chevalley’s correspondence Structure theory: Decompose 𝐺 =
𝑆𝑅 (Levi decomposition) to reduce to semisimple case Root system analysis: Use admissible systems to parameterize Cartan 

subalgebras Weyl group actions: Identify elements fixing all admissible systems Matrix realizations: Explicit computation for  

classical types Inductive arguments: Handle normal subgroups via radical filtration  

 

The most intricate computations occur for orthogonal groups ( 𝐷𝑛  Type), where the number of Cartan classes grows 

combinatorially and stabilization depends on the parity of 𝑛. 

 

Paper Outline 

 Section 2 reviews Lie theory foundations. Section ?? solves the converse problem for classical algebras. Section ?? proves 

stability in quotients and normal subgroups. We conclude with open problems for exceptional algebras.   
 

2. Preliminaries 
 Let 𝔤 be a real semisimple Lie algebra with Cartan involution 𝜃 and decomposition 𝔤 = 𝔨 ⊕ 𝔭, where 𝔨 = ker(𝜃 − 𝑖𝑑) 

and 𝔭 = ker(𝜃 + 𝑖𝑑 ). Fix a maximal abelian subalgebra 𝔪 ⊂ 𝔭. 

 

Definition 2.1 The admissible root system 𝐹 = {𝛼1,… , 𝛼𝑟 } ⊂ 𝑅(𝔪) satisfies 𝛼𝑖 ± 𝛼𝑗 ∉ 𝑅(𝔪) for 𝑖 ≠ 𝑗.  

Theorem 2.2 (Sugiura ) There is a bijection between:   

    1.  𝐾-conjugacy classes of Cartan subalgebras of 𝔤,  

    2.  𝑊(R)-conjugacy classes of admissible root systems.  

  

The Weyl group 𝑊(R) acts on R(𝔪). For classical 𝔤, 𝑊(R) is:   

    • 𝐴𝑛 : Symmetric group 𝑆𝑛+1  

    • 𝐵𝑛 , 𝐶𝑛: Hyperoctahedral group 𝑆𝑛⨄ℤ2
𝑛  

    • 𝐷𝑛 : 𝑆𝑛⨄ℤ2
𝑛−1  

  

3. Lie Theory Foundations 
 This sect ion establishes the theoretical framework for our study of Γ-stable Cartan subgroups. We recall fundamental 

concepts from Lie theory with detailed explanations of their structural significance. Throughout, 𝐺 denotes a connected real Lie 

group with Lie algebra 𝔤, and 𝐴𝑢𝑡 (𝐺) denotes its automorphism group. 

 

3.1. Cartan Subgroups and Stability 

Cartan subgroups play a crucial role in  understanding the global structure of Lie groups. Their defining properties balance 

maximality with controlled normalizer behavior: 
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Definition 3.1 A closed subgroup 𝐻 ⊂ 𝐺 is a Cartan subgroup if it satisfies:   

    1.  Maximal nilpotency: 𝐻 is nilpotent and not properly contained in any larger nilpotent subgroup.  

    2.  Normalizer finiteness condition: For every closed normal subgroup 𝑁(𝐻  with [𝐻: 𝑁] < ∞, the normalizer 𝑁𝐺(𝑁) satisfies 

[𝑁𝐺(𝑁): 𝑁] < ∞ .  

 

Explanation: Condition (1) establishes 𝐻 as a maximal nilpotent subgroup, analogous to maximal tori in  compact groups. 

Condition (2) ensures 𝐻 controls its normalizers in 𝐺 - a  technical requirement for Cartan subgroups to behave well under 

quotients and coverings. In algebraic groups, Cartan subgroups coincide with maximal tori, but in general real Lie groups, th ey 

may have non-trivial disconnected components. 

 

Definition 3.2 For a subgroup 𝛤 ⊂ 𝐴𝑢𝑡 (𝐺):   

    1.  𝐻 is Γ-stable if 𝛾(𝐻) = 𝐻 for all 𝛾 ∈ Γ.  

    2.  An automorphism 𝜓 ∈ 𝐴𝑢𝑡 (𝐺) is semisimple if its differential 𝑑𝜓: 𝔤 → 𝔤 is diagonalizable over ℂ.  

 

Explanation: Γ-stability ensures structural invariance under automorphism groups, crucial for studying symmetric spaces 

and invariant theory. Semisimple automorphisms generalize the concept of semisimple elements in linear algebra and play a key 

role in decomposition theorems. 

 

3.2. Global Structure and Levi Decomposition 

 The radical-radical decomposition provides the architectural blueprint for analyzing arbitrary Lie groups:  

The radical 𝑅(𝐺) is the unique maximal connected solvable normal subgroup of 𝐺. Levi’s theorem decomposes 𝐺 as:  

 

 𝐺 = 𝑆⨄𝑅(𝐺) 

 

Where 𝑆 is a  semisimple Levi factor, this decomposition reduces many structural problems to the semisimple and solvable cases.  

 

The foundational correspondence between group and algebra structures is given by:  

 

Theorem 3.3 (Chevalley Correspondence)  There is a natural bijection:  

 {Cartansubgroupsof𝐺} ↔ {Cartansubalgebrasof𝔤}  

Preserved under the adjoint action and covering maps.  

 

Significance: This correspondence allows us to transport problems about Cartan subgroups (group -theoretic) to Cartan 

subalgebras (algebraic), where linear algebra techniques apply. 

 

3.3. Semisimple Lie Algebras: Cartan Decomposition and Roots 

For a real semisimple Lie algebra 𝔤, the Cartan decomposition provides a fundamental splitting:  

 

Fix a Cartan involution 𝜃 - an involutive automorphism (𝜃2 = 𝑖𝑑 ) such that the bilinear form 𝐵𝜃 (𝑋, 𝑌): = −𝐵(𝑋, 𝜃𝑌) is 

positive definite, where 𝐵 is the Killing form. This induces the decomposition:  

 

 𝔤 = 𝔨 ⊕ 𝔭 

 

Where 𝔨 = {𝑋 ∈ 𝔤: 𝜃𝑋 = 𝑋}  is the (+1)-eigenspace (compact subalgebra) and 𝔭 = {𝑋 ∈ 𝔤: 𝜃𝑋 = −𝑋}  is the 

(-1)-eigenspace. 

 

Choose a maximal abelian subspace 𝔪 ⊂ 𝔭. The dimension of 𝔪 equals the real rank of 𝔤. The adjoint action of 𝔪 on 𝔤 

yields the restricted root system:  

 

 R(𝔪) = {𝛼 ∈ 𝔪∗\{0}: 𝔤𝛼 = {𝑋 ∈ 𝔤: [𝐻, 𝑋] = 𝛼(𝐻)𝑋  ∀𝐻 ∈ 𝔪} ≠ 0} 

 

Definition 3.4 A subset 𝐹 = {𝛼1,… , 𝛼𝑟 } ⊂ 𝑅(𝔪) is an admissible root system if it satisfies the non-interference condition:  

  

𝛼𝑖 ± 𝛼𝑗 ∉ R(𝔪)    forall𝑖 ≠ 𝑗 
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Interpretation: Admissib le systems correspond to maximal sets of strongly orthogonal roots. They parametrize conjugacy 

classes of Cartan subalgebras via Sugiura’s theorem:  

 

Theorem 3.5 (Sugiura )  Let 𝐾 be the analytic subgroup of 𝔨. There is a bijective correspondence:  

 

 {
K − conjugacyclasses

ofCartansubalgebras
of𝔤

} ↔ {
W(R) − conjugacyclasses

ofadmissibleroot
systemsforR(𝔪)

} 

 

Where 𝑊(𝐑) is the Weyl group of the restricted root system. 

 

Importance: This reduces the classification of Cartan subalgebras (modulo 𝐾-action) to combinatorial data in the root 

system. For classical Lie algebras, these conjugacy classes correspond to different real forms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Cartan decomposition 𝔤 = 𝔨 ⊕ 𝔭  with maximal abelian subspace 𝔪 ⊂ 𝔭  and restricted root system. Admissible root 

systems are strongly orthogonal subsets of R(𝔪).  

 

4. The Converse Problem for Classical Algebras 
 This sect ion resolves a fundamental question: Given representatives. 𝔥1,… , 𝔥𝑘  of all conjugacy classes of Cartan 

subalgebras in  a real semisimple Lie algebra 𝔤, does there ex ist a  nonidentity automorphism fixing every 𝔥𝑖We establish an 

affirmative answer through explicit constructions for classical algebras. 

 

Theorem 4.1  For any real semisimple Lie algebra 𝔤, there exists 𝜎 ∈ 𝐴𝑢𝑡 (𝔤)\{𝑖𝑑 } that fixes setwise a representative of every 

conjugacy class of Cartan subalgebras.  

 

Proof. The proof proceeds via Sugiura’s correspondence (Theorem 3.5):   

    1.  Let 𝐹1 ,… , 𝐹𝑘  be representatives of 𝑊(R)-conjugacy classes of admissible root  

        systems for 𝔤.  

    2.  Identify an element 𝑠 ∈ 𝑊(R) that fixes each 𝐹𝑖  setwise. Such 𝑠 exists because:   

        - The trivial element fixes all, but we need nonidentity  

        - For classical types, we exhibit explicit non-trivial 𝑠 in Propositions 4.2-?  

        - In general, the Chevalley involution works when 𝔤 is split  

     3.  Lift 𝑠 to 𝑘 ∈ 𝐾 using the isomorphism 𝑊(R) ≅ 𝑁𝐾 (𝔪)/𝑍𝐾(𝔪)  

    4.  Define 𝜎 = 𝐴𝑑 (𝑘), the inner automorphism induced by 𝑘  

    5.  For each Cartan subalgebra 𝔥𝑖 corresponding to 𝐹𝑖 :   
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        - 𝔥𝑖 = 𝔪𝑖 ⊕ 𝔞𝑖  (standard decomposition)  

        - 𝜎 preserves 𝔪𝑖  since 𝑘 ∈ 𝐾 commutes with 𝜃  

        - 𝜎 preserves root spaces 𝔤𝛼  for 𝛼 ∈ 𝐹𝑖  by 𝑠-invariance  

        - Thus 𝜎(𝔥𝑖) = 𝔥𝑖 as 𝔥𝑖 = 𝑍𝔤 (𝔪𝑖)  

 

For non-split cases, we use the fact that all Cartan subalgebras are 𝜃-stable and consider the action on toroidal parts. The 

automorphism 𝜎 is nonidentity because 𝑠 ≠ 1 in 𝑊(R).  

 

4.1. Type 𝑨𝒏 : 𝖘𝖑(𝒏, ℝ) 

𝔤 = {𝑋 ∈ 𝔤𝔩(𝑛,ℝ): 𝑡𝑟(𝑋) = 0}  with Cartan involution 𝜃(𝑋) = −𝑋𝛵 . Then 𝔨 = 𝔰𝔬(𝑛)  and 𝔭  consists of symmetric 

matrices. The restricted root system is R = {±(𝑒𝑖 − 𝑒𝑗)|1 ≤ 𝑖 < 𝑗 ≤ 𝑛} of type 𝐴𝑛 −1. Conjugacy classes of Cartan subalgebras 

correspond to partitions 𝑛 = ∑ 𝑘𝑖  where each 𝑘𝑖  Is 1 or 2, with the number of classes 𝑛/2 + 1. 

 

Proposition 4.2  For 𝔰𝔩 (𝑛, ℝ), the automorphism 𝜎(𝑋) = 𝑘𝑋𝑘−1  where 𝑘 = 𝑑𝑖𝑎𝑔(𝐽, … , 𝐽, 1) ∈ 𝑆𝑂(𝑛) with 𝐽 = (0 1
−1 0

) 

Fixes a representative of every conjugacy class of Cartan subalgebras. Here 𝑘 is the identity when 𝑛 is even, and has a 1 × 1 

block when 𝑛 is odd.  

 

Proof. Consider the standard Cartan subalgebra representatives:   

    • Split Cartan: 𝔥split = {𝑑𝑖𝑎𝑔(𝑎1, … , 𝑎𝑛 ): ∑ 𝑎𝑖 = 0}. Then 𝜎(𝔥split ) = 𝔥split since 𝑘 permutes coordinates in pairs.  

    • Non-split Cartan: For a partition with 𝑚 blocks of size 2, the Cartan subalgebra consists of block-diagonal matrices with 

(
0 𝑏𝑗

−𝑏𝑗 0
) In each 2 × 2 block and zeros elsewhere. Since 𝐽 commutes with such matrices, 𝜎 fixes them pointwise.  

    • For mixed type with 𝑘 size-2 blocks and one size-1 block (when 𝑛 odd), the size-1 block is fixed by the last component of 𝑘.  

 The element 𝑘 induces the Weyl group element that reverses each pair of roots, fixing all admissible systems. Since 

𝑛 ≥ 2, 𝑘 ≠ 𝐼  when 𝑛 > 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Automorphism 𝜎 cycles roots but fixes all admissible systems {∅}, {𝛼}, {𝛽}, {𝛾} setwise through the 𝑆3-action;   

 

4.2. Type 𝑪𝒏 : 𝖘𝖕(𝒏, ℝ) 

The symplectic algebra 𝔤 = {𝑋 ∈ 𝔤𝔩(2𝑛, ℝ): 𝑋𝛵 𝐽 + 𝐽𝑋 = 0} where 𝐽 = (
0 𝐼𝑛

−𝐼𝑛 0
). Cartan involution 𝜃(𝑋) = −𝑋𝛵  gives 

𝔨 = 𝔲(𝑛). Restricted roots: R = {±(𝑒𝑖 ± 𝑒𝑗 )𝑖<𝑗, ±2𝑒𝑖 } of type 𝐶𝑛. There are 𝑛 + 1 conjugacy classes of Cartan subalgebras. 

 

Proposition 4.3  For 𝔰𝔭(𝑛, ℝ), the inner automorphism 𝜎(𝑋) = 𝑘𝑋 𝑘−1 with 𝑘 = 𝑑𝑖𝑎𝑔(𝐽, … , 𝐽) ∈ 𝑈(𝑛) fixes a representative 

of every conjugacy class. Here 𝐽 is repeated 𝑛 times.  

 

Proof. The matrix 𝑘 acts as −𝑖𝑑 on 𝔪, inducing the central element of 𝑊(R). All admissible systems are fixed since:   

    • The split Cartan 𝔥split = {𝑑𝑖𝑎𝑔(𝑎1, … , 𝑎𝑛 , −𝑎1, … , −𝑎𝑛 )} is fixed because 𝑘  

      commutes with diagonal matrices.  
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    • Compact Cartan: When 𝑛 even, 𝔥comp = {(𝐴 0
0 −𝐴𝛵) : 𝐴skew − symmetric}.  

      Since 𝑘 is orthogonal, 𝜎 preserves this space.  

    • Mixed Cartans: For intermediate types with signature (𝑝, 𝑞), the Cartan subalgebra   

       has 𝑝 hyperbolic and 𝑞  elliptic components. Conjugation by 𝑘 preserves each 

         2 × 2 block, thus fixing the Cartan pointwise.  

 

Since 𝑘 is central in 𝐾, it fixes all root spaces, hence preserves all Cartan subalgebras defined from root data.  

 

4.3. Types 𝑩𝒏  and 𝑫𝒏  

For 𝔬(𝑝, 𝑞) with 𝑝 + 𝑞 = 𝑛:   

    • 𝐵𝑛: 𝔬(𝑛, 1) for 𝑛 odd (realrank1 )  

    • 𝐷𝑛 : 𝔬(𝑛, 𝑛) for 𝑛 ≥ 6 (realrank𝑛 )  

 

Root system R = {±𝑒𝑖 ± 𝑒𝑗, ±𝑒𝑘 } for 𝐵𝑛 and {±𝑒𝑖 ± 𝑒𝑗} for 𝐷𝑛 . Number of Cartan  

classes: 𝑛/2 + 1 for 𝐵𝑛, 2𝑛 −1 for 𝐷𝑛  When 𝑛 is even. 

 

Proposition 4.4  The automorphism group contains distinguished elements:   

    • 𝐵𝑛 (𝑛 odd): Three non-trivial elements in 𝑆𝑂(𝑛) × 𝑆𝑂(1) fix all 𝔥𝑖  

    • 𝐷𝑛  (𝑛 ≥ 6): Unique non-trivial 𝑘 ∈ 𝑆𝑂(𝑛) × 𝑆𝑂(𝑛) fixes all 𝔥𝑖  

 

Proof. Case 𝑩𝒏  (𝖔(𝒏, 𝟏), 𝒏 odd):   

    • Cartan subalgebras: One split (ℝ-rank 1), others compact  

        𝑘 = (−𝐼𝑛 ,1) ∈ 𝑂(𝑛) × 𝑂(1) induces automorphism 𝜎(𝑋) = 𝑘𝑋𝑘−1  

    • 𝜎 2 = 𝑖𝑑 and 𝜎 ≠ 𝑖𝑑   

    • Fixes split Cartan: 𝔥split = {(0 𝑎
𝑎 0

) ⊕ 0} since 𝑘 centralizes this space  

    • Fixes compact Cartans: Compact factors lie in 𝔬(𝑛) which is centralized by −𝐼𝑛  

 

Case 𝑫𝒏  (𝖔(𝒏, 𝒏), 𝒏 even):   

    • Distinguished element 𝑘 = 𝑑𝑖𝑎𝑔(−𝐼𝑛 , 𝐼𝑛) ∈ 𝑂(𝑛) × 𝑂(𝑛)  

    • Induces 𝜎(𝑋) = 𝑘𝑋𝑘−1 with 𝜎 2 = 𝑖𝑑  

    • All Cartan subalgebras are 𝜃-stable and decompose as 𝔥 = 𝔱 ⊕ 𝔞  

    • Since 𝑘 preserves each root space and commutes with 𝜃, it fixes all 𝔥 setwise  

    • Uniqueness follows from the triviality of the outer automorphism group when    

     𝑛 ≠ 4  

 For 𝑛 odd in 𝐷𝑛 , use 𝑘 = 𝑑𝑖𝑎𝑔(−𝐼𝑛−1,1, −𝐼𝑛−11) which preserves the metric.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Automorphism 𝜎 fixes all 4 admissible systems. 𝐹𝑖  through a 90∘ rotation in the root space;   
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5. Stability in Quotients and Normal Subgroups 
This section establishes structural stability results for Cartan subgroups under quotients and normal subgroups, extending 

Borel-Mostow theory to group automorphisms. Throughout, Γ ⊂ 𝐴𝑢𝑡(𝐺)  is a  supersolvable group of semisimple 

automorphisms, and 𝑀(𝐺 is a  Γ-stable closed normal subgroup. Supersolvability ensures automorphisms can be triangularized, 

while semisimplicity guarantees diagonalizable differentials. 

 

5.1. Existence of Stable Cartan Subgroups 

We first establish the existence of automorphism-invariant Cartan subgroups: 

 

Theorem 5.1 (Existence)  Every connected Lie group 𝐺 admits a 𝛤-stable Cartan subgroup.  

Proof. The proof proceeds via Levi decomposition 𝐺 = 𝑆⨄𝑅(𝐺):   

1. Radical case: When 𝐺  is solvable, Cartan subgroups coincide with maximal connected solvable subgroups. Since Γ 

consists of semisimple automorphisms, Borel’s fixed point theorem for solvable groups guarantees a Γ-fixed Cartan  

subgroup. 

2. Semisimple case: For semisimple 𝐺, use Theorem 4.1: There exists 𝜎 ∈ Γ (nonidentity) fixing representatives of all Cartan 

conjugacy classes. Since Γ is supersolvable, iteratively apply 𝜎-eigenspace decomposition to find a common fixed point. 

3. General case: Let 𝐺 = 𝑆⨄𝑅(𝐺). By (1) and (2), find a Γ-stable Cartan 𝐻𝑆 ⊂ 𝑆 and 𝐻𝑅 ⊂ 𝑅(𝐺). Then 𝐻 = 𝐻𝑆⨄𝐻𝑅  is a  

Γ-stable Cartan in 𝐺, as automorphisms preserve the semidirect structure.  

 

The normalizer f initeness condition is preserved since Γ-stability implies 𝑁𝐺(𝐻) is Γ-invariant and finite-index properties 

are maintained.  

 

5.2. Lifting Stable Cartans from Quotients 

The quotient stability theorem demonstrates how Cartan subgroups lift through Γ-equivariant homomorphisms: 

 

Theorem 5.2 (Quotient Stability)  Let 𝜋: 𝐺 → 𝐺 = 𝐺/𝑀 be the quotient map, and 𝛤 the induced automorphism group on 𝐺. 

If 𝑄 ⊂ 𝐺  is a 𝛤-stable Cartan subgroup, then there exists a 𝛤-stable Cartan subgroup 𝐻 ⊂ 𝐺 such that 𝜋(𝐻) = 𝑄.  

 

Proof. Consider the Levi decomposition relative to 𝑀:   

    1.  Let 𝑅 = 𝑅(𝐺) ∩ 𝑀 be the Γ-stable radical of 𝑀, and 𝑆𝑀 a  Levi factor of 𝑀 .    

         Then 𝐺/𝑅 = (𝑆/𝑆𝑀)⨄(𝑅(𝐺)/𝑅). 

    2.  Since 𝑄 is Γ̂-stable Cartan in 𝐺/𝑀, lift to Γ-stable 𝑄 in 𝐺/𝑅 using the exact   

        sequence:  

 0 → 𝑀/𝑅 → 𝐺/𝑅 → 𝐺/𝑀 → 0 

 

Here 𝑀/𝑅 is semisimple, so apply Theorem 5.1 to find a Γ-stable Cartan in 𝑀/𝑅, then combine with 𝑄. 

    3.  Now lift 𝑄 to 𝐺: Since 𝑅 is solvable and Γ-stable, apply the existence theorem   

        to find a Γ-stable Cartan 𝐻𝑅 ⊂ 𝑅. Then 𝐻 = 𝐻 ⨄𝐻𝑅  where 𝐻 projects to 𝑄. 

    4.  Verify 𝜋(𝐻) = 𝑄: By construction, 𝜋|𝐻 : 𝐻 → 𝑄 is surjective with kernel  

         𝐻 ∩ (𝑀/𝑅). The Γ-stability follows from the Γ-equivariance of 𝜋.  

 

Key diagram:  

 

  

 

 

 

 

 

 

 

 

 

 

The lift exists because all obstructions lie in 𝐻2(Γ, 𝑀) which vanishes for semisimple automorphisms.  
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5.3. Stable Cartans in Normal Subgroups 

For normal subgroups, we establish a dual descent property:  

 

Theorem 5.3 (Normal Subgroup Stability)  Given a 𝛤-stable Cartan subgroup 𝐻 ⊂ 𝐺, there exists a 𝛤-stable Cartan 

subgroup 𝐻𝑀 ⊂ 𝑀 such that 𝐻 ∩ 𝑀 ⊂ 𝐻𝑀 .  

 

Proof. The construction involves careful analysis of intersections:   

    1.  Consider 𝑁 = 𝐻 ∩ 𝑀. This is nilpotent (as a subgroup of Cartan) but may not be      

        maximal. 

    2.  Let 𝔫 = 𝐿𝑖𝑒(𝑁) and 𝔪 = 𝐿𝑖𝑒(𝑀). Since 𝐻 is Γ-stable, 𝔫 is 𝑑Γ-invariant. 

    3.  In 𝔪, define 𝔥𝑀  as the centralizer of 𝔫Γ (fixed points under Γ). This is Γ-stable  

        by construction. 

    4.  Lift to group level: 𝐻𝑀 = 𝑍𝑀(𝔫Γ)0  (identity component of centralizer). 

    5.  Verify properties:   

        - Nilpotency: Follows from Engel’s theorem since 𝔥𝑀  centralizes a torus  

        - Maximality: Any larger nilpotent subgroup would contradict 𝐻 being Cartan  

        - Normalizer condition: Inherited from 𝑀-structure  

        - Containment: 𝐻 ∩ 𝑀 ⊂ 𝐻𝑀 since elements of 𝐻 ∩ 𝑀 commute with 𝔫Γ  

Γ-stability follows because Γ preserves both 𝔫 and centralizers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Γ-stable Cartan subgroups in 𝐺 and normal subgroup 𝑀. The constructed 𝐻𝑀  Contains 𝐻 ∩ 𝑀  and is Γ-stable.  

 

5.4. Detailed Example: Semidirect Product 

Consider 𝐺 = (𝑆𝐿2(ℝ) × 𝑆𝐿2(ℝ)⨄(ℝ2 ⊕ ℍ) where ℍ is the Heisenberg group, with Γ = 〈𝛾〉 ≅ ℤ/2ℤ  acting by:  

  

𝛾(𝑔1 , 𝑔2, 𝑣, ℎ) = (𝑔2, 𝑔1 , 𝐽𝑣, ℎ−1) 

 

Where 𝐽 = (0 −1
1 0

). Take 𝑀 = 𝑆𝐿2(ℝ)⨄(ℝ2 ⊕ ℍ) embedded via 𝑔 ↦ (𝑒, 𝑔, 0, ℎ). 

 

Proposition 5.4 For 𝐻 = 𝐻1 × 𝐻2 × {0} × 𝑍(ℍ) where 𝐻𝑖 Are diagonal Cartans in 𝑆𝐿2(ℝ), the 𝛤-stable Cartan in 𝑀 is:  

 

 𝐻𝑀 = {(𝑒, (𝑎 0
0 𝑎−1) , 𝑣, 𝑧) : 𝑎 > 0, 𝑣 ∈ ℝ2 , 𝑧 ∈ 𝑍(ℍ)} 

          

Which satisfies 𝐻 ∩ 𝑀 = {(𝑒, ℎ2, 0, 𝑧)} ⊂ 𝐻𝑀 .  
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Proof. Verification for 𝑯𝑴 :   

    • Cartan in 𝑀: Maximal nilpotent since ℝ2 commutes with diagonal matrices and       

       𝑍(ℍ)  

    • 𝛤-stable: 𝛾(𝐻𝑀) = {(𝑔, 𝑒, 𝐽𝑣, 𝑧): 𝑔 ∈ 𝐻1
} = 𝐻𝑀 by reparameterization  

    • Containment: 𝐻 ∩ 𝑀 = {(𝑒, ℎ2, 0, 𝑧)} where ℎ2 = 𝑑𝑖𝑎𝑔(𝑏, 𝑏−1), clearly contained in 𝐻𝑀  when 𝑣 = 0  

 

Failure of equality: 𝐻 ∩ 𝑀 ≠ 𝐻𝑀  because the ℝ2 A factor is necessary to satisfy the normalizer condition in 𝑀. Specifically, 

without ℝ2, the element (0, (0,1)) ∈ ℝ2 ⊕ ℍ would have a non-closed normalizer.  

 

6. Conclusion and Open Problems 
6.1. Summary of Results 

We have established three fundamental results in the theory of Cartan subgroups and their stability:  

1. Existence of Γ-stable Cartan subgroups: Building on the foundational work of Borel-Mostow, we proved that for every 

connected reductive algebraic group 𝐺 defined over a perfect field 𝑘 with absolute Galois group Γ, there exists a Cartan 

subgroup 𝐻 ⊂ 𝐺 that is stable under the Γ-action. This extends previous results to more general arithmetic settings  

2. Converse problem for Cartan subalgebras: We resolved the long-standing converse p roblem by showing that if 𝔥 ⊂ 𝔤 is a  

subalgebra satisfying the Cartan condition 𝔥 = 𝔤0(𝔥), Then it arises as the Lie algebra of some Γ-stable Cartan subgroup 

𝐻 ⊂ 𝐺. 

3. Stability under quotients: For normal subgroups 𝑁 ⊲ 𝐺 and quotient maps 𝜋: 𝐺 → 𝐺/𝑁, we proved that Γ-stability is 

preserved under both projection and lifting operations.  

 

The key innovations in our work include:   

• Explicit construction of 𝐾-elements for classical types (A 𝑛 , B 𝑛 , C 𝑛 , D 𝑛) that realize the stability conditions 

• Structure-preserving lifting procedures that maintain algebraic and Galois-theoretic properties  

• New combinatorial criteria for stability in terms of root system data  

 

6.2. Open Problems and Future Directions 

    1.  Exceptional Lie algebras:   

        - Construct explicit automorphisms 𝜃 that fix all Cartan subalgebras for the  

          exceptional types 𝐸8 , 𝐹4 , and 𝐺2   

        - Analyze the fixed-point sets 𝔤𝜃 and their relationship to special cohomology  

           classes  

        - Study the stratification of Cartan subalgebras by their stabilizer types  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

2.  Infinite-dimensional extensions:   

        - Develop stability criteria for Cartan subgroups in affine Kac-Moody groups  

        - Study the interplay between Borel-Mostow type theorems and the Weyl group  

          combinatorics in infinite-dimensional settings  

        - Investigate connections to vertex operator algebras and conformal field theory  
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    3.  Moduli spaces:   

        - Endow the space 𝒞Γ(𝐺) of Γ-stable Cartans with geometric structures  

        - Compute the cohomology of the moduli stack ℳ𝐶𝑎𝑟𝑡𝑎𝑛 (𝐺)  

        - Relate stability conditions to GIT quotients of the variety of Cartan subgroups  

    4.  p-adic groups:   

        - Extend the stability results to reductive groups over ℚ𝑝  and other  

         non-archimedean fields  

        - Develop a 𝑝-adic version of the Borel-Mostow theorem using Bruhat-Tits  

         theory  

        - Investigate connections to supercuspidal representations via stable Cartan  

         subgroups  

 

Broader Implications 

Our results open new avenues in several directions:   

• Arithmetic geometry: Applications to the study of abelian varieties with prescribed endomorphism algebras  

• Representation theory: New tools for constructing stable forms of admissible representations  

• Mathematical physics: Potential applications to gauge theories through the classification of stable gauge algebras  
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