
International Journal of Mathematics Trends and Technology Volume 71 Issue 9, 36-46, September 2025

ISSN: 2231-5373/ https://doi.org/10.14445/22315373/IJMTT-V71I9P105 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Cubic Monotone 1-in-3 SAT Problem is Polynomial

Time Solvable

Omar Kettani

Scientific Institute, Mohammed V University, Rabat, Morocco.

Corresponding Author : kettani.o@gmail.com

Received: 24 July 2025 Revised: 29 August 2025 Accepted: 12 September 2025 Published: 30 September 2025

Abstract - This paper presents a proof demonstrating that the Cubic Monotone 1-in-3 SAT Problem, which is a variant of the

Boolean Satisfiability Problem (SAT), can be solved in polynomial time. The proof focuses on establishing that this problem is

polynomial time reducible to the Maximum Independent Set Problem in a bounded treewidth graph. While further verification

is required to validate the correctness of the proof, this claim represents a potential breakthrough in one of the most significant

open problems in computer science and mathematics.

Keywords - Bounded treewidth graph, Cubic Monotone 1-in-3 SAT Problem, Independence number, Polynomial Time Algorithm,

P=NP.

1. Introduction
The P=NP conjecture stands as one of the most significant and challenging open problems in computer science, concerning

the relationship between two fundamental complexity classes: P, the set of problems that can be solved in polynomial time, and

NP, the set of problems for which solutions can be verified in polynomial time. The question of whether every problem whose

solution can be efficiently verified can also be efficiently solved has profound implications for mathematics, cryptography,

optimization, artificial intelligence, and many other fields. Since its formalization in the 1970s by Stephen Cook, Richard Karp,

and Leonid Levin, the P=NP problem has remained unsolved, despite extensive research efforts to either prove or disprove the

conjecture.

Proving P=NP would mean finding a polynomial-time algorithm for any NP-complete problem, such as the Boolean

Satisfiability Problem (SAT), which would immediately imply that all problems in the class NP can be solved efficiently. Such

a breakthrough would fundamentally transform our understanding of computational complexity and open new possibilities for

solving problems previously considered intractable, including many optimization, scheduling, and decision problems. Over the

years, various attempts to prove P=NP have been made, with strategies ranging from direct algorithmic approaches to

combinatorial and algebraic techniques. Although no successful proof has been widely accepted, these efforts have contributed

valuable insights into the nature of computational hardness and problem structure.

This paper presents a proposed proof that P=NP, which focuses on demonstrating a polynomial-time algorithm for solving

an NP-complete problem: the Cubic Monotone 1-in-3 SAT Problem, a variant of SAT.

The significance of proving P=NP extends beyond theoretical interest, potentially revolutionizing fields such as

cryptography, where many encryption schemes rely on the assumed hardness of NP-complete problems. Therefore, the pursuit

of a proof showing that P=NP is not just an academic endeavor but also a quest with real-world impact. This paper outlines the

proposed proof, its techniques, and the implications of P=NP, while recognizing the need for careful verification and peer review

to confirm the validity of the argument.

Recall that a set of values for the variables of a Boolean formula F is called a truth assignment for F, and a satisfying

assignment is a truth assignment that implies that F is evaluated to true. A formula that has at least one satisfying assignment is

called a satisfiable formula. The satisfiability problem asks in its decision version whether a given Boolean formula is satisfiable.

A literal in a Boolean formula is an occurrence of a variable or its negation. A clause is a literal or the disjunction of at least two

literals. A Boolean formula is in conjunctive normal form if it is expressed as the AND of some clauses. A Boolean formula is

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Omar Kettani / IJMTT, 71(9), 36-46, 2025

37

in 3-conjunctive normal form if each clause has exactly three distinct literals. The 1-in-3 SAT Problem is defined as follows:

Given a Boolean formula F in 3-conjunctive normal form, is there a truth assignment such that each clause in F has exactly one

true literal?

The exact 3-Satisfiability problem (X3SAT) asks in its decision version whether there exists a truth assignment t: {0, 1}→V

(F), setting exactly one literal to 1 in each clause of F. We call such an assignment t a x-model, and we denote with X3SAT the

set of all exact satisfiable 3-CNF formulas. In the search version of X3SAT, one has to decide whether F ∈ X3SAT, and in the

positive problem to find an x-model of F. X3SAT restricted to expressions where every variable has exactly three occurrences,

without negated variables, is called Cubic Monotone 1-in-3 SAT Problem [3,6].

The present paper is organized as follows: After the introduction, some related work is presented in the next section. The

method used in this work and the main result are outlined in Section 3. Finally, the last section concludes the paper.

2. Related Work
The P=NP conjecture is a central question in computer science and has inspired numerous research efforts aimed at either

proving or disproving it. While no definitive proof has yet emerged to establish that P=NP, various attempts, theoretical

frameworks, and related work have helped shape our understanding of the problem and suggested possible directions for proof.

This section reviews some of the key related work that has contributed to the ongoing exploration of the P=NP question, focusing

on attempts to demonstrate that P indeed equals NP and the insights gained from these efforts.

Cook’s Theorem and the Foundation of NP-Completeness

The modern study of the P=NP problem began with Stephen Cook's [1] landmark paper in 1971, which introduced the

concept of NP-completeness and established that the Boolean Satisfiability Problem (SAT) is NP-complete (Cook, 1971). Cook’s

Theorem showed that if SAT can be solved in polynomial time, then every problem in NP can be solved in polynomial time,

implying P=NP. This result laid the groundwork for proving P=NP by suggesting that demonstrating a polynomial-time algorithm

for any NP-complete problem would be sufficient. Since then, SAT and other NP-complete problems have been the focus of

many attempts to show that efficient solutions can indeed be found.

Karp’s Reductions and the Expansion of NP-Complete Problems

Following Cook's work, Richard Karp (1972) expanded the theory of NP-completeness [2] by showing that many other

problems across different domains are NP-complete. His paper identified 21 combinatorial problems that are NP-complete,

further solidifying the idea that these problems share a common computational structure (Karp, 1972). Attempts to solve P=NP

have often focused on finding polynomial-time algorithms for one or more of these classic NP-complete problems. The hope is

that a breakthrough for any single problem could extend to all problems in the class, thereby proving P=NP.

Levin’s Work and the Concept of Universal Search Problems

Independent of Cook, Leonid Levin [4] also contributed to the theory of NP-completeness in the early 1970s by identifying

"universal" NP problems that encapsulate the difficulty of all problems in NP (Levin, 1973). Levin’s work showed that if a single

algorithm could solve these universal search problems in polynomial time, then all problems in NP could also be solved in

polynomial time. Although Levin's framework was similar to Cook’s, it offered a slightly different perspective on the complexity

landscape, motivating various attempts to show that such universal problems can indeed be efficiently solved.

Practical Progress with SAT Solvers

In recent decades, significant practical advances have been made in solving specific instances of SAT, which is considered

the canonical NP-complete problem. Modern SAT solvers use sophisticated techniques like Conflict-Driven Clause Learning

(CDCL), heuristic-based variable selection, and preprocessing to solve large, real-world SAT instances efficiently [5] (Biere et

al., 2009). Although these solvers do not solve SAT in polynomial time in the general case, the success of SAT solvers in practice

has motivated research into whether similar approaches could be extended to yield a general polynomial-time algorithm for SAT

and other NP-complete problems. Some researchers have speculated that there could be undiscovered structural properties in

typical problem instances that make them easier to solve, potentially leading toward a proof of P=NP.

Algebraic and Combinatorial Techniques

There have also been attempts to prove P=NP using algebraic or combinatorial approaches, such as polynomial identity

testing or graph-theoretic methods. Researchers have explored whether certain algebraic structures or graph properties might

enable polynomial-time algorithms for NP-complete problems. For example, the study of polynomial-time solvability of specific

Constraint Satisfaction Problems (CSPs) has aimed to identify broader classes of problems that can be efficiently solved.

Omar Kettani / IJMTT, 71(9), 36-46, 2025

38

Although no general proof has been successful, these efforts have provided valuable insights into the limitations and potential

strategies for proving P=NP.

Probabilistic and Heuristic Methods

Another approach has focused on probabilistic and heuristic methods that provide approximate solutions to NP-complete

problems. Techniques like randomization and simulated annealing have been used to tackle specific instances of NP problems

with varying degrees of success. While these methods do not offer general polynomial-time algorithms for all cases, they suggest

that the average-case complexity of some NP-complete problems may be more favorable than their worst-case complexity. This

has led some researchers to investigate whether a proof of P=NP could be established under certain average-case scenarios,

potentially offering a new angle on the problem.

Machine Learning and Algorithm Design

Recently, there has been interest in leveraging machine learning techniques to design algorithms that could potentially solve

NP-complete problems in polynomial time. By training models on large datasets of problem instances, researchers hope to

discover patterns or strategies that could generalize to efficient algorithms. While this approach is still in its infancy, it offers an

innovative direction for exploring the P=NP question. The possibility that machine learning could uncover previously unknown

structures in NP-complete problems has motivated further research into algorithm design driven by data and learning.

Early work focused on complete, backtracking-based algorithms.

Davis-Putnam-Logemann-Loveland (DPLL) algorithm: This classic backtracking search algorithm forms the basis for many

modern SAT solvers. It systematically explores a search tree, using unit propagation and pure literal elimination to prune

branches. The original work by Davis, Logemann, and Loveland (1962) laid the foundation for the field. [10]

Modern Solvers and Heuristics

Modern SAT solvers have significantly improved performance by incorporating advanced heuristics and data structures.

Conflict-Driven Clause Learning (CDCL): This is the most important development in modern SAT solvers. When a conflict

(a logical contradiction) is found, the solver analyzes the conflict graph to identify the root causes. It then adds a new clause (a

"learned clause") to the formula to prevent the same sequence of assignments from leading to a conflict again. This technique

dramatically prunes the search space. [11]

2-Satisfiability (2-SAT): While general SAT is NP-complete, 2-SAT (where each clause has at most two literals) can be

solved in linear time. This is done by modeling the problem as a directed graph and checking for strongly connected components.

This area of work is an important exception to SAT's general intractability. [12]

Applications and Extensions

SAT solvers are now used to solve a wide range of real-world problems.

Maximum Satisfiability (MaxSAT): This is an optimization variant of SAT where the goal is to find a variable assignment

that satisfies the maximum number of clauses. This is particularly useful for problems like scheduling and resource allocation,

where finding a perfect solution may not be possible. [13]

Satisfiability Modulo Theories (SMT): SMT extends SAT by integrating domain-specific theories, such as linear arithmetic,

arrays, or bit-vectors. An SMT solver combines a SAT solver's ability to handle Boolean logic with a specialized solver for the

given theory, making it useful for formal verification and software analysis. [14]

Conclusion

Despite the lack of conclusive proof showing that P=NP, these related works have significantly shaped the ongoing efforts

to resolve the problem. From foundational theoretical developments like Cook’s Theorem and Karp’s reductions to practical

progress with SAT solvers and new approaches involving machine learning, the pursuit of proving P=NP has generated valuable

insights into computational complexity. The existing research underscores the need for novel techniques and interdisciplinary

methods to overcome the challenges that have so far prevented a resolution of this famous conjecture.

Recently [6], the author proposed a polynomial time algorithm for solving the Cubic Monotone 1-in-3 SAT Problem as an

attempt to prove the P=NP conjecture. In the present paper, a new proof is outlined to demonstrate this conjecture.

Omar Kettani / IJMTT, 71(9), 36-46, 2025

39

3. Materials and Methods
First, an equivalence between the Cubic Monotone 1-in-3 SAT problem and a system of linear equations over x ∈ {0, 1}n,

Ax=b is established, where matrix A and vector b are defined as follows:

A_ij=1 if literal j appears in clause i, and A_ij=0 otherwise

and b is the n vector b=(1,....,1)t, n times.

On the other hand, the related graph G of A is defined by:

Let F∈ Cubic Monotone 1-in-3 SAT problem, and matrix A as previously defined.

Define its associated graph G=(V, E) of F by:

V is the set of n column matrix Aj of A, for j=1...n.

E={(Ai,Aj) ∈VxV/ Ai . Aj0}

Then the following results are obtained:

Proposition 1 [6]:

Finding an x-model of F∈ Cubic Monotone 1-in-3 SAT problem (i.e., a truth assignment x setting exactly one literal to 1 in

each clause of F) is equivalent to solving the system of linear equations Ax=b, over variables x ∈ {0, 1}n.

Proposition 2 [6]:

Let F∈Cubic Monotone 1-in-3 SAT problem, A its associated matrix, and G its associated graph on n vertices, then the

minimum degree of G is 3, and the maximum degree of G is 6.

Proposition 3 [6]:

Let F∈Cubic Monotone 1-in-3 SAT, A its associated matrix, G its associated graph on n vertices, and G) denotes its

independence number. Therefore:

i) (G) ≤ n/3

ii) F is satisfiable if and only if (G) =n/3

4. Results and Discussion

Proposition 4:

Let F∈Cubic Monotone 1-in-3 SAT, A its associated matrix, and G its associated graph, such that G=(V, E) is a graph on n

vertices, with minimum degree 3 and maximum degree 6. Therefore, G is a K1,4-free graph with bounded treewidth.

Proof:

First, observe that each row and each column of A contains exactly three ones (because each literal is contained in three clauses

and each clause contains three literals).

Suppose for contradiction that G contains an induced K₁,₄ with center v and leaves {a, b, c, d}.

Column v has 1s in exactly three rows, say r₁, r₂, r₃.

For each of a, b, c, and d to be adjacent to v, each must have a 1 in at least one of {r₁, r₂, r₃}.

Omar Kettani / IJMTT, 71(9), 36-46, 2025

40

Since there are 4 columns {a, b, c, d} and only 3 rows {r₁, r₂, r₃}, by the pigeonhole principle, at least one row must contain 1s

from at least two columns among {a, b, c, d}.

But if two columns from {a, b, c, d} have 1s in the same row, they are adjacent in G, contradicting the requirement that {a, b, c,

d} form an independent set.

Therefore, G cannot contain an induced K₁,₄.□

Now the following lemmas will be used to prove that G, under the given conditions, has a bounded treewidth.

More precisely, it will be proved that: If G = (V, E) has maximum degree 6, contains no induced K₁,₄, and each vertex belongs

to at least three triangles, then tw(G) ≤ 6.

First, observe that since G is the related graph of a given formula F ∈Cubic Monotone 1-in-3 SAT, each vertex belongs to at least

three triangles (representing three clauses in F).

Recall that the treewidth of a graph equals the maximum size of a potential maximal clique minus one [9]. Therefore, to prove

that tw(G) ≤ 6, it suffices to show that every potential maximal clique C in G contains at most 7 vertices.

Let C be an arbitrary potential maximal clique in G. Recall that C is a potential maximal clique if and only if G[C] is chordal and

for every pair of non-adjacent vertices x, y in C, every minimal x,y-separator in G is contained in C [9].

Two cases based on whether C contains a simplicial vertex will be considered.

Case 1: C contains a simplicial vertex v.

Since v is simplicial in G[C], all neighbors of v within C form a clique. Denote this set of neighbors as N_C(v) and define T = C

\ N_G[v] to be the set of vertices in C that are neither v itself nor neighbors of v.

First, inequality |N_C(v)| ≥ 3 is established. Since v must participate in at least three triangles and v is simplicial in G[C], all

triangles containing v that use vertices from C must consist of v and two vertices from N_C(v). The number of such triangles

equals C(|N_C(v)|, 2). For v to participate in at least three triangles, it is needed that C(|N_C(v)|, 2) ≥ 3. If |N_C(v)| = 2, then

C(2,2) = 1 < 3. If |N_C(v)| = 1, then C(1,2) = 0 < 3. Therefore, |N_C(v)| ≥ 3.

Lemma 1: For any vertex t in T, at most one vertex z exists in N_C(v) such that t is not adjacent to z.

Proof of Lemma 1: Let t be any vertex in T. Since t and v are non-adjacent vertices in C, and C is a potential maximal clique,

every minimal t,v-separator in G must be contained in C.

In the graph G[C], any path from t to v must pass through N_C(v), as these are the only neighbors of v in C. Therefore, N_C(v)

contains a t,v-separator in G[C]. Let S be a minimal t,v-separator contained in N_C(v).

Since N_C(v) is a clique and S ⊆ N_C(v), the set S is also a clique. For S to be a minimal separator, removing any vertex from

S must create a path from t to v. Since N_C(v) is a clique, if two or more vertices from N_C(v) are removed, the remaining

vertices still form a connected set. Therefore, a minimal t,v-separator S contained in the clique N_C(v) must equal N_C(v) minus

at most one vertex.

Since S is a t,v-separator in G[C] and G[C] is an induced subgraph of G, it is known that S separates t from v in G as well. By

the potential maximal clique property, S must be contained in C (which it is, since S ⊆ N_C(v) ⊆ C). Since t is not adjacent to

v, and S separates them, t must be adjacent to all vertices in S. Therefore, t is adjacent to all vertices in N_C(v) except possibly

one. □

Omar Kettani / IJMTT, 71(9), 36-46, 2025

41

Four subcases based on the size of N_C(v), which is at least 3 and at most 6, are now analyzed.

Subcase 1.1: |N_C(v)| = 6.

Each vertex u in N_C(v) has a degree of exactly 6 in G, as it uses 1 edge to connect to v and 5 edges to connect to the other

vertices in N_C(v). Therefore, no vertex in N_C(v) can be adjacent to any vertex in T. However, by the lemma, each vertex t in

T needs to be adjacent to at least 5 vertices in N_C(v). This is a contradiction. Therefore, T must be empty, giving |C| = 1 + 6 +

0 = 7. Since C = {v} ∪ N_C(v) ∪ T (by definition).

Subcase 1.2: |N_C(v)| = 5.

Each vertex u in N_C(v) has degree at least 5 in G[{v} ∪ N_C(v)], using 1 edge to v and 4 edges to other vertices in N_C(v).

This leaves at most 1 edge per vertex for connections to T, giving a total capacity of at most 5 edges between N_C(v) and T.

If |T| = 2 with T = {t₁, t₂}, then by the Lemma, each t_i needs at least 4 neighbors in N_C(v), requiring at least 8 edges total. But

we have capacity for at most 5 edges, which is impossible. Therefore, |T| ≤ 1, giving |C| ≤ 1 + 5 + 1 = 7.

Subcase 1.3: |N_C(v)| = 4.

In this case, each vertex t in T must be adjacent to at least 3 vertices in N_C(v), as established by the separator analysis.

The degree constraints for vertices in N_C(v) are now analyzed. Each vertex u in N_C(v) is adjacent to vertex v, which uses one

edge. Additionally, since N_C(v) forms a clique of size 4, each vertex in N_C(v) is adjacent to the other 3 vertices within N_C(v).

Therefore, each vertex in N_C(v) uses exactly 4 edges for connections within the set {v} ∪ N_C(v). Since the maximum degree

in G is 6, each vertex in N_C(v) has at most 2 edges available for connections to vertices in T.

Now the total number of edges between N_C(v) and T is counted. Since there are 4 vertices in N_C(v) and each can contribute

at most 2 edges to T, the total number of edges from N_C(v) to T is at most 8.

However, if the set T contains 3 vertices, and each vertex in T requires at least 3 neighbors in N_C(v), then T would need at least

9 edges connecting to N_C(v). Since 9 exceeds 8, this is impossible.

Therefore, T can contain at most 2 vertices, which gives: |C| = |{v}| + |N_C(v)| + |T| ≤ 1 + 4 + 2 = 7.

Subcase 1.4: |N_C(v)| = 3.

Let N_C(v) = {a, b, c}. Each vertex in N_C(v) uses 3 edges within {v, a, b, c}, leaving at most 3 edges each for connections to

T. Each vertex in T needs at least 2 neighbors in N_C(v) by the Lemma.

If |T| = 4 with T = {u₁, u₂, u₃, u₄}, at least 8 edges between T and N_C(v) are needed, with capacity for at most 9. Therefore,

exactly 8 edges exist, with each u_i having exactly 2 neighbors in {a, b, c}. The distribution must be (3, 3, 2), meaning two

vertices in N_C(v) have 3 neighbors in T and one has 2.

Without loss of generality, a and b each connect to 3 vertices in T, and c connects to 2. The unique distribution is: u₁, u₂ connect

to {a, b}; u₃ connects to {a, c}; u₄ connects to {b, c}.

To avoid K₁,₄ with center a in {a, v, u₁, u₂, u₃}, some vertices among {u₁, u₂, u₃} must be adjacent. To avoid K₁,₄ with center b

in {b, v, u₁, u₂, u₄}, some vertices among {u₁, u₂, u₄} must be adjacent. Both require edge u₁u₂.

For chordality of the 5-cycle u₁ - u₃ - c - u₄ - u₂ - u₁, we need a chord. Since u₁, u₂ are not adjacent to c, the only possible chord

is u₃u₄.

Omar Kettani / IJMTT, 71(9), 36-46, 2025

42

With forced edges u₁u₂ and u₃u₄, plus required cross-edges to avoid K₁,₄, the degree sequence in G[T] becomes (3, 2, 2, 1) or

similar. The vertex with degree 1 in G[T], say u₄, adjacent only to u₃, has exactly 3 neighbors in C: {b, c, u₃}.

For u₄ to form 3 triangles: triangle {u₄, b, c} exists (edge bc); triangle {u₄, u₃, c} exists (edge u₃c from u₃'s connection to c); the

third requires edge u₃b. But u₃ connects to {a, c}, not b. Therefore, u₄ participates in only 2 triangles, a contradiction.

Let us analyze what happens when T contains more than 4 vertices. In this subcase, it was established that N_C(v) consists of

exactly three vertices, which we denote as a, b, and c. From the separator analysis, it is known that each vertex in T must be

adjacent to at least 2 vertices in N_C(v).

First, the number of edges available for connections between N_C(v) and T is calculated. Each vertex among a, b, and c has a

degree of 6 in graph G. Within the set consisting of v, a, b, and c, each of these three vertices uses exactly 3 edges. This is because

each is adjacent to v, which uses one edge, and each is adjacent to the other two vertices in N_C(v), using two more edges, since

a, b, and c form a triangle. Therefore, each vertex in N_C(v) has at most 3 edges remaining for connections to vertices in T.

The total edge capacity from N_C(v) to T is therefore at most 9 edges, obtained by multiplying 3 vertices by 3 available edges

each.

If T contains exactly 5 vertices, then T requires at least 10 edges connecting to N_C(v), since each of the 5 vertices needs at least

2 such connections. However, we have just established that the maximum capacity is only 9 edges. Since 10 exceeds 9, it is

impossible for T to contain 5 vertices.

Similarly, if T contains exactly 6 vertices, then T would require at least 12 edges connecting to N_C(v). Since this exceeds the

available capacity of 9 edges, T cannot contain 6 vertices.

More generally, for any value where T contains at least 5 vertices, the number of required edges would be at least twice the size

of T, which is at least 10. Since this always exceeds the available capacity of 9 edges, T cannot contain 5 or more vertices.

This problem can also be approached by considering degree constraints more directly. Even if an attempt is made to minimize

edge usage by having some vertices in T adjacent to exactly 2 vertices in N_C(v) while others are adjacent to all 3 vertices in

N_C(v), it still encounters impossibilities.

The most efficient distribution of edges would require at least two vertices in N_C(v) to be adjacent to all vertices in T when the

size of T is at least 5. However, if two vertices in N_C(v) were each adjacent to all vertices in T, then each of these vertices

would have degree at least 9 in G. This calculation comes from 3 edges within the set containing v and N_C(v), plus at least 5

edges to vertices in T, plus 1 edge to v. Since the maximum degree in G is 6, this configuration is impossible.

Conclusion of Subcase 1.4:

When N_C(v) contains exactly 3 vertices, the set T can contain at most 4 vertices. The impossibility of having more than 4

vertices in T follows from simple edge counting arguments. There are not enough available edges from N_C(v) to support more

than 4 vertices in T. This edge capacity argument provides a clean upper bound of 4 for the size of T. The subsequent detailed

analysis in the main proof, which shows that T equals 4 leads to a triangle constraint violation, is necessary only to tighten this

bound from 4 to 3. Therefore |T| ≤ 3, giving |C| ≤ 7.

Case 2: C contains no simplicial vertex.

Lemma 2: Every chordal graph that is not complete contains at least one simplicial vertex.

Proof: Let G be a chordal graph that is not complete. Choose non-adjacent vertices u, v with a minimal separator S of minimum

size. In a chordal graph, every minimal separator is a clique. Let C_u be the component of G - S containing u. Any vertex w in

C_u that sees all of S is simplicial: its neighborhood is exactly S ∩ N(w) = S, which is a clique. Such a vertex exists by minimality

of S. □

Omar Kettani / IJMTT, 71(9), 36-46, 2025

43

Application to the present problem: Since G[C] is chordal (C is a PMC), either G[C] has a simplicial vertex (covered in Case 1),

or G[C] is complete. If G[C] is complete, then C is a clique in G. Every vertex in C is adjacent to all other |C|-1 vertices in C.

Since the maximum degree is 6, we have |C|-1 ≤ 6, giving |C| ≤ 7.

Therefore, Case 2 is reduced to a trivial case where C is a clique in G.

Conclusion: Every potential maximal clique has size at most 7; therefore, tw(G) ≤ 6 and G has bounded treewidth. □

Note: The complete graph K₇ shows that the bound tw(G) ≤ 6 is tight for graphs satisfying the three constraints. It can
now be verified that K₇ satisfies all three constraints of Theorem 1.

First, the maximum degree constraint is checked. In K₇, every vertex is adjacent to all other vertices in the graph. Since K₇ has

7 vertices, each vertex has exactly 6 neighbors. Therefore, every vertex has a degree of exactly 6, which satisfies the maximum

degree constraint.

Second, the fact that K₇ contains no induced K₁,₄ can be verified. To form an induced K₁,₄, it is needed 5 vertices where one

vertex is adjacent to the other four, and those four vertices are pairwise non-adjacent. Consider any 5 vertices in K₇. Since K₇ is

complete, these 5 vertices induce a complete subgraph K₅. In K₅, every vertex is adjacent to every other vertex, giving a total of

10 edges. In contrast, K₁,₄ has exactly 4 edges (from the center to each of the 4 other vertices). Since K₅ and K₁,₄ have different

edge counts and different structures, K₅ cannot be isomorphic to K₁,₄. Therefore, K₇ contains no induced K₁,₄.

Third, the fact that each vertex belongs to at least three triangles can be confirmed. Consider any vertex v in K₇. This vertex has

6 neighbors. Since K₇ is complete, any two neighbors of v are connected by an edge. Therefore, for each pair of neighbors of v,

a triangle containing v and that pair exists. The number of such pairs equals C(6,2) = 15. Thus, each vertex v belongs to exactly

15 triangles. Since 15 is greater than 3, the triangle constraint is satisfied.

Having verified all three constraints, it can be concluded that K₇ is a valid example of a graph satisfying the conditions of the

Theorem.

Since K₇ satisfies all three constraints and has treewidth exactly 6, no bound smaller than 6 would be valid. The Theorem states

tw(G) ≤ 6, and K₇ shows this bound is achieved, making it optimal.

Note that the Maximum Independent Set (MIS) problem is NP-hard for K1,4–free graphs, but becomes polynomial-time solvable

in bounded treewidth graphs.

Theorem: The MIS problem is polynomial-time solvable for a bounded treewidth graph.

Proof: Consider this improved version of Bodlaender’s algorithm [7], which computes an MIS in a bounded treewidth graph:

Table 1: pseudo-code of algorithm 1 for solving the MIS problem in a bounded treewidth graph

Algorithm: ComputeMIS(G)

Input: Graph G = (V,E)

Output: Size of the maximum independent set in G

1. (T, {Xt}t∈V(T)) ← ComputeTreeDecomposition(G) // T is a tree, Xt is the bag for node t ∈ V(T) // Root

T, arbitrarily at node r

2. For each t ∈ V(T) and S ⊆ Xt: Define dp[t,S] to store the maximum size of an independent set I where:

o I ∩ Xt = S

o I ⊆ V(Gt) where Gt is the subgraph induced by the vertices in t's subtree

Omar Kettani / IJMTT, 71(9), 36-46, 2025

44

3. For each t ∈ V(T) in post-order traversal: For each S ⊆ Xt:

If S is not independent: dp[t,S] = -∞ Else: If t is a leaf: dp[t,S] = |S| Else: dp[t,S] = |S| + ∑{child c of t}

best(t,c,S) where best(t,c,S) = max{dp[c,S'] - |S ∩ S'| : S' ⊆ Xc, S' is independent, S ∩ Xc = S' ∩ Xt}

4. Return max{dp[r,S] : S ⊆ Xr}

Corollary of Theorem: The algorithm ComputeMIS(G) correctly computes the size of the maximum independent set in G.

Proof: The correctness of this dynamic programming algorithm will be proved by induction on the height of the subtree rooted

at node t in the tree decomposition.

Base Case: Consider when t is a leaf node in the tree decomposition. For any independent set S ⊆ Xt, we set dp[t,S] = |S|. This

assignment is correct because the subgraph Gt at a leaf node consists only of vertices in Xt, so Gt = G[Xt]. Any non-independent

set S will be assigned dp[t,S] = -∞, correctly indicating that such sets cannot be part of a valid solution.

Inductive Hypothesis: For all nodes at height less than h, assume that dp[t,S] correctly computes the maximum independent set

I size in the subgraph Gt where I ∩ Xt = S.

Inductive Step: Consider a node t at height h with children c₁,...,ck, and let S be an independent set in Xt. It will be proved that

dp[t,S] correctly computes the maximum independent set size in two parts: achievability and optimality.

Part 1 (Achievability): First, it will be proved that dp[t,S] represents an achievable independent set size. For each child ci of t, let

Si' be the subset of Xci that achieves best(t, ci, S), and let Ii be the independent set in Gci that achieves dp[ci,Si']. An independent

set I = S ∪ (∪i Ii\Xci) will be constructed, and two properties will be proved:

1) I is independent in Gt because:

 - S is independent of the selection criteria

 - Each Ii is independent of the inductive hypothesis

 - The tree decomposition properties ensure there are no edges between vertices in different children's subtrees

 - The consistency condition S ∩ Xc = S' ∩ Xt ensures no edges exist between S and Ii\Xci

2) The size calculation |I| = dp[t,S] is correct because |I| = |S| + ∑i (|Ii| - |S ∩ Si'|), which exactly matches our dynamic

programming formulation.

Part 2 (Optimality): To prove that dp[t,S] is optimal, consider any independent set J in Gt where J ∩ Xt = S. For each child ci,

define Ji = J ∩ V(Gci) and Si' = Ji ∩ Xci. By the inductive hypothesis, it is known that dp[ci,Si'] ≥ |Ji|. Therefore, the dynamic

programming value dp[t,S] must be at least |J|, proving optimality.

The algorithm maintains three crucial properties:

1) The tree decomposition properties ensure that all edges in the graph are considered

2) The post-order traversal guarantees children are processed before their parents

3) The consistency check S ∩ Xc = S' ∩ Xt maintains valid solutions across adjacent bags

Omar Kettani / IJMTT, 71(9), 36-46, 2025

45

At the root node r, the algorithm correctly computes the maximum independent set size because:

1) Every independent set I in G defines some subset S = I ∩ Xr

2) The tree decomposition covers all vertices in G

3) The dynamic programming table considers all valid combinations

The algorithm achieves a time complexity of O(n · 2^(2k+2)), where n is the number of nodes in the tree decomposition and k is

its width. This complexity arises from processing O(2^k) subsets for each bag and spending O(2^k) time combining solutions

from children. The space complexity is O(n · 2^k), representing the storage needed for our dynamic programming table.

Therefore, it was proved that the algorithm correctly computes the maximum independent set size in polynomial time for graphs

of bounded treewidth.

Corollary 1 of Proposition 4: There exists a polynomial time algorithm that decides whether a formula F∈Cubic Monotone 1-in-

3 SAT problem is satisfiable.

Proof:

Consider the following algorithm:

Table 2: pseudo-code of proposed algorithm for solving the Cubic Monotone 1-in-3 SAT problem

INPUT: F∈Cubic Monotone 1-in-3 SAT problem

Step 1: Define the A matrix of F.

Step 2:Calculate det(A), if det(A) ≠0 then OUTPUT(' F has a unique solution: x=A-1b ')

 else goto step 3.

Step 3: Construct the associated graph G of F.

Step 4: Apply MIS algorithm 1 to G.

if (G)=n/3 then OUTPUT(' F is satisfiable ') else OUTPUT(' F is not satisfiable ')

Where (G) denotes the independence number of G, and MIS algorithm 1 is a polynomial-time algorithm which computes a

maximum independent set in bounded treewidth Graphs (see Table 1).

The correctness of this algorithm results from the previous propositions. Indeed, it starts by computing det(A); if it is≠0, then the

algorithm outputs the unique solution of the problem: the vector x=A-1b (proposition 1), else it constructs the associated G graph

of the input formula. Then, since G is a bounded treewidth graph, it can apply MIS algorithm 1 to G. Hence, if (G)=n/3 then it

outputs that F is satisfiable, else it outputs that F is not satisfiable by proposition 3.

Observe that it can be found x satisfying F (a truth assignment x setting exactly one literal to 1 in each clause of F: x is defined

by xi=1 if vertex i ∊ is in the maximum independent set in G and xi=0 otherwise).

Note that Steps 1 and 3 can be done in O(n2) time. Step 2 requires O(n3) time. Meanwhile, Step 4 requires O(n) time (according

to Proposition 4). Thus, the overall complexity of this algorithm is O (n3).

Therefore, the Cubic Monotone 1-in-3 SAT problem is in P.

Omar Kettani / IJMTT, 71(9), 36-46, 2025

46

Corollary 2 of Proposition 4: P=NP.

Since the Cubic Monotone 1-in-3 SAT problem is in P and this problem is NP-complete [3], then the complexity classes P and

NP are equal [1,8] and the P=NP conjecture holds.

5. Conclusion
In this paper, a polynomial time algorithm that decides whether a formula F∈Cubic Monotone 1-in-3 SAT problem is

satisfiable was proposed. Since this problem is NP-complete, it follows that the P=NP conjecture is true. The proposed proof that

P=NP represents a potential breakthrough in one of the most profound and longstanding questions in computer science. By

presenting a polynomial-time algorithm for an NP-complete problem such as the Cubic Monotone 1-in-3 SAT problem, the proof

aims to establish that all problems in NP can indeed be solved efficiently. The approach taken combines both algebraic and graph

techniques to reduce the problem's complexity to a polynomial bound, challenging the traditional understanding of computational

intractability. If validated, this result would fundamentally change the landscape of computational complexity, offering new

solutions to problems across various domains, from optimization and scheduling to artificial intelligence and cryptography.

Acknowledgments
The authors would like to express their gratitude to the anonymous referee for their valuable time in reviewing the

manuscript.

References
[1] Stephen A. Cook, The Complexity of Theorem-Proving Procedures, pp. 1-8, 1971. [Google Scholar] [Publisher Link]

[2] Richard M. Karp, Reducibility among Combinatorial Problems, University of California, 1972. [Google Scholar] [Publisher Link]

[3] C. Moore, and J.M. Robson, “Hard Tiling Problems with Simple Tiles,” Discrete & Computational Geometry, vol. 26, pp. 573-590, 2001.

[CrossRef] [Google Scholar] [Publisher Link]

[4] A. Leonid Levin, “Universal Search Problems,” Problems of Information Transmission, vol. 9, no. 3, pp. 265-266, 1973. [Google Scholar]

[5] Armin Biere, Hans van Maaren, and Toby Walsh, Handbook of Satisfiability, IOS Press, pp. 1-980, 2009. [Google Scholar] [Publisher

Link]

[6] Omar Kettani, “Solving the Cubic Monotone 1-in-3 SAT Problem in Polynomial Time,” Global Journal of Computer Science and

Technology, vol. 23, no. A1, pp. 1-10, 2024. [Publisher Link]

[7] Hans Leo Bodlaender, A Tourist Guide through Treewidth, Department of Computer Science, Utrecht University, pp. 1-24, 1992. [Google

Scholar] [Publisher Link]

[8] Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed., MIT Press, pp. 1-1292, 2009. [Google Scholar] [Publisher Link]

[9] Vincent Bouchitté, and Ioan Todinca, “Treewidth and Minimum Fill-in: Grouping the Minimal Separators,” SIAM Journal on Computing,

vol. 31, no. 1, pp. 212-232, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[10] Martin Davis, George Logemann, and Donald Loveland, “A Machine Program for Theorem-Proving,” Communications of the ACM, vol.

5, no. 7, pp. 394-397, 1962. [CrossRef] [Google Scholar] [Publisher Link]

[11] J.P. Marques-Silva, and K.A. Sakallah, “GRASP: A Search Algorithm for Propositional Satisfiability,” IEEE Transactions on Computers,

vol. 48, no. 5, pp. 506-521, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[12] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan, “A Linear-time Algorithm for Testing the truth of Certain Quantified

Boolean Formulas,” Information Processing Letters, vol. 8, no. 3, pp. 121-123, 1979. [CrossRef] [Google Scholar] [Publisher Link]

[13] R. Dechter, Bucket Elimination: A Unifying Framework for Probabilistic Inference, Learning in Graphical Models, Springer, pp. 75-104,

1998. [CrossRef] [Google Scholar] [Publisher Link]

[14] Clark Barrett, and Cesare Tinelli, Satisfiability Modulo Theories, Handbook of Model Checking, pp. 305-343, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Complexity+of+Theorem-Proving+Procedures&btnG=
https://www.google.co.in/books/edition/The_Complexity_of_Theorem_proving_Proced/b3kVNQAACAAJ?hl=en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reducibility+among+Combinatorial+Problems&btnG=
https://www.google.co.in/books/edition/Reducibility_among_combinatorial_problem/fb0ZygAACAAJ?hl=en
https://doi.org/10.1007/s00454-001-0047-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hard+Tiling+Problems+with+Simple+Tiles&btnG=
https://link.springer.com/article/10.1007/s00454-001-0047-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Universal+Search+Problems.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09Biere%2C+A.%2C+Heule%2C+M.%2C+%26+van+Maaren%2C+H+Handbook+of+Satisfiability&btnG=
https://www.google.co.in/books/edition/Handbook_of_Satisfiability/shLvAgAAQBAJ?hl=en&gbpv=0
https://www.google.co.in/books/edition/Handbook_of_Satisfiability/shLvAgAAQBAJ?hl=en&gbpv=0
https://computerresearch.org/index.php/computer/article/view/102342
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+tourist+guide+through+treewidth&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+tourist+guide+through+treewidth&btnG=
https://www.google.co.in/books/edition/A_Tourist_Guide_Through_Treewidth/r6-VYgEACAAJ?hl=en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CIntroduction+to+Algorithms&btnG=
https://www.google.co.in/books/edition/Introduction_to_Algorithms_third_edition/i-bUBQAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1137/S0097539799359683
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Treewidth+and+Minimum+Fill-in%3A+Grouping+the+Minimal+Separators&btnG=
https://epubs.siam.org/doi/abs/10.1137/S0097539799359683
https://doi.org/10.1145/368273.368557
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+machine+program+for+theorem-proving&btnG=
https://dl.acm.org/doi/abs/10.1145/368273.368557
https://doi.org/10.1109/12.769433
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GRASP%3A+A+search+algorithm+for+propositional+satisfiability&btnG=
https://ieeexplore.ieee.org/abstract/document/769433
https://doi.org/10.1016/0020-0190(79)90002-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+linear-time+algorithm+for+testing+the+truth+of+certain+quantified+boolean+formulas&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0020019079900024
https://doi.org/10.1007/978-94-011-5014-9_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bucket+elimination%3A+A+unifying+framework+for+probabilistic+inference&btnG=
https://link.springer.com/chapter/10.1007/978-94-011-5014-9_4
https://doi.org/10.1007/978-3-319-10575-8_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Satisfiability+modulo+theories.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Satisfiability+modulo+theories.+&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-10575-8_11

