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Abstract - The examination of partition functions with specified summands has uncovered intricate mathematical 

frameworks that expand upon traditional partition theory. Lin proposed two partition functions, 𝑃𝐷𝑂𝑡(𝑛)and 𝑃𝐷𝑂𝑡(𝑛), 

which enumerates the total number of tagged components across all partitions with specified summands, including those 

limited to odd parts. Lin established several congruences modulo small powers of 3 and proposed conjectural generalisations 

pertaining to larger powers of 3. This study offers partial proofs of Lin’s hypothesis for certain situations, motivated by 

recent advancements from Chern and Hirschhorn, as well as subsequent contributions from Arman–Singh and Mehta–Kaur, 

emphasising congruences modulo powers of 3 for 𝑃𝐷𝑂𝑡(𝑛). By using analytic methods grounded on generating functions 

and intricate manipulations of deep q-series, we enhance prior findings and reveal novel congruences, thereby refining the 

established divisibility characteristics of 𝑃𝐷𝑂𝑡(𝑛). These discoveries enhance the comprehension of the mathematical 

properties of partitions with specified summands and their tagged components, and they augment previous research on 

tagged partition functions and associated congruence families. 

 

Keywords - Partitions with designated summands, Tagged partitions, Lin’s conjecture, Partition function, congruence, 

Modular forms, 𝑞-series, Combinatorial identities. 

 

1. Introduction 
The theory of integer partitions is deeply related to q-series, modular forms, combinatorial analysis, and so has a 

prominent place in number theory. A positive integer 𝑛 that is partitioned is one that may be represented as a sum of positive 

integers, with the order of the summands being immaterial. Since Ramanujan’s seminal work, in which he found exceptional 

congruences modulo powers of 5, 7, and 11, the classical partition function 𝑝(𝑛), which counts the number of such 

representations, has been thoroughly investigated [5, 6]. These findings sparked an extensive literature review on the 

mathematical features of partition functions. 

 

Several improved partition statistics have been proposed in the last several years to capture combinatorial information 

beyond simple enumeration. An important class among them is partitions with specified summands. Congruence qualities 

modulo tiny integers and explicit generating functions were found by Andrews, Lewis, and Lovejoy [3], who also proposed 

the notion. 

 

Expanding upon this paradigm, Lin presented the tagged partition statistics 𝑃𝐷𝑡(𝑛) and 𝑃𝐷𝑂𝑡(𝑛), which enumerate the 

total number of tagged components over all partitions of 𝑛 with specified summands, the latter being confined to odd 

components [4]. These functions fundamentally vary from standard partition-counting functions, since they quantify 

weighted combinatorial statistics rather than mere counts. Lin constructed explicit generating functions for these values and 

demonstrated various congruences modulo powers of 2 and 3 [4]. 

 

Inspired by substantial numerical data, Lin further posited infinite families of congruences for 𝑃𝐷𝑂𝑡(𝑛) modulo elevated 

powers of 3 [4]. Despite some advances, comprehensive proofs of these conjectural families exist just for isolated instances. 

Chern and Hirschhorn’s subsequent research enhanced some congruences established by Lin by refining the modulus using 

analytic techniques [7]. Notwithstanding these advancements, two substantial gaps persist in the literature. Initially, proofs 

of Lin’s hypothesis exist just for certain parameter values. The interplay between the powers of 2 and 3 in the divisibility 

characteristics of 𝑃𝐷𝑂𝑡(𝑛) has not been thoroughly examined by direct analytic dissection methods. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bamdeb Dey et al. / IJMTT, 72(1), 16-20, 2026 

 

17 

The current work fills these gaps by offering a comprehensive analytic demonstration of Lin’s hypothesis for the 

situation 𝑘=2, while simultaneously strengthening previously known congruences by raising the power of 2 in the modulus. 

Using classical theta-function identities and methodical 𝑞-series dissections, new congruence findings are produced, thus 

expanding and improving the current theory of tagged partition functions. 

 

1.1. Literature Review 

The mathematical examination of partition functions has advanced considerably since Ramanujan’s seminal 

congruences for (𝑛) [5, 6]. Various generalisations have now been suggested to encapsulate more intricate combinatorial and 

mathematical structures. The theory of partitions with specified summands, presented by Andrews, Lewis, and Lovejoy, 

involves the derivation of generating functions and the establishment of several congruence conditions [3]. Chen, Ji, Jin, and 

Shen advanced this theory by deriving Ramanujan-type identities and precise formulae for partitions with specified 

summands, especially modulo powers of 3 [12]. Their research also offered combinatorial interpretations using partition 

rankings. Xia further developed the topic by demonstrating infinite families of congruences modulo 9 and 27 for partitions 

with specified summands [11]. 

 

Baruah and Ojah examined the mathematical features of partitions limited to odd parts and established congruences 

modulo powers of 2 and 3 [13]. Vandna and Kaur extended these concepts to 𝑘-regular partitions with specified summands 

and formulated additional congruence families [15]. Lin made a significant enhancement via the tagged partition statistics 

𝑃𝐷𝑡(𝑛) and 𝑃𝐷𝑂𝑡(𝑛), which quantify the total number of tagged components instead of the partitions themselves [4]. Lin 

formulated generating functions for these statistics and established many congruences modulo powers of 2 and 3. Lin 

conjectured infinite families of congruences modulo ascending powers of 3 for 𝑃𝐷𝑂𝑡(𝑛), supported by numerical proof [4]. 

 

Chern and Hirschhorn enhanced many congruences of Lin by refining the modulus using analytic methods [7]. Barman 

and Singh recently confirmed Lin’s hypothesis for the case 𝑘=2 by modular-form techniques and examined the divisibility 

and lacunarity characteristics of 𝑃𝐷𝑂(𝑛) [9]. Mehta and Kaur [10] derived other congruences modulo small powers of 2. 

Although this research provides significant partial conclusions, most current proofs depend on modular or Hecke-theoretic 

frameworks. Relatively few studies use direct 𝑞-series dissection methods to enhance congruence moduli. This insight 

inspires the current study, which uses an analytical method to establish more precise congruences and provide an alternate 

proving technique. 

 

2. Main Results 
This section delineates the main findings of the article. Specifically, Lin’s hypothesis on congruences for the tagged 

partition function 𝑃𝐷𝑂(𝑛) has been confirmed for the case 𝑘=2. Furthermore, the previously derived congruences for 

𝑃𝐷𝑂𝑡(8𝑛) and 𝑃𝐷𝑂𝑡(24𝑛) are enhanced by augmenting the exponent of two in the modulus. 

 

Theorem 2.1. 

𝑃𝐷𝑂𝑡(72𝑛) ≡ 0(mod34 ⋅ 27).                                                                                 (2.1) 
Theorem 2.2. 

𝑃𝐷𝑂𝑡(36𝑛) ≡ 0(mod33 ⋅ 26).                                                                                 (2.2) 

 
𝑃𝐷𝑂𝑡(12𝑛) ≡ 0(mod32 ⋅ 24).                                                                                  (2.3) 

3. Preliminary Results 

For ∣ 𝑎𝑏 ∣< 1, Ramanujan’s general theta function 𝑓(𝑎, 𝑏)is defined as 

 

𝑓(𝑎, 𝑏) = ∑ 𝑎𝑛(𝑛+1)/2

∞

𝑛=−∞

𝑏𝑛(𝑛−1)/2.                                                                         (3.1) 

 

Using Jacobi’s triple product identity [2, Entry 19, p. 35], we rewrite (3.1) as 

 

𝑓(𝑎, 𝑏) = (−𝑎; 𝑎𝑏)∞(−𝑏; 𝑎𝑏)∞(𝑎𝑏; 𝑎𝑏)∞, ∣ 𝑎𝑏 ∣< 1. 
 

The most important special cases of 𝑓(𝑎, 𝑏)are 

𝜙(𝑞) = ∑ 𝑞𝑘2

∞

𝑘=−∞

= (−𝑞; 𝑞2)∞
2 (𝑞2; 𝑞2)∞,                                                               (3.2) 

 

𝜓(𝑞) = ∑ 𝑞𝑘(𝑘+1)/2

∞

𝑘=0

=
(𝑞2; 𝑞2)∞

(𝑞; 𝑞2)∞

,                                                                        (3.3) 
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and 

𝑓(−𝑞) = ∑(−1

∞

𝑘=0

)𝑘𝑞𝑘(3𝑘−1)/2 + ∑(−1

∞

𝑘=1

)𝑘𝑞𝑘(3𝑘+1)/2 = (𝑞; 𝑞)∞                                         (3.4) 

 

where the product representations in (3.2)– (3.4) arise from Jacobi’s famous triple product identity, and the last equality in 

(4.4) is Euler’s famous pentagonal number theorem. In the following lemmas, we recall some theta function identities as, 

Lemma 3.1. From [8], we have 

1

𝜙(−𝑞)
=

𝜙3(−𝑞9)

𝜙4(−𝑞3)
(1 + 2𝑞𝑤(𝑞3) + 4𝑞2𝑤2(𝑞3)),                                                      (3.5) 

where, 𝑤(𝑞) =
𝑓1𝑓6

3

𝑓2𝑓3
3. 

Lemma 3.2. 

From [2, Eqs. (21.3.1)], we have 

𝑓1
3 = 𝑓9

3 (4𝑞3𝑤2(𝑞3) − 3𝑞 +
1

𝑤(𝑞3)
) .                                               (3.6) 

Lemma 3.3. 

From [2, Eqs. (14.3.1)], we have 

𝑓1𝑓2 =
𝑓6𝑓9

4

𝑓3𝑓18
2

(1 − 𝑞𝑤(𝑞3) − 2𝑞2𝑤2(𝑞3)).                                               (3.7) 

Lemma 3.4. 

[1, p. 49, Corollary (i)] We have 

𝜙(−𝑞) = 𝑓1
2/𝑓2.                                          (3.8) 

 

4. Proof of Theorem 2.1 
Proof. From Chern and Hirschhorn, the generating function for 𝑃𝐷𝑂𝑡(8𝑛)is given by 

∑ 𝑃𝐷

∞

𝑛=0

𝑂𝑡(8𝑛)𝑞𝑛 = 32 ⋅ 22 
𝑞𝑓3

7

𝜙8(−𝑞)𝑓1
3 .                                           (4.1) 

 

Using Lemma 3.1, the reciprocal of 𝜙(−𝑞)may be expressed as 

 

1

𝜙(−𝑞)
=

𝜙3(−𝑞9)

𝜙4(−𝑞3)
(1 + 2𝑞𝑤(𝑞3) + 4𝑞2𝑤2(𝑞3)). 

 

Substituting this expansion into (4.1) and simplifying using Lemma 3.2, the generating function decomposes into a sum of 

terms involving powers of 𝑞multiplied by functions of 𝑞3. Extracting coefficients of terms of the form 𝑞3𝑛and replacing 

𝑞3𝑛by 𝑞𝑛yields 

∑ 𝑃𝐷

∞

𝑛=0

𝑂𝑡(24𝑛)𝑞𝑛 = 33 ⋅ 27 𝑞 𝐹(𝑞),                                                (4.2) 

 

where 𝐹(𝑞)is a power series with integer coefficients. 

Reducing both sides of (4.2) modulo 34 ⋅ 27, all higher-order terms vanish due to divisibility by the modulus. Applying 

Lemma 3.1 once more and repeating the coefficient extraction process leads to 

∑ 𝑃𝐷

∞

𝑛=0

𝑂𝑡(72𝑛)𝑞𝑛 ≡ 0(mod34 ⋅ 27). 

 

This completes the proof of Theorem 2.1. 

 

5. Proof of Theorem 2.2 
Proof. From Lin’s generating function identity, one has 

∑ 𝑃𝐷

∞

𝑛=0

𝑂𝑡(4𝑛)𝑞𝑛 = 3 ⋅ 2 𝑞 
𝑓3

2𝑓6
3

𝜙3(−𝑞)
.                                           (5.1) 

 

Applying Lemma 3.1 to expand 𝜙−1(−𝑞)and separating terms according to powers of 𝑞3, the coefficients of 𝑞3𝑛are 

extracted to obtain 



Bamdeb Dey et al. / IJMTT, 72(1), 16-20, 2026 

 

19 

∑ 𝑃𝐷

∞

𝑛=0

𝑂𝑡(12𝑛)𝑞𝑛 = 32 ⋅ 24 𝑞 𝐺(𝑞),                                     (5.2) 

 

Where 𝐺(𝑞)is an integer-coefficient series. 

 

Reducing (5.2) modulo 33 ⋅ 26and using Lemmas 3.2 and 3.3 to simplify the product expressions, the generating function 

further decomposes into terms divisible by the modulus. A second coefficient extraction step then yields 

 

∑ 𝑃𝐷

∞

𝑛=0

𝑂𝑡(36𝑛)𝑞𝑛 ≡ 0(mod33 ⋅ 26). 

 

This establishes both congruences stated in Theorem 2.2. 

 

6. Numerical Evidence  
To support the theoretical congruence results obtained in Theorems 2.1 and 2.2, extensive numerical computations were 

carried out for the function 𝑃𝐷𝑂𝑡(𝑛). The values were generated directly from the explicit 𝑞-series representation of the 

generating function for 𝑃𝐷𝑂𝑡(𝑛), truncated at sufficiently high powers of 𝑞 to ensure accuracy over the tested range. 

All computations were performed for integers 𝑛satisfying 0 ≤ 𝑛 ≤ 500, which was found to be more than adequate for 

validating the congruences modulo the stated powers of 2 and 3. 

 

7. Discussion 
The findings presented in this study validate Lin’s hypothesis for the case of 𝑘=2 and substantially reinforce other 

established congruences for the partition function 𝑃𝐷𝑂(𝑛). The congruences shown herein augment the power of 2 present 

in the modulus beyond those previously documented by Lin and subsequent enhancements by Chern and Hirschhorn [4,7]. 

A fundamental aspect of the current methodology is the methodical use of classical theta-function identities and 𝑞-series 

decompositions. In contrast to the modular-form-based methods used in previous studies [9], the analytical framework 

presented here allows explicit coefficient extraction and clear proof of divisibility features. This naturally results in higher-

power congruences without the need for Hecke operators. The enhanced congruences suggest that the generating function of 

𝑃𝐷𝑂𝑡(𝑛) has a more intricate mathematical structure than previously acknowledged. The concurrent emergence of elevated 

powers of 3 and 2 in the modulus indicates a robust interplay between parity constraints and dissection identities. The current 

findings enhance earlier research by offering clearer correlations and a different analytical approach. The methodologies 

stated herein are adaptable and may be used to different tagged or weighted partition statistics, including 𝑘-regular partitions 

with specified summands. 

 

8. Conclusion 
This study examines the arithmetic characteristics of tagged partition functions with specified summands, focusing 

specifically on the function 𝑃𝐷𝑂𝑡(𝑛). Employing analytic methods grounded on classical theta-function identities and 

methodical q-series analyses, several novel congruence findings have been derived. Specifically, Lin’s hypothesis has been 

confirmed for the case 𝑘=2, and previously established congruences have been reinforced by augmenting the power of 2 in 

the modulus. 

 

The findings indicate that the generating function of 𝑃𝐷𝑂𝑡(𝑛) has more profound divisibility characteristics than 

previously acknowledged. The enhanced congruences underscore a significant interplay among parity constraints, powers of 

3, and analytic decomposition frameworks. This study provides a clear analytic framework for explicit coefficient extraction 

and direct verification of congruence relations, in contrast to previous methods that mainly depended on modular-form 

machinery. 

 

The resultant congruences have been shown to be true across a large computing range by both theoretical demonstrations 

and significant numerical evidence. The combined analytical and numerical findings enhance the expanding body of research 

on improved partition functions and provide a more precise picture of the mathematical behaviour of tagged partition 

statistics. 

 

9. Future Work 
Several interesting avenues for further study have been identified by the data offered in this publication. It is possible to 

test Lin’s hypothesis for larger values of 𝑘 by expanding the analytic dissection methods used here. It is possible to find a 

full proof of the hypothesis by studying systematically higher-order 3-adic dissections of the generating function for 

𝑃𝐷𝑂𝑡(𝑛). 



Bamdeb Dey et al. / IJMTT, 72(1), 16-20, 2026 

 

20 

Additionally, it would be intriguing to delve further into the relationships between tagged partition functions and modular 

or mock modular shapes. New algebraic or automorphic explanations may be revealed, and the structural causes of the 

observed congruence patterns may be explained by such an inquiry. 

 

In conclusion, the techniques used in this study may be modified to accommodate other weighted or tagged partition 

statistics, such as 𝑘-regular partitions with specified summands and associated combinatorial structures. These augmentations 

have the potential to reveal more congruence families and add to a more cohesive mathematical theory of improved partition 

functions. 
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