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Abstract - A deterministic inventory model is designed for the study to focus on deteriorating items with biquadratic 

demand, constant deterioration rate, and salvage value. The model works towards optimizing inventory levels to maximize 

Profit by efficiently managing perishable products. The study provides analytical solutions and numerical examples to 

showcase the practical application of the model in inventory management. In addition, the sensitivity analysis further 

explores the impact of the essential parameters in inventory management , highlighting the real-world applicability of the 

model.  
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1. Introduction 
Inventory management becomes a complex task for companies dealing with perishable items. The need for operative 

inventory control in such concerns would result in considerable financial loss. In some cases, it would also affect the 

availability of requisite items in the market. The existing traditional models have some impediments in managing 

perishable items, leading to product waste and financial loss. Ensuring cost-effectiveness and service quality are vital, and 

this can be achieved through improvised inventory management systems that , in turn, will lead to minimize costs and 

maximize profits. 

 

The unpredictable demand nature of perishable goods or products is a major challenge in inventory control. The nature 

of floating demand is determined by factors like seasonal changes, market trends, and customer needs. The deteriorating 

nature of the products is another key factor that affects inventory decisions. The entangled demand structures ha ve a direct 

impact on Profit. The inconsistency in demand and deterioration is the biggest challenge that the existing models have not 

been able to completely resolve. Therefore, for the current investigation, a comprehensive model is developed that 

accounts for a constant deterioration rate and salvage value of unsold items, besides considering the variable nature of 

demand through a biquadratic demand function.    

 

Inventory Models for perishable goods are gaining momentum in research primarily due to the deteriorating nature of 

products. Various studies have developed deterministic models considering varying demand patterns, deterioration rates 

and product costs. Constructive inventory control for such items is essential to minimize waste and optimization of 

resources.  

  

A study carried out by Ghare and Schrader (1963) is a pioneering work that proposed the concept of exponential 

deterioration in inventory models, laying the foundation for further research. Later, this model was further extended by 

Covert and Philip (1973), using a Weibull distribution model considering variable deterioration for effective reflection of 

the real-world conditions. Shah and Jaiswal (1977) designed an order-level inventory model that takes into account the 

constant deterioration rate of inventory costs and control strategies. 

 

Dave and Patel (1981) developed a time-dependent demand model for the study of deteriorating items, incorporating 

proportional cost considerations, highlighting the dynamic nature of demand patterns. Similarly, Hollier and Mark (1983) 

analyzed the replenishment policies framed for perishable items, emphasizing cost-effectiveness and adaptive strategies. 

 

Ghosh and Chaudhuri (1991) added to this line of research by developing an EOQ model for examining the 

deteriorating items with shortages and linear demand, stressing the significance of dynamic demand in inventory control. 
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The study by Goyal and Giri (2001) provided a comprehensive review of the recent trends in deteriorating inventory 

modeling confronting demand variations, time-dependent holding costs, and shortages, opening gates for future research in 

the field.  

 

An inventory model for time-dependent deteriorating items was developed by Mishra and Shah (2008), incorporating 

salvage value to enhance the inventory control of perishable goods. Venkateswarlu  and Mohan (2014) introduced a 

quadratic demand model taking into account the constant deterioration and salvage value for realistic demand 

representation. Vinod Kumar Mishra (2014) explored models with regard to controllable deterioration rates, underscoring 

time-dependent demand and varying holding costs. 

 

Further developments were made by Parmar Kitan and Gothi (2015), investigating EOQ models in view of constant 

deterioration rates and time-dependent demand, accommodating variable patterns. Karthikeyan and Shanthi (2015) made 

further advancements in the field by including cubic demand and salvage value, addressing complex demand scenarios. 

Similarly, Tripathi and Tomar (2018) proposed a quadratic time-sensitive demand model considering parabolic holding 

costs and salvage value for time-dependent factors. 

 

Kumar (2019) concentrated on linear demand with regard to parabolic holding costs and salvage value, unrave lling 

dynamic cost structures. Rahman and Uddin (2020) used a quadratic demand model to study the variable deterioration rates 

in time-dependent settings, underlining scenarios without shortages to manage economic uncertainties. 

 

Recent advancement includes the study carried out by Aliyu and Sani (2020) with a generalized application of 

exponential demand considering constant holding and deterioration rates for further optimization of non linear systems. 

Suman and Kumar (2022) introduced deterministic inventory models with biquadratic demand and weibull deterioration 

rates, providing insights into fluctuating demand. Pooja Soni and Rajender Kumar (2022) examined it with a biquadratic 

demand taking variable deterioration rates and carrying costs for effective management of perishable items. Pathak et al. 

(2024) investigated two-warehouse inventory models with regard to biquadratic demand, shortages and inflation under 

economic constraints. 

 

This paper fills the research gap by considering the salvage value a nd biquadratic demand associated with the 

inventory model. The inclusion of salvage value in deterministic inventory models of deteriorating items paves the way for 

precise cost and Profit analysis by considering the residual value of unsold or partially deteriorated items. The model helps 

in efficient inventory management by optimizing order quantity and cutting down losses.     

 

2. Notations and Assumptions 
2.1. Notations 

The Mathematical model is based on the following notations:  

𝐼(𝑡) : Inventory level at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇 

𝐷(𝑡) : The demand rate is deterministic and is a biquadratic function of time  

            𝐷(𝑡) =  𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 + 𝑒𝑡4, 0 ≤ 𝑡 ≤ 𝑇 , where a, b, c, d, e ≠ , and 0 are constants. 

𝜃 : Constant deterioration rate (0 ≤  𝜃 ≤ 1) 

𝑜𝑐  : Ordering cost per unit time  

ℎ𝑐  : Constant holding cost per unit per time unit 

𝑝𝑐    : Purchase cost per unit 

p: Selling price per unit 

𝑑𝑐  : Deterioration cost per cycle 

𝑄 : Order quantity or replenishment quantity 

𝐼0 : Initial inventory level to meet starting demand 

𝑇 : Cycle length 

𝛾 : Salvage coefficient 

𝑇𝑃(𝑇) : Total Profit per unit time  

𝑇𝑃∗ : Maximum Profit per unit time 

𝑇 ∗ : Optimum cycle length 

𝑄 ∗ : Economic order quantity or optimal order quantity  

 

2.2. Assumptions 

The Mathematical model is based on the following assumptions: 

1. Time Horizon: The model assumes an infinite time period for inventory management. 

2. Demand Rate: The Demand rate is deterministic and varies biquadratically with time. 

3. Deterioration Rate: Items deteriorate at a  constant rate over time. 

4. Salvage Value: Items have a salvage value if unsold by their end-of-life cycle. 
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5. Replenishment: Inventory is replenished instantaneously when required with no lead time. 

6. Shortages are not allowed, ensuring demand is always met. 

7. Holding cost: Holding costs remain constant over time. 

8. Single-item inventory: The model is designed to manage a single item.   

 

3. Mathematical Formulation and Solution of the Model 
 Let 𝐼(𝑡) Denote the inventory level at any time 𝑡. The decrease in inventory level results from both demand and 

deterioration. Over the period [0, 𝑇], the inventory level steadily decreases and eventually reaches zero 𝑡 = 𝑇. 

 

The following differential equation represents the inventory level over the interval 

 [0, T] 

 
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜃(𝑡) 𝐼(𝑡) = −𝐷(𝑡) , 0 ≤ 𝑡 ≤ 𝑇 

 
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜃𝐼(𝑡) = −(𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 + 𝑒𝑡4) − − − − − (1) 

 

                                          
                                       Fig. 1 Graphical Representation of Inventory System 
 

The Solution is  

𝐼(𝑡)𝑒𝜃𝑡 = − [(𝑎𝑡 +
𝑏𝑡2

2
+

𝑐𝑡3

3
+

𝑑𝑡4

4
+

𝑒𝑡5

5
) + 𝜃 (

𝑎𝑡2

2
+

𝑏𝑡3

3
+

𝑐𝑡4

4
+

𝑑𝑡5

5
+

𝑒𝑡6

6
)] + 𝐾 − − − − − (2) 

𝐼(𝑡) = 0  𝑊ℎ𝑒𝑛   𝑡 = 𝑇 

Equation ② gives 

𝐾 = 𝑎𝑇 +
𝑏𝑇 2

2
+

𝑐𝑇 3

3
+

𝑑𝑇 4

4
+

𝑒𝑇 5

5
+ 𝜃 (

𝑎𝑇 2

2
+

𝑏𝑇 3

3
+

𝑐𝑇 4

4
+

𝑑𝑇 5

5
+

𝑒𝑇 6

6
) 

The Solution is  

𝐼(𝑡) = 𝑎(𝑇 − 𝑡) +
𝑏

2
(𝑇 2 − 𝑡2) +

𝑐

3
(𝑇 3 − 𝑡3) +

𝑑

4
(𝑇 4 − 𝑡4) +

𝑒

5
(𝑇 5 − 𝑡5) +

𝑎𝜃

2
(𝑇 2 − 𝑡2) +

𝑏𝜃

3
(𝑇 3 − 𝑡3)

+
𝑐𝜃

4
(𝑇 4 − 𝑡4) +

𝑑𝜃

5
(𝑇 5 − 𝑡5) +

𝑒𝜃

6
(𝑇 6 − 𝑡6) − 𝑎𝜃(𝑇𝑡 − 𝑡2) −

𝑏𝜃

2
(𝑇 2𝑡 − 𝑡3) −

𝑐𝜃

3
(𝑇 3𝑡 − 𝑡4)

−
𝑑𝜃

4
(𝑇 4𝑡 − 𝑡5) −

𝑒𝜃

5
(𝑇 5𝑡 − 𝑡6) −

𝑎𝜃2

2
(𝑇 2𝑡 − 𝑡3) −

𝑏𝜃2

3
(𝑇 3𝑡 − 𝑡4) −

𝑐𝜃2

4
(𝑇 4𝑡 − 𝑡5)

−
𝑑 𝜃2

5
(𝑇 5𝑡 − 𝑡6) −

𝑒𝜃2

6
(𝑇 6𝑡 − 𝑡7)                                                                                        − − − − − (3) 

 

The maximum inventory level is obtained by putting 𝑡 = 0 in Equation (3) 

𝐼0 = 𝐼(0) = 𝑎𝑇 +
𝑏𝑇 2

2
+

𝑐𝑇 3

3
+

𝑑𝑇 4

4
+

𝑒𝑇 5

5
+

𝑎𝜃𝑇 2

2
+

𝑏𝜃𝑇 3

3
+

𝑐𝜃𝑇 4

4
+

𝑑𝜃𝑇 5

5
+

𝑒𝜃𝑇 6

6
 

Ordering cost, 𝑂𝐶 = 𝑜𝑐  

 

Total demand over the cycle period [𝑂,𝑇] =  ∫ 𝐷(𝑡) 𝑑𝑡
𝑇

𝑂  

= 𝑎𝑇 +
𝑏𝑇 2

2
+

𝑐𝑇 3

3
+

𝑑𝑇 4

4
+

𝑒𝑇 5

5
 

 

Number of deteriorated units  = Initial order quantity  − Total demand in the cycle period [𝑂, 𝑇] 
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= 𝐼0 − ∫ 𝐷(𝑡)𝑑𝑡
𝑇

𝑂

 

=
𝑎𝜃𝑇 2

2
+

𝑏𝜃𝑇 3

3
+

𝑐𝜃𝑇 4

4
+

𝑑𝜃𝑇 5

5
+

𝑒𝜃𝑇 6

6
 

Deterioration cost per cycle is 

𝐷𝐶 =  𝑑𝑐 × 𝑁𝑜 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑒𝑑  𝑢𝑛𝑖𝑡𝑠  

= 𝑑𝑐 (
𝑎𝜃𝑇 2

2
+

𝑏𝜃𝑇 3

3
+

𝑐𝜃𝑇 4

4
+

𝑑𝜃𝑇 5

5
+

𝑒𝜃𝑇 6

6
) 

 

Total inventory holding cost for the cycle period [𝑂, 𝑇] is 

𝐻𝐶 = ℎ𝑐 ∫ 𝐼(𝑡) 𝑑𝑡
𝑇

𝑂

 

𝐻𝐶 = ℎ𝑐 [
𝑎𝑇 2

2
+

𝑏𝑇 3

3
+

𝑐𝑇 4

4
+

𝑑𝑇 5

5
+

𝑒𝑇 6

6
+

𝑎𝜃𝑇 3

6
+

𝑏𝜃𝑇 4

8
+

𝑐𝜃𝑇 5

10
+

𝑑𝜃𝑇 6

12
+

𝑒𝜃𝑇 7

14
−

𝑎𝜃2𝑇 4

8
−

𝑏𝜃2𝑇 5

10
−

𝑐𝜃2𝑇 6

12

−
𝑑𝜃2𝑇 7

14
−

𝑒𝜃2𝑇 8

16
] 

 

Purchase cost over the period [0, T] = Purchase cost × Total demand over [0, T] 

= 𝑝𝑐 (𝑎𝑇 +
𝑏𝑇 2

2
+

𝑐𝑇 3

3
+

𝑑𝑇 4

4
+

𝑒𝑇 5

5
) 

 

Sales Revenue = Price × Total demand 

= 𝑝 (𝑎𝑇 +
𝑏𝑇 2

2
+

𝑐𝑇 3

3
+

𝑑𝑇 4

4
+

𝑒𝑇 5

5
) 

 

Salvage Value = 𝛾𝑝𝑐 (
𝑎𝜃𝑇2

2
+

𝑏𝜃𝑇3

3
+

𝑐𝜃𝑇4

4
+

𝑑𝜃𝑇5

5
+

𝑒𝜃 𝑇6

6
) 

 

Total Profit per unit time is  

𝑇𝑃(𝑇) =
1

𝑇
[𝑆𝑎𝑙𝑒𝑠  𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒  𝑐𝑜𝑠𝑡 − 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 − ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

+ 𝑆𝑎𝑙𝑣𝑎𝑔𝑒  𝑣𝑎𝑙𝑢𝑒]  

𝑇𝑃(𝑇) = (𝑝 − 𝑝𝑐
) (𝑎 +

𝑏𝑇

2
+

𝑐𝑇 2

3
+

𝑑𝑇 3

4
+

𝑒𝑇 4

5
) −

𝑜𝑐

𝑇
+ (𝛾𝑝𝑐 − 𝑑𝑐

) (
𝑎𝜃𝑇

2
+

𝑏𝜃𝑇 2

3
+

𝑐𝜃𝑇 3

4
+

𝑑𝜃𝑇 4

5
+

𝑒𝜃 𝑇 5

6
)

− ℎ𝑐 (
𝑎𝑇

2
+

𝑏𝑇 2

3
+

𝑐𝑇 3

4
+

𝑑 𝑇 4

5
+

𝑒𝑇 5

6
+

𝑎𝜃 𝑇 2

6
+

𝑏𝜃𝑇 3

8
+

𝑐𝜃𝑇 4

10
+

𝑑𝜃𝑇 5

12
+

𝑒𝜃 𝑇 6

14
−

𝑎𝜃2𝑇 3

8
−

𝑏𝜃2𝑇 4

10

−
𝑐𝜃2𝑇 5

12
−

𝑑𝜃2𝑇 6

14
−

𝑒𝜃2𝑇 7

16
) 

 

To find: Maximum Profit per unit time 

𝑑𝑇𝑃(𝑇)

𝑑𝑇
= (𝑝 − 𝑝𝑐

) (
𝑏

2
+

2𝑐𝑇

3
+

3𝑑 𝑇 2

4
+

4𝑒𝑇 3

5
) +

𝑜𝑐

𝑇 2
+ (𝛾𝑝𝑐 − 𝑑𝑐

) (
𝑎𝜃

2
+

2𝑏𝜃𝑇

3
+

3𝑐𝜃 𝑇 2

4
+

4𝑑𝜃𝑇 3

5
+

5𝑒𝜃 𝑇 4

6
)

− ℎ𝑐 (
𝑎

2
+

2𝑏𝑇

3
+

3𝑐𝑇 2

4
+

4𝑑𝑇 3

5
+

5𝑒𝑇 4

6
+

𝑎𝜃𝑇

3
+

3𝑏𝜃𝑇 2

8
+

2𝑐𝜃𝑇 3

5
+

5𝑑𝜃𝑇 4

12
+

3𝑒𝜃 𝑇 5

7
−

3𝑎𝜃2 𝑇 2

8

−
2𝑏𝜃2𝑇 3

5
−

5𝑐𝜃2𝑇 4

12
−

3𝑑 𝜃2𝑇 5

7
−

7𝑒 𝜃2𝑇 6

16
) 

Equating the above equation to zero and simplifying by multiplying both sides by 1680 𝑇 2 In order to determine T that 

maximizes the total Profit per unit time, as follows: 

 
(𝑝 − 𝑝𝑐

)(840𝑏𝑇 2 + 1120𝑐 𝑇 3 + 1260𝑑 𝑇 41344𝑒 𝑇 5) + 1680 × 𝑜𝑐

+ (𝛾𝑝𝑐 − 𝑑𝑐
) (840𝑎𝜃 𝑇 2 + 1120𝑏𝜃 𝑇 3 + 1260𝑐𝜃 𝑇 4 + 1344𝑑𝜃 𝑇 5 + 1400𝑒𝜃 𝑇 6)

− ℎ𝑐
(840𝑎𝑇 2 + 1120𝑏 𝑇 3 + 1260𝑐𝑇 4 + 1344𝑑 𝑇 5 + 1400𝑒𝑇 6 + 560𝑎𝜃𝑇 3 + 630𝑏𝜃 𝑇 4 + 672𝑐𝜃 𝑇 5

+ 700𝑑𝜃 𝑇 6 + 720𝑒𝜃 𝑇 7 − 630𝑎 𝜃2𝑇 4 − 672𝑏𝜃2 𝑇 5 − 700𝑐 𝜃2𝑇 6 − 720𝑑 𝜃2𝑇 7 − 735𝑒 𝜃2𝑇 8) = 0 

 

The value of T obtained gives the maximum Profit, provided it satisfies 
𝑑2𝑇𝑃(𝑇)

𝑑 𝑇2 < 0. 
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𝑑 2𝑇𝑃(𝑇)

𝑑 𝑇 2
= (𝑝 − 𝑝𝑐

) (
2𝑐

3
+

3𝑑𝑇

2
+

12𝑒 𝑇 2

5
) −

2𝑜𝑐

𝑇 3
+ (𝛾𝑝𝑐 − 𝑑𝑐

) (
2𝑏𝜃

3
+

3𝑐𝜃𝑇

2
+

12𝑑𝜃𝑇 2

5
+

10𝑒𝜃 𝑇 3

3
)

− ℎ𝑐 (
2𝑏

3
+

3𝑐𝑇

2
+

12𝑑 𝑇 2

5
+

10𝑒𝑇 3

3
+

𝑎𝜃

3
+

3𝑏𝜃𝑇

4
+

6𝑐𝜃 𝑇 2

5
+

5𝑑𝜃𝑇 3

3
+

15𝑒𝜃 𝑇 4

7
−

3𝑎𝜃2 𝑇

4
−

6𝑏𝜃2𝑇 2

5

−
5𝑐𝜃2𝑇 3

3
−

15𝑑𝜃2 𝑇 4

7
−

21𝑒 𝜃2𝑇 5

8
) 

 

Substituting the value of T in 
𝑑2 𝑇𝑃

𝑑 𝑇2  

we get 
𝑑2𝑇𝑃

𝑑 𝑇2 < 0,  which shows that the total Profit we obtained is maximum. 

 

4. Solution Methodology 
To maximize the Profit per unit of time, the following equation must be solved to obtain 𝑇. 

                    
𝑑(𝑇𝑃)

𝑑𝑇
= 0                    − − − − −   (4) 

with the optimality condition 

                    
𝑑2(𝑇𝑃)

𝑑 𝑇2 < 0                                 − − − − − (5)  

5. Algorithm 
An iterative algorithm is suggested to obtain the optimal results for the total Profit (TP), initial stock (Q), and cycle len gth 

(T). 

Step 1: Enter the value of every parameter needed for the model. 

Step 2: Evaluate the cycle length 𝑇 using equation (4) and assume this value as 𝑇 ∗. 

Step 3: Check the optimality condition using (5). 

Step 4: If the condition in step 3 is met, proceed to step 5; if not, go back to steps 1 through 3 for various parameter values.  

Step 5: Find the optimal initial inventory stock 𝐼0 𝑄 and 𝑇𝑃 values for 𝑇 ∗. 

Step 6: Stop once the optimal values are found. 

 

6. Numerical Example 
 This section provides a numerical example to demonstrate the model’s practical implementation.  

 

The solution is obtained by applying the algorithm given above. Here MATLAB is used to perform the computations.  

Example: 

 For the given model, the values of various parameters are taken as follows:  

a =500, b =35, c=26, d=37, e =17,  𝜃 = 0.1,  𝑜𝑐  =100, ℎ𝑐  =10, p  =15, 𝑝𝑐 = 10, 𝑑𝑐=8, 𝛾 = 0.1  

The optimal values are obtained as follows 

Optimal cycle length (T*) =0.194036 (116.77 days) 

Maximum Profit per unit time (TP*) = Rs 1476.10 

Economic order quantity (Q) =98.71units. 

 
Fig. 2  3 Dimensional graphical representation of TP on the inventory model 
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7. Sensitivity Analysis 
 This section presents a  sensitivity analysis to illustrate the proposed model. Sensitivity analysis is conducted to study 

how variations in model parameters affect the total Profit (TP), cycle time (T), and order quantity (Q). The following 

parameters were individually varied by ±20% and ±10%, and the corresponding changes in TP, T, and Q were observed.  

 
Table 1. Effect of "𝒂" on 𝑻, 𝑻𝑷 and 𝑸 

Parameter Change in parameter T TP Q 

𝑎 

-20% Change 0.2170 1086.4104 88.7020 

-10% Change 0.2046 1279.7045 93.8351 

10% Change 0.1850 1675.1435 103.3376 

20% Change 0.1770 1876.4787 107.7832 
 

Table 2. Effect of "b" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝑏 

-20% Change 0.1938 1473.6523 98.4284 

-10% Change 0.1939 1474.8762 98.5667 

10% Change 0.1942 1477.3255 98.8440 

20% Change 0.1943 1478.5510 98.9830 
 

Table 3. Effect of "c" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝑐  

-20% Change 0.1940 1475.8767 98.6593 

-10% Change 0.1940 1475.9886 98.6823 

10% Change 0.1941 1476.2126 98.7283 

20% Change 0.1941 1476.3246 98.7513 
 

Table 4. Effect of "d" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝑑 

-20% Change 0.1940 1476.0556 98.6918 

-10% Change 0.1940 1476.0781 98.6985 

10% Change 0.1940 1476.1231 98.7120 

20% Change 0.1941 1476.1455 98.7187 
 

Table 5. Effect of "e" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝑒 

-20% Change 0.1940 1476.0974 98.7040 

-10% Change 0.1940 1476.0990 98.7046 

10% Change 0.1940 1476.1021 98.7059 

20% Change 0.1940 1476.1037 98.7065 
 

Table 6. Effect of "𝜽" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝜃 

-20% Change 0.1956 1483.6120 99.3081 

-10% Change 0.1948 1479.8477 99.0049 

10% Change 0.1933 1472.3703 98.4095 

20% Change 0.1925 1468.6566 98.1176 
 

Table 7. Effect of "OC" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝑂𝐶  

-20% Change 0.1738 1584.8377 88.2487 

-10% Change 0.1842 1528.9753 93.6176 

10% Change 0.2034 1425.7746 103.5395 

20% Change 0.2123 1377.6563 108.1614 

 
Table 8. Effect of "HC" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝐻𝐶  

-20% Change 0.2159 1580.1044 110.0616 

-10% Change 0.2041 1526.6893 103.9160 

10% Change 0.1853 1427.9300 94.2023 

20% Change 0.1777 1381.8595 90.2780 
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Table 9. Effect of "DC" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝐷𝐶  

-20% Change 0.1917 -35.2052 97.4982 

-10% Change 0.1929 720.4285 98.0954 

10% Change 0.1952 2231.8119 99.3282 

20% Change 0.1965 2987.5634 99.9645 

 
Table 10. Effect of "𝒑𝒄" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝑝 

-20% Change 0.1955 2482.7366 99.4410 

-10% Change 0.1947 1979.4117 99.0709 

10% Change 0.1933 972.8031 98.3443 

20% Change 0.1927 469.5190 97.9880 

 
Table 11. Effect of”𝒅𝒄" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝑐𝑝 

-20% Change 0.1955 1483.9721 99.4772 

-10% Change 0.1948 1480.0287 99.0891 

10% Change 0.1933 1472.1875 98.3259 

20% Change 0.1926 1468.2893 97.9507 

 
Table 12. Effect of "𝜸" on T, TP and Q 

Parameter Change in parameter T TP Q 

𝛾 

-20% Change 0.1939 1475.1209 98.6100 

-10% Change 0.1939 1475.6106 98.6576 

10% Change 0.1941 1476.5908 98.7530 

20% Change 0.1942 1477.0812 98.8008 

 

 
Fig. 3.1 
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Fig. 3.2 

 
Fig. 3.3 
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Fig. 3.4 

 

 
Fig. 3.5 
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Fig. 3.6 

 

 
Fig. 3.7 
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Fig. 3.8 

 

 
Fig. 3.9 
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Fig. 3.10 

 

 
Fig. 3.11 
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Fig. 3.12 

 

8. Analysis and Interpretation 
8.1. Effect of Demand Parameters (a, b, c, d, e) 

The demand level parameter (a) shows a strong influence: an increase generally leads to larger order quantities and 

longer cycle times, but can reduce total Profit due to higher associated costs. In contrast, other demand parameters (b, c, d, 

and e) have only minor effects, keeping the system’s performance largely stable despite small fluctuations.  

 

8.2. Effect of Deterioration Rate (θ) 

An increase in the deterioration rate lowers total Profit and shortens both cycle time and order quantity. This 

underlines the importance of managing deterioration effectively to sustain profitability. 

 

8.3. Effect of Ordering Cost (OC) 

Ordering costs have a notable impact: higher ordering costs lead to fewer, larger orders, increasing Profit and reducing 

cycle time. Lower ordering costs have the opposite effect, resulting in more frequent orders and longer cycles.  

 

8.4. Effect of Holding Cost (HC) 

Rising holding costs reduce total profit and order quantity while shortening the cycle time. Conversely, lower holding 

costs extend the cycle and increase both profit and order quantity. 

 

8.5. Effect of Selling Price (p) 

Higher selling prices directly improve total Profit and lengthen cycle time by making each unit more profitable. 

Reductions in selling price decrease Profit and shorten the cycle. 

 

8.6. Effect of Purchase Cost (𝒑𝒄 ) 

Increasing purchase costs lowers total Profit and cycle time, while a decrease in purchase costs raises Profit and 

extends the cycle. Effective cost control in procurement is thus critical for better performance. 

 

8.7. Effect of Deterioration Cost (𝒅𝒄 ) 

Higher deterioration costs reduce profit and cycle time, whereas lower deterioration costs help increase them. This 

suggests that minimizing deterioration-related expenses benefits the inventory system. 
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8.8. Effect of Salvage Value (γ) 

Changes in salvage value produce only slight variations in Profit, cycle time, and order quantity. The model’s 

outcomes remain generally stable against these small changes. 

 

9. Conclusion 
The current study analyses the deteriorating items with a deterministic inventory model. The biquadratic demand 

pattern paves the way for a realistic and flexible representation of demand variations over time. Including such a pattern 

makes the model more appropriate for industries with signified demand fluctuations, ensuring a balanced approach to 

inventory cost management and revenue recovery from unsold items. The model has incorporated a constant deterioration 

rate and salvage value. 

 

The numerical examples presented in the study validate the model’s applicability and effectiveness in decision-

making, which is highlighted through a sensitivity analysis, the impact of key parameters on inventory performance, 

offering valuable insights for inventory managers and decision-makers. 

 

In order to enhance the model’s applicability, future research could explore fa ctors like time-dependent deterioration 

and demand, stochastic demand, partial and complete backlogging, price variations, dependent demand or inflation effects. 
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